1
|
Shilova NV, Galanina OE, Polyakova SM, Nokel AY, Pazynina GV, Golovchenko VV, Patova OA, Mikshina PV, Gorshkova TA, Bovin NV. Specificity of widely used lectins as probed with oligosaccharide and plant polysaccharide arrays. Histochem Cell Biol 2024; 162:495-510. [PMID: 39182197 DOI: 10.1007/s00418-024-02323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Glycan-binding specificity was studied for Jacalin, RCA 120, SBA, PHA-L, PHA-E, WGA, UEA, AAL, LTL, LEL, SNA, DSA, LCA, MAH and Con A, lectins widely used in histochemistry. Oligosaccharide- and polysaccharide-based glycan arrays were applied. Expected specificity was confirmed for only 6 of the 15 lectins and the glycan binding profiles of some lectins were dramatically broader than generally accepted. WGA, LEL and DSA known as chitooligosaccharide-specific, were unexpectedly polyreactive, binding to other glycans with the same affinity as to chitobiose, ABH antigens and oligolactosamines (unsubstituted and sialylated). SBA, in addition to expected binding to glycans with terminal GalNAcα, also had high affinity for the GM1 ganglioside. MAH demonstrated much higher affinity to a variety of sulfated glycans compared to Neu5Acα2-3Galβ1-3GalNAcα. Contrary to the common view, LCA demonstrated the maximum binding to (GlcNAcβ1-2Manα1)2-3,6-Manβ1-4GlcNAcβ1-4GlcNAc N-glycan, while it had no interaction with corresponding Gal or Neu5Ac terminated versions. This observed polyreactivity of some lectins casts doubt on their use in accurately determining the presence of a specific glycan structure by histochemical studies. However, comparisons of sera from healthy and diseased individuals with help of a lectin array can easily establish differences in glycosylation patterns and presumptive glycan identities, which can later be clarified using more accurate methods of structural analysis.
Collapse
Affiliation(s)
- Nadezhda V Shilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow, 117997, Russia.
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of the Ministry of Health of Russian Federation, Moscow, Russia.
| | - Oxana E Galanina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow, 117997, Russia
| | - Svetlana M Polyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow, 117997, Russia
| | - Alexey Yu Nokel
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow, 117997, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of the Ministry of Health of Russian Federation, Moscow, Russia
| | - Galina V Pazynina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow, 117997, Russia
| | - Victoria V Golovchenko
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", Syktyvkar, Russia
| | - Olga A Patova
- Institute of Physiology of Federal Research Centre "Komi Science Centre of the Urals Branch of the Russian Academy of Sciences", Syktyvkar, Russia
| | - Polina V Mikshina
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia
| | - Tatayana A Gorshkova
- Kazan Institute of Biochemistry and Biophysics of FRC Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str, 16/10, Moscow, 117997, Russia
| |
Collapse
|
2
|
Chen CY, Motabar D, Zakaria FR, Kim E, Wu B, Payne GF, Bentley WE. Electrobiofabrication of antibody sensor interfaces within a 3D printed device yield rapid and robust electrochemical measurements of titer and glycan structure. Biotechnol Bioeng 2024; 121:3754-3767. [PMID: 39279638 DOI: 10.1002/bit.28839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/18/2024]
Abstract
We report the integration of 3D printing, electrobiofabrication, and protein engineering to create a device that enables near real-time analysis of monoclonal antibody (mAb) titer and quality. 3D printing was used to create the macroscale architecture that can control fluidic contact of a sample with multiple electrodes for replicate measurements. An analysis "chip" was configured as a "snap-in" module for connecting to a 3D printed housing containing fluidic and electronic communication systems. Electrobiofabrication was used to functionalize each electrode by the assembly of a hydrogel interface containing biomolecular recognition and capture proteins. Specifically, an electrochemical thiol oxidation is used to assemble a thiolated polyethylene glycol hydrogel, that in turn is covalently coupled to either a cysteine-tagged protein G that binds the antibody's Fc region or a lectin that binds the glycans of target mAb analytes. We first show the design, assembly, and testing of the hardware device. Then, we show the transition of a step-by-step sensing methodology (e.g., mix, incubate, wash, mix, incubate, wash, measure) into the current method where functionalization, antibody capture, and assessment are performed in situ and in parallel channels. Both titer and glycan analyses were found to be linear with antibody concentration (to 0.2 mg/L). We further found the interfaces could be reused with remarkably similar results. Because the interface assembly and use are simple, rapid, and robust, we suggest this assessment methodology will be widely applicable, including for other biomolecular process development and manufacturing environments.
Collapse
Affiliation(s)
- Chen-Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Fauziah Rahma Zakaria
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Benjamin Wu
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Huang K, Bashian EE, Zong G, Nycholat CM, McBride R, Gomozkova M, Wang S, Huang C, Chapla DG, Schmidt EN, Macauley M, Moremen KW, Paulson JC, Wang LX. Chemoenzymatic Synthesis of Sulfated N-Glycans Recognized by Siglecs and Other Glycan-Binding Proteins. JACS AU 2024; 4:2966-2978. [PMID: 39211606 PMCID: PMC11350573 DOI: 10.1021/jacsau.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
Sulfated N-glycans are present in many glycoproteins, which are implicated in playing important roles in biological recognition processes. Here, we report the systematic chemoenzymatic synthesis of a library of sulfated and sialylated biantennary N-glycans and assess their binding to Siglecs and glycan-specific antibodies that recognize them as glycan ligands. The combined use of three human sulfotransferases, GlcNAc-6-O-sulfotransferase (CHST2), Gal-3-O-sulfotransferase (Gal3ST1), and keratan sulfate Gal-6-O-sulfotransferase (CHST1), resulted in asymmetric and symmetric branch-selective sulfation of the GlcNAc and/or Gal moieties of N-glycans. The extension of the sugar chain using α-2,3- and α-2,6-sialyltransferases afforded the sulfated and sialylated N-glycans. These synthetic glycans with different patterns of sulfation and sialylation were evaluated for binding to selected Siglecs and sulfoglycan-specific antibodies using glycan microarrays. The results confirm previously documented glycan-recognizing properties and further reveal novel specificities for these glycan-binding proteins, demonstrating the utility of the library for assessing the specificity of glycan-binding proteins recognizing sulfated and sialylated glycans.
Collapse
Affiliation(s)
- Kun Huang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Eleanor E. Bashian
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Guanghui Zong
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Corwin M. Nycholat
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Ryan McBride
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Margaryta Gomozkova
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| | - Shengyang Wang
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar G. Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
| | - Edward N. Schmidt
- Department
of Chemistry and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2G2, Canada
| | - Matthew Macauley
- Department
of Chemistry and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2G2, Canada
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - James C. Paulson
- Department
of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Lai-Xi Wang
- Department
of Chemistry and Biochemistry, University
of Maryland, 8051 Regents Drive, College Park, Maryland 20742, United States
| |
Collapse
|
4
|
Liu Y, Yang T, Rong J, Yuan J, Man L, Wei M, Fan J, Lan Y, Liu Y, Gong G, Lu Y, Song X, Wang Z, Huang L. Integrated analysis of natural glycans using a versatile pyrazolone-type heterobifunctional tag ANPMP. Carbohydr Polym 2024; 327:121617. [PMID: 38171699 DOI: 10.1016/j.carbpol.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Glycans mediate various biological processes through carbohydrate-protein interactions, and glycan microarrays have become indispensable tools for understanding these mechanisms. However, advances in functional glycomics are hindered by the absence of convenient and universal methods for obtaining natural glycan libraries with diverse structures from glycoconjugates. To address this challenge, we have developed an integrative approach that enables one-pot release and simultaneously capture, separation, structural characterization, and functional analysis of N/O-glycans. Using this approach, glycoconjugates are incubated with a pyrazolone-type heterobifunctional tag-ANPMP to obtain glycan-2ANPMP conjugates, which are then converted to glycan-AEPMP conjugates. We prepared a tagged glycan library from porcine gastric mucin, soy protein, human milk oligosaccharides, etc. Following derivatization by N-acetylation and permethylation, glycans were subjected to detailed structural characterization by ESI-MSn analysis, which revealed >83 highly pure glycan-AEPMPs containing various natural glycan epitopes. A shotgun microarray is constructed to study the fine details of glycan-bindings by proteins and antisera.
Collapse
Affiliation(s)
- Yuxia Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Tong Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinqiao Rong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinhang Yuan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Lijuan Man
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Ming Wei
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jiangbo Fan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Yao Lan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yinchuan Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Guiping Gong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yu Lu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
5
|
Corcoran E, Olayinka A, di Luca M, Gusti Y, Hakimjavadi R, O'Connor B, Redmond EM, Cahill PA. N-Glycans on the extracellular domain of the Notch1 receptor control Jagged-1 induced Notch signalling and myogenic differentiation of S100β resident vascular stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567576. [PMID: 38014317 PMCID: PMC10680845 DOI: 10.1101/2023.11.17.567576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Notch signalling, critical for development and postnatal homeostasis of the vascular system, is highly regulated by several mechanisms including glycosylation. While the importance of O-linked glycosylation is widely accepted, the structure and function of N-glycans has yet to be defined. Here, we take advantage of lectin binding assays in combination with pharmacological, molecular, and site-directed mutagenetic approaches to study N-glycosylation of the Notch1 receptor. We find that several key oligosaccharides containing bisecting or core fucosylated structures decorate the receptor, control expression and receptor trafficking, and dictate Jagged-1 activation of Notch target genes and myogenic differentiation of multipotent S100β vascular stem cells. N-glycans at asparagine (N) 1241 and 1587 protect the receptor from accelerated degradation, while the oligosaccharide at N888 directly affects signal transduction. Conversely, N-linked glycans at N959, N1179, N1489 do not impact canonical signalling but inhibit differentiation. Our work highlights a novel functional role for N-glycans in controlling Notch1 signalling and differentiation of vascular stem cells.
Collapse
Affiliation(s)
- Eoin Corcoran
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Abidemi Olayinka
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Mariana di Luca
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Yusof Gusti
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Brendan O'Connor
- School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| | - Eileen M Redmond
- Department of Surgery, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Paul A Cahill
- Vascular Biology and Therapeutics Laboratory, School of Biotechnology Faculty of Science and Health, Dublin City University, Dublin, Ireland
| |
Collapse
|
6
|
Bui D, Favell J, Kitova EN, Li Z, McCord KA, Schmidt EN, Mozaneh F, Elaish M, El-Hawiet A, St-Pierre Y, Hobman TC, Macauley MS, Mahal LK, Flynn MR, Klassen JS. Absolute Affinities from Quantitative Shotgun Glycomics Using Concentration-Independent (COIN) Native Mass Spectrometry. ACS CENTRAL SCIENCE 2023; 9:1374-1387. [PMID: 37521792 PMCID: PMC10303200 DOI: 10.1021/acscentsci.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Indexed: 08/01/2023]
Abstract
Native mass spectrometry (nMS) screening of natural glycan libraries against glycan-binding proteins (GBPs) is a powerful tool for ligand discovery. However, as the glycan concentrations are unknown, affinities cannot be measured directly from natural libraries. Here, we introduce Concentration-Independent (COIN)-nMS, which enables quantitative screening of natural glycan libraries by exploiting slow mixing of solutions inside a nanoflow electrospray ionization emitter. The affinities (Kd) of detected GBP-glycan interactions are determined, simultaneously, from nMS analysis of their time-dependent relative abundance changes. We establish the reliability of COIN-nMS using interactions between purified glycans and GBPs with known Kd values. We also demonstrate the implementation of COIN-nMS using the catch-and-release (CaR)-nMS assay for glycosylated GBPs. The COIN-CaR-nMS results obtained for plant, fungal, viral, and human lectins with natural libraries containing hundreds of N-glycans and glycopeptides highlight the assay's versatility for discovering new ligands, precisely measuring their affinities, and uncovering "fine" specificities. Notably, the COIN-CaR-nMS results clarify the sialoglycan binding properties of the SARS-CoV-2 receptor binding domain and establish the recognition of monosialylated hybrid and biantennary N-glycans. Moreover, pharmacological depletion of host complex N-glycans reduces both pseudotyped virions and SARS-CoV-2 cell entry, suggesting that complex N-glycans may serve as attachment factors.
Collapse
Affiliation(s)
- Duong
T. Bui
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - James Favell
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Elena N. Kitova
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Zhixiong Li
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Kelli A. McCord
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Edward N. Schmidt
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Fahima Mozaneh
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Mohamed Elaish
- Department
of Cell Biology, University of Alberta, Edmonton T6G 2H7, AB, Canada
- Poultry
Diseases Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Amr El-Hawiet
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, Alexandria 21561, Egypt
| | - Yves St-Pierre
- Institut
National de la Recherche Scientifique (INRS), INRS-Centre Armand-Frappier
Santé Biotechnologie, Laval H7 V 1B7, QC, Canada
| | - Tom C. Hobman
- Department
of Cell Biology, University of Alberta, Edmonton T6G 2H7, AB, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, AB, Canada
- Li
Ka Shing Institute of Virology, University
of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, AB, Canada
| | - Lara K. Mahal
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Morris R. Flynn
- Department
of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton T6G 1H9, Alberta, Canada
| | - John S. Klassen
- Department
of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
7
|
Comparison of Enzyme-Linked Lectin Sorbent Assay and Flow Cytometry for Profiling Microbial Glycans. Appl Biochem Biotechnol 2022; 194:2047-2060. [DOI: 10.1007/s12010-021-03772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
|
8
|
Cabrales-Orona G, Martínez-Gallardo N, Délano-Frier JP. Functional Characterization of an Amaranth Natterin-4-Like-1 Gene in Arabidopsis thaliana. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.814188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The functional characterization of an Amaranthus hypochondriacus Natterin-4-Like-1 gene (AhN4L-1) coding for an unknown function protein characterized by the presence of an aerolysin-like pore-forming domain in addition to two amaranthin-like agglutinin domains is herewith described. Natterin and nattering-like proteins have been amply described in the animal kingdom. However, the role of nattering-like proteins in plants is practically unknown. The results described in this study, obtained from gene expression data in grain amaranth and from AhN4L-1-overexpressing Arabidopsis thaliana plants indicated that this gene was strongly induced by several biotic and abiotic conditions in grain amaranth, whereas data obtained from the overexpressing Arabidopsis plants further supported the defensive function of this gene, mostly against bacterial and fungal plant pathogens. GUS and GFP AhN4L-1 localization in roots tips, leaf stomata, stamens and pistils also suggested a defensive function in these organs, although its participation in flowering processes, such as self-incompatibility and abscission, is also possible. However, contrary to expectations, the overexpression of this gene negatively affected the vegetative and reproductive growth of the transgenic plants, which also showed no increased tolerance to salinity and water-deficit stress. The latter despite the maintenance of significantly higher chlorophyll levels and photosynthetic parameters under intense salinity stress. These results are discussed in the context of the physiological roles known to be played by related lectins and AB proteins in plants.
Collapse
|
9
|
Klamer Z, Haab B. Combined Analysis of Multiple Glycan-Array Datasets: New Explorations of Protein-Glycan Interactions. Anal Chem 2021; 93:10925-10933. [PMID: 34319080 DOI: 10.1021/acs.analchem.1c01739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycan arrays are indispensable for learning about the specificities of glycan-binding proteins. Despite the abundance of available data, the current analysis methods do not have the ability to interpret and use the variety of data types and to integrate information across datasets. Here, we evaluated whether a novel, automated algorithm for glycan-array analysis could meet that need. We developed a regression-tree algorithm with simultaneous motif optimization and packaged it in software called MotifFinder. We applied the software to analyze data from eight different glycan-array platforms with widely divergent characteristics and observed an accurate analysis of each dataset. We then evaluated the feasibility and value of the combined analyses of multiple datasets. In an integrated analysis of datasets covering multiple lectin concentrations, the software determined approximate binding constants for distinct motifs and identified major differences between the motifs that were not apparent from single-concentration analyses. Furthermore, an integrated analysis of data sources with complementary sets of glycans produced broader views of lectin specificity than produced by the analysis of just one data source. MotifFinder, therefore, enables the optimal use of the expanding resource of the glycan-array data and promises to advance the studies of protein-glycan interactions.
Collapse
Affiliation(s)
- Zachary Klamer
- Van Andel Institute, 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| | - Brian Haab
- Van Andel Institute, 333 Bostwick NE, Grand Rapids, Michigan 49503, United States
| |
Collapse
|
10
|
Motabar D, Li J, Wang S, Tsao CY, Tong X, Wang LX, Payne GF, Bentley WE. Simple, rapidly electroassembled thiolated PEG-based sensor interfaces enable rapid interrogation of antibody titer and glycosylation. Biotechnol Bioeng 2021; 118:2744-2758. [PMID: 33851726 DOI: 10.1002/bit.27793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/26/2021] [Accepted: 04/04/2021] [Indexed: 12/20/2022]
Abstract
Process conditions established during the development and manufacture of recombinant protein therapeutics dramatically impacts their quality and clinical efficacy. Technologies that enable rapid assessment of product quality are critically important. Here, we describe the development of sensor interfaces that directly connect to electronics and enable near real-time assessment of antibody titer and N-linked galactosylation. We make use of a spatially resolved electroassembled thiolated polyethylene glycol hydrogel that enables electroactivated disulfide linkages. For titer assessment, we constructed a cysteinylated protein G that can be linked to the thiolated hydrogel allowing for robust capture and assessment of antibody concentration. For detecting galactosylation, the hydrogel is linked with thiolated sugars and their corresponding lectins, which enables antibody capture based on glycan pattern. Importantly, we demonstrate linear assessment of total antibody concentration over an industrially relevant range and the selective capture and quantification of antibodies with terminal β-galactose glycans. We also show that the interfaces can be reused after surface regeneration using a low pH buffer. Our functionalized interfaces offer advantages in their simplicity, rapid assembly, connectivity to electronics, and reusability. As they assemble directly onto electrodes that also serve as I/O registers, we envision incorporation into diagnostic platforms including those in manufacturing settings.
Collapse
Affiliation(s)
- Dana Motabar
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Jinyang Li
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Chen-Yu Tsao
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - Xin Tong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, USA.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
11
|
Ribeiro JPM, Mendonça PV, Coelho JFJ, Matyjaszewski K, Serra AC. Glycopolymer Brushes by Reversible Deactivation Radical Polymerization: Preparation, Applications, and Future Challenges. Polymers (Basel) 2020; 12:E1268. [PMID: 32492977 PMCID: PMC7362234 DOI: 10.3390/polym12061268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
The cellular surface contains specific proteins, also known as lectins, that are carbohydrates receptors involved in different biological events, such as cell-cell adhesion, cell recognition and cell differentiation. The synthesis of well-defined polymers containing carbohydrate units, known as glycopolymers, by reversible deactivation radical polymerization (RDRP) methods allows the development of tailor-made materials with high affinity for lectins because of their multivalent interaction. These polymers are promising candidates for the biomedical field, namely as novel diagnostic disease markers, biosensors, or carriers for tumor-targeted therapy. Although linear glycopolymers are extensively studied for lectin recognition, branched glycopolymeric structures, such as polymer brushes can establish stronger interactions with lectins. This specific glycopolymer topology can be synthesized in a bottlebrush form or grafted to/from surfaces by using RDRP methods, allowing a precise control over molecular weight, grafting density, and brush thickness. Here, the preparation and application of glycopolymer brushes is critically discussed and future research directions on this topic are suggested.
Collapse
Affiliation(s)
- Jessica P. M. Ribeiro
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Patrícia V. Mendonça
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Jorge F. J. Coelho
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| | - Krzysztof Matyjaszewski
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA;
| | - Arménio C. Serra
- Department of Chemical Engineering, Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal; (J.P.M.R.); (J.F.J.C.)
| |
Collapse
|
12
|
Li L, Guan W, Zhang G, Wu Z, Yu H, Chen X, Wang PG. Microarray analyses of closely related glycoforms reveal different accessibilities of glycan determinants on N-glycan branches. Glycobiology 2020; 30:334-345. [PMID: 32026940 PMCID: PMC7175966 DOI: 10.1093/glycob/cwz100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/03/2023] Open
Abstract
Glycans mediate a wide variety of biological roles via recognition by glycan-binding proteins (GBPs). Comprehensive knowledge of such interaction is thus fundamental to glycobiology. While the primary binding feature of GBPs can be easily uncovered by using a simple glycan microarray harboring limited numbers of glycan motifs, their fine specificities are harder to interpret. In this study, we prepared 98 closely related N-glycoforms that contain 5 common glycan epitopes which allowed the determination of the fine binding specificities of several plant lectins and anti-glycan antibodies. These N-glycoforms differ from each other at the monosaccharide level and were presented in an identical format to ensure comparability. With the analysis platform we used, it was found that most tested GBPs have preferences toward only one branch of the complex N-glycans, and their binding toward the epitope-presenting branch can be significantly affected by structures on the other branch. Fine specificities described here are valuable for a comprehensive understanding and applications of GBPs.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Wanyi Guan
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Gaolan Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Zhigang Wu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Hai Yu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
14
|
Li PJ, Anwar MT, Fan CY, Juang DS, Lin HY, Chang TC, Kawade SK, Chen HJ, Chen YJ, Tan KT, Lin CC. Fluorescence "Turn-on" Lectin Sensors Fabricated by Ligand-Assisted Labeling Probes for Detecting Protein-Glycoprotein Interactions. Biomacromolecules 2020; 21:815-824. [PMID: 31891486 DOI: 10.1021/acs.biomac.9b01495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of protein-protein interactions (PPIs) is often very challenging and yields complex and unclear results. Lectin-glycoprotein interactions are especially difficult to study due to the noncovalent nature of the interactions and inherently low binding affinities of proteins to glycan ligands on glycoproteins. Here, we report a "ligand-directed labeling probe (LLP)"-based approach to fabricate protein probes for elucidating protein-glycoprotein interactions. LLP was designed with dual photoactivatable groups for the introduction of an alkyne handle proximal to the carbohydrate-binding pocket of lectins, Ricinus communis agglutinin 120 (RCA120) and recombinant human Siglec-2-Fc. In proof-of-principle studies, alkynylated lectins were conjugated with a photoreactive diazirine cross-linker and an environment-sensitive fluorophore, respectively, by the bioorthogonal click reaction. The modified RCA120 or Siglec-2-Fc was used for detecting the interaction with the target glycoprotein in the solution or endogenously expressed glycoproteins on live HeLa cells. We anticipate that the fabrication of these protein probes will accelerate the discovery of novel PPIs.
Collapse
Affiliation(s)
- Pei-Jhen Li
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan
| | - Mohammad Tarigue Anwar
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan
| | - Chen-Yo Fan
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan
| | - Duane S Juang
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan
| | - Hsin-Yi Lin
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Tsung-Che Chang
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan
| | - Sachin Kisan Kawade
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan
| | - Hsiang-Jung Chen
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry , Academia Sinica , Taipei 11529 , Taiwan
| | - Kui-Thong Tan
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry , National Tsing Hua University , 101 Section 2, Kuang Fu Road , Hsinchu 30013 , Taiwan.,Department of Medicinal and Applied Chemistry , Kaohsiung Medical University , Kaohsiung 80708 , Taiwan
| |
Collapse
|
15
|
Coff L, Chan J, Ramsland PA, Guy AJ. Identifying glycan motifs using a novel subtree mining approach. BMC Bioinformatics 2020; 21:42. [PMID: 32019496 PMCID: PMC7001330 DOI: 10.1186/s12859-020-3374-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Background Glycans are complex sugar chains, crucial to many biological processes. By participating in binding interactions with proteins, glycans often play key roles in host–pathogen interactions. The specificities of glycan-binding proteins, such as lectins and antibodies, are governed by motifs within larger glycan structures, and improved characterisations of these determinants would aid research into human diseases. Identification of motifs has previously been approached as a frequent subtree mining problem, and we extend these approaches with a glycan notation that allows recognition of terminal motifs. Results In this work, we customised a frequent subtree mining approach by altering the glycan notation to include information on terminal connections. This allows specific identification of terminal residues as potential motifs, better capturing the complexity of glycan-binding interactions. We achieved this by including additional nodes in a graph representation of the glycan structure to indicate the presence or absence of a linkage at particular backbone carbon positions. Combining this frequent subtree mining approach with a state-of-the-art feature selection algorithm termed minimum-redundancy, maximum-relevance (mRMR), we have generated a classification pipeline that is trained on data from a glycan microarray. When applied to a set of commonly used lectins, the identified motifs were consistent with known binding determinants. Furthermore, logistic regression classifiers trained using these motifs performed well across most lectins examined, with a median AUC value of 0.89. Conclusions We present here a new subtree mining approach for the classification of glycan binding and identification of potential binding motifs. The Carbohydrate Classification Accounting for Restricted Linkages (CCARL) method will assist in the interpretation of glycan microarray experiments and will aid in the discovery of novel binding motifs for further experimental characterisation.
Collapse
Affiliation(s)
- Lachlan Coff
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Jeffrey Chan
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia
| | - Paul A Ramsland
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.,Department of Immunology, Monash University, 3004, Melbourne, Australia.,Department of Surgery Austin Health, University of Melbourne, 3084, Heidelberg, Australia
| | - Andrew J Guy
- School of Science, College of Science, Engineering and Health, RMIT University, 3000, Melbourne, Australia.
| |
Collapse
|
16
|
Koeller CM, Tiengwe C, Schwartz KJ, Bangs JD. Steric constraints control processing of glycosylphosphatidylinositol anchors in Trypanosoma brucei. J Biol Chem 2020; 295:2227-2238. [PMID: 31932305 DOI: 10.1074/jbc.ra119.010847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/26/2019] [Indexed: 11/06/2022] Open
Abstract
The transferrin receptor (TfR) of the bloodstream form (BSF) of Trypanosoma brucei is a heterodimer comprising glycosylphosphatidylinositol (GPI)-anchored expression site-associated gene 6 (ESAG6 or E6) and soluble ESAG7. Mature E6 has five N-glycans, consisting of three oligomannose and two unprocessed paucimannose structures. Its GPI anchor is modified by the addition of 4-6 α-galactose residues. TfR binds tomato lectin (TL), specific for N-acetyllactosamine (LacNAc) repeats, and previous studies have shown transport-dependent increases in E6 size consistent with post-glycan processing in the endoplasmic reticulum. Using pulse-chase radiolabeling, peptide-N-glycosidase F treatment, lectin pulldowns, and exoglycosidase treatment, we have now investigated TfR N-glycan and GPI processing. E6 increased ∼5 kDa during maturation, becoming reactive with both TL and Erythrina cristagalli lectin (ECL, terminal LacNAc), indicating synthesis of poly-LacNAc on paucimannose N-glycans. This processing was lost after exoglycosidase treatment and after RNAi-based silencing of TbSTT3A, the oligosaccharyltransferase that transfers paucimannose structures to nascent secretory polypeptides. These results contradict previous structural studies. Minor GPI processing was also observed, consistent with α-galactose addition. However, increasing the spacing between E6 protein and the GPI ω-site (aa 4-7) resulted in extensive post-translational processing of the GPI anchor to a form that was TL/ECL-reactive, suggesting the addition of LacNAc structures, confirmed by identical assays with BiPNHP, a non-N-glycosylated GPI-anchored reporter. We conclude that BSF trypanosomes can modify GPIs by generating structures reminiscent of those present in insect-stage trypanosomes and that steric constraints, not stage-specific expression of glycosyltransferases, regulate GPI processing.
Collapse
Affiliation(s)
- Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214
| | - Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214
| | - Kevin J Schwartz
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53706
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214.
| |
Collapse
|
17
|
Qualitative and quantitative alterations in intracellular and membrane glycoproteins maintain the balance between cellular senescence and human aging. Aging (Albany NY) 2019; 10:2190-2208. [PMID: 30157474 PMCID: PMC6128432 DOI: 10.18632/aging.101540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022]
Abstract
Glycans are associated with and serve as biomarkers for various biological functions. We previously reported that cell surface sialylated glycoproteins of dermal fibroblasts decreased with cellular senescence and human aging. There is little information on the changes in glycoprotein expression and subcellular localization during the aging process. Here, we examined intracellular glycan profiles of fibroblasts undergoing cellular senescence and those derived from aging human subjects using lectin microarray analysis. We found a sequential change of the intracellular glycan profiles was little during cellular senescence. The intracellular glycans of cells derived from aged fetus and from elderly subjects showed similar localized patterns while repeating unsteady changes. The ratio of α2-3/2-6sialylated intracellular glycoproteins in total cell extracts increased, except for a part of α2-3sialylated O-glycans. These findings are in contrast to those for membrane glycoprotein, which decreased with aging. Interestingly, the ratio of increasing sialylated glycoproteins in the fetus-derived cells showing cellular senescence was similar to that in cells derived from the elderly. Thus, intracellular glycans may maintain cellular functions such as ubiquitin/proteasome-mediated degradation and/or autophagy during aging by contributing to the accumulation of intracellular glycosylated proteins. Our findings provide novel mechanistic insight into the molecular changes that occur during aging.
Collapse
|
18
|
Wang S, Zhang Q, Chen C, Guo Y, Gadi MR, Yu J, Westerlind U, Liu Y, Cao X, Wang PG, Li L. Facile Chemoenzymatic Synthesis of O-Mannosyl Glycans. Angew Chem Int Ed Engl 2018; 57:9268-9273. [PMID: 29732660 DOI: 10.1002/anie.201803536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 02/01/2023]
Abstract
O Mannosylation is a vital protein modification involved in brain and muscle development whereas the biological relevance of O-mannosyl glycans has remained largely unknown owing to the lack of structurally defined glycoforms. An efficient scaffold synthesis/enzymatic extension (SSEE) strategy was developed to prepare such structures by combining gram-scale convergent chemical syntheses of three scaffolds and strictly controlled sequential enzymatic extension catalyzed by glycosyltransferases. In total, 45 O-mannosyl glycans were obtained, covering the majority of identified mammalian structures. Subsequent glycan microarray analysis revealed fine specificities of glycan-binding proteins and specific antisera.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Qing Zhang
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - CongCong Chen
- National Glycoengineering Research Center, School of Pharmaceutical Science, Shandong University, Jinan, 250012, China
| | - Yuxi Guo
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Madhusudhan Reddy Gadi
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227, Dortmund, Germany.,Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Yunpeng Liu
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Xuefeng Cao
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Peng G Wang
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| | - Lei Li
- Department of Chemistry & Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
19
|
Wang S, Zhang Q, Chen C, Guo Y, Gadi MR, Yu J, Westerlind U, Liu Y, Cao X, Wang PG, Li L. Facile Chemoenzymatic Synthesis of O-Mannosyl Glycans. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Qing Zhang
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - CongCong Chen
- National Glycoengineering Research Center; School of Pharmaceutical Science; Shandong University; Jinan 250012 China
| | - Yuxi Guo
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Madhusudhan Reddy Gadi
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Jin Yu
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
| | - Ulrika Westerlind
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V.; 44227 Dortmund Germany
- Department of Chemistry; Umeå University; 901 87 Umeå Sweden
| | - Yunpeng Liu
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Xuefeng Cao
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Peng G. Wang
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| | - Lei Li
- Department of Chemistry & Center for Diagnostics & Therapeutics; Georgia State University; Atlanta GA 30303 USA
| |
Collapse
|
20
|
Structural Characterization and Interaction with RCA 120 of a Highly Sulfated Keratan Sulfate from Blue Shark (Prionace glauca) Cartilage. Mar Drugs 2018; 16:md16040128. [PMID: 29662015 PMCID: PMC5923415 DOI: 10.3390/md16040128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/21/2023] Open
Abstract
As an important glycosaminoglycan, keratan sulfate (KS) mainly exists in corneal and cartilage, possessing various biological activities. In this study, we purified KS from blue shark (Prionace glauca) cartilage and prepared KS oligosaccharides (KSO) through keratanase II-catalyzed hydrolysis. The structures of KS and KSO were characterized using multi-dimensional nuclear magnetic resonance (NMR) spectra and liquid chromatography-mass spectrometry (LC-MS). Shark cartilage KS was highly sulfated and modified with ~2.69% N-acetylneuraminic acid (NeuAc) through α(2,3)-linked to galactose. Additionally, KS exhibited binding affinity to Ricinus communis agglutinin I (RCA120) in a concentration-dependent manner, a highly toxic lectin from beans of the castor plant. Furthermore, KSO from dp2 to dp8 bound to RCA120 in the increasing trend while the binding affinity of dp8 was superior to polysaccharide. These results define novel structural features for KS from Prionace glauca cartilage and demonstrate the potential application on ricin-antidote exploitation.
Collapse
|
21
|
Miura Y, Hashii N, Ohta Y, Itakura Y, Tsumoto H, Suzuki J, Takakura D, Abe Y, Arai Y, Toyoda M, Kawasaki N, Hirose N, Endo T. Characteristic glycopeptides associated with extreme human longevity identified through plasma glycoproteomics. Biochim Biophys Acta Gen Subj 2018; 1862:1462-1471. [PMID: 29580922 DOI: 10.1016/j.bbagen.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glycosylation is highly susceptible to changes of the physiological conditions, and accordingly, is a potential biomarker associated with several diseases and/or longevity. Semi-supercentenarians (SSCs; older than 105 years) are thought to be a model of human longevity. Thus, we performed glycoproteomics using plasma samples of SSCs, and identified proteins and conjugated N-glycans that are characteristic of extreme human longevity. METHODS Plasma proteins from Japanese semi-supercentenarians (SSCs, 106-109 years), aged controls (70-88 years), and young controls (20-38 years) were analysed by using lectin microarrays and liquid chromatography/mass spectrometry (LC/MS). Peak area ratios of glycopeptides to corresponding normalising peptides were subjected to orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, plasma levels of clinical biomarkers were measured. RESULTS We found two lectins such as Phaseolus vulgaris, and Erythrina cristagalli (ECA), of which protein binding were characteristically increased in SSCs. Peak area ratios of ECA-enriched glycopeptides were successfully discriminated between SSCs and controls using OPLS-DA, and indicated that tri-antennary and sialylated N-glycans of haptoglobin at Asn207 and Asn211 sites were characterized in SSCs. Sialylated glycans of haptoglobin are a potential biomarker of several diseases, such as hepatocellular carcinoma, liver cirrhosis, and IgA-nephritis. However, the SSCs analysed here did not suffer from these diseases. CONCLUSIONS Tri-antennary and sialylated N-glycans on haptoglobin at the Asn207 and Asn211 sites were abundant in SSCs and characteristic of extreme human longevity. GENERAL SIGNIFICANCE We found abundant glycans in SSCs, which may be associated with human longevity.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yuki Ohta
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Junya Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Daisuke Takakura
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tamao Endo
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
22
|
Wu Z, Liu Y, Li L, Wan XF, Zhu H, Guo Y, Wei M, Guan W, Wang PG. Decoding glycan protein interactions by a new class of asymmetric N-glycans. Org Biomol Chem 2018; 15:8946-8951. [PMID: 29043371 DOI: 10.1039/c7ob02303k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Glycans are normally involved in crucial physiological and disease processes by interactions with glycan-binding proteins. So far structurally defined N-glycans have been good candidates for glycan binding study. Herein, a class of homogeneous asymmetric N-glycans was synthesized by coupling glycan-oxazoline and N-glycans using EndoM N175Q catalyzed quick glycan extension. Branch-biased binding and spacial inhibition caused by the bulky group on the other branch of N-glycan were observed in glycan protein interactions involving lectins and these glycans by glycan microarray study. These new compounds are valuable for functional glycomic studies to better understand new functions of glycans and glycan-binding proteins.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gal Y, Mazor O, Falach R, Sapoznikov A, Kronman C, Sabo T. Treatments for Pulmonary Ricin Intoxication: Current Aspects and Future Prospects. Toxins (Basel) 2017; 9:E311. [PMID: 28972558 PMCID: PMC5666358 DOI: 10.3390/toxins9100311] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Ricin, a plant-derived toxin originating from the seeds of Ricinus communis (castor beans), is one of the most lethal toxins known, particularly if inhaled. Ricin is considered a potential biological threat agent due to its high availability and ease of production. The clinical manifestation of pulmonary ricin intoxication in animal models is closely related to acute respiratory distress syndrome (ARDS), which involves pulmonary proinflammatory cytokine upregulation, massive neutrophil infiltration and severe edema. Currently, the only post-exposure measure that is effective against pulmonary ricinosis at clinically relevant time-points following intoxication in pre-clinical studies is passive immunization with anti-ricin neutralizing antibodies. The efficacy of this antitoxin treatment depends on antibody affinity and the time of treatment initiation within a limited therapeutic time window. Small-molecule compounds that interfere directly with the toxin or inhibit its intracellular trafficking may also be beneficial against ricinosis. Another approach relies on the co-administration of antitoxin antibodies with immunomodulatory drugs, thereby neutralizing the toxin while attenuating lung injury. Immunomodulators and other pharmacological-based treatment options should be tailored according to the particular pathogenesis pathways of pulmonary ricinosis. This review focuses on the current treatment options for pulmonary ricin intoxication using anti-ricin antibodies, disease-modifying countermeasures, anti-ricin small molecules and their various combinations.
Collapse
Affiliation(s)
- Yoav Gal
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Reut Falach
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Anita Sapoznikov
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Chanoch Kronman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| | - Tamar Sabo
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 76100, Israel.
| |
Collapse
|
24
|
Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study. Int J Mol Sci 2017; 18:ijms18061160. [PMID: 28556796 PMCID: PMC5485984 DOI: 10.3390/ijms18061160] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 04/28/2017] [Accepted: 05/21/2017] [Indexed: 01/16/2023] Open
Abstract
Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine)-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine). Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations.
Collapse
|
25
|
Wakao M, Watanabe S, Kurahashi Y, Matsuo T, Takeuchi M, Ogawa T, Suzuki K, Yumino T, Myogadani T, Saito A, Muta KI, Kimura M, Kajikawa K, Suda Y. Optical Fiber-Type Sugar Chip Using Localized Surface Plasmon Resonance. Anal Chem 2017; 89:1086-1091. [PMID: 27989122 DOI: 10.1021/acs.analchem.6b02380] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Optical fiber-type Sugar Chips were developed using localized surface plasmon resonance (LSPR) of gold (Au) nanoparticles. The endface of an optical fiber was first aminosilylated and then condensed with α-lipoic acid containing a dithiol group. Second, gold nanoparticles were immobilized onto the endface via an Au-S covalent bond. Finally, sugar moieties were attached to the gold nanoparticle using our original sugar chain-ligand conjugates to obtain fiber-type Sugar Chips, by which the sugar moiety-protein interaction was analyzed. The specificity, sensitivity, and quantitative binding potency against carbohydrate-binding protein were found to be identical to that of a conventional SPR sensor. In this analysis, only a small sample volume (approximately 10 μL) was required compared with 100 μL for the conventional SPR sensor, suggesting that the fiber-type Sugar Chip and LSPR are applicable for nonpure small masses of proteins.
Collapse
Affiliation(s)
- Masahiro Wakao
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , 1-21-40 Kohrimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Shogo Watanabe
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , 1-21-40 Kohrimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Yoshie Kurahashi
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , 1-21-40 Kohrimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Takahide Matsuo
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , 1-21-40 Kohrimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Makoto Takeuchi
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , 1-21-40 Kohrimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Tomohisa Ogawa
- Moritex Corporation , 1-3-3 Azamino-minami, Aobaku, Yokohama, Kanagawa 225-0012, Japan
| | - Keigo Suzuki
- Moritex Corporation , 1-3-3 Azamino-minami, Aobaku, Yokohama, Kanagawa 225-0012, Japan
| | - Takeshi Yumino
- Moritex Corporation , 1-3-3 Azamino-minami, Aobaku, Yokohama, Kanagawa 225-0012, Japan
| | - Tohru Myogadani
- Moritex Corporation , 1-3-3 Azamino-minami, Aobaku, Yokohama, Kanagawa 225-0012, Japan
| | - Atsushi Saito
- Moritex Corporation , 1-3-3 Azamino-minami, Aobaku, Yokohama, Kanagawa 225-0012, Japan
| | - Ken-Ichi Muta
- Moritex Corporation , 1-3-3 Azamino-minami, Aobaku, Yokohama, Kanagawa 225-0012, Japan
| | - Mitsunori Kimura
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology , Midoriku, Yokohama, Kanagawa 226-8502, Japan
| | - Kotaro Kajikawa
- Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology , Midoriku, Yokohama, Kanagawa 226-8502, Japan
| | - Yasuo Suda
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , 1-21-40 Kohrimoto, Kagoshima, Kagoshima 890-0065, Japan.,SUDx-Biotec Corporation , 1-42-1 Shiroyama, Kagoshima, Kagoshima 890-0013, Japan
| |
Collapse
|
26
|
Wu Z, Liu Y, Ma C, Li L, Bai J, Byrd-Leotis L, Lasanajak Y, Guo Y, Wen L, Zhu H, Song J, Li Y, Steinhauer DA, Smith DF, Zhao B, Chen X, Guan W, Wang PG. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org Biomol Chem 2016; 14:11106-11116. [PMID: 27752690 PMCID: PMC5951163 DOI: 10.1039/c6ob01982j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans play diverse roles in a wide range of biological processes. Research on glycan-binding events is essential for learning their biological and pathological functions. However, the functions of terminal and internal glycan epitopes exhibited during binding with glycan-binding proteins (GBPs) and/or viruses need to be further identified. Therefore, a focused library of 36 biantennary asparagine (Asn)-linked glycans with some presenting tandem glycan epitopes was synthesized via a combined Core Isolation/Enzymatic Extension (CIEE) and one-pot multienzyme (OPME) synthetic strategy. These N-glycans include those containing a terminal sialyl N-acetyllactosamine (LacNAc), sialyl Lewis x (sLex) and Siaα2-8-Siaα2-3/6-R structures with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc) sialic acid form, LacNAc, Lewis x (Lex), α-Gal, and Galα1-3-Lex; and tandem epitopes including α-Gal, Lex, Galα1-3-Lex, LacNAc, and sialyl LacNAc, presented with an internal sialyl LacNAc or 1-2 repeats of an internal LacNAc or Lex component. They were synthesized in milligram-scale, purified to over 98% purity, and used to prepare a glycan microarray. Binding studies using selected plant lectins, antibodies, and viruses demonstrated, for the first time, that when interpreting the binding between glycans and GBPs/viruses, not only the structure of the terminal glycan epitopes, but also the internal epitopes and/or modifications of terminal epitopes needs to be taken into account.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lauren Byrd-Leotis
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuxi Guo
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - He Zhu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - David A Steinhauer
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Wanyi Guan
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA. and College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
27
|
Chandrasekaran EV, Xue J, Xia J, Khaja SD, Piskorz CF, Locke RD, Neelamegham S, Matta KL. Novel interactions of complex carbohydrates with peanut (PNA), Ricinus communis (RCA-I), Sambucus nigra (SNA-I) and wheat germ (WGA) agglutinins as revealed by the binding specificities of these lectins towards mucin core-2 O-linked and N-linked glycans and related structures. Glycoconj J 2016; 33:819-36. [PMID: 27318477 DOI: 10.1007/s10719-016-9678-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
Plant lectins through their multivalent quaternary structures bind intrinsically flexible oligosaccharides. They recognize fine structural differences in carbohydrates and interact with different sequences in mucin core 2 or complex-type N-glycan chain and also in healthy and malignant tissues. They are used in characterizing cellular and extracellular glycoconjugates modified in pathological processes. We study here, the complex carbohydrate-lectin interactions by determining the effects of substituents in mucin core 2 tetrasaccharide Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-O-R and fetuin glycopeptides on their binding to agarose-immobilized lectins PNA, RCA-I, SNA-I and WGA. Briefly, in mucin core 2 tetrasaccharide (i) structures modified by α2-3/6-Sialyl LacNAc, LewisX and α1-3-Galactosyl LacNAc resulted in regular binding to PNA whereas compounds with 6-sulfo LacNAc displayed no-binding; (ii) strucures bearing α2-6-sialyl 6-sulfo LacNAc, or 6-sialyl LacdiNAc carbohydrates displayed strong binding to SNA-I; (iii) structures with α2-3/6-sialyl, α1-3Gal LacNAc or LewisX were non-binder to RCA-I and compounds with 6-sulfo LacNAc only displayed weak binding; (iv) structures containing LewisX, 6-Sulfo LewisX, α2-3/6-sialyl LacNAc, α2-3/6-sialyl 6-sulfo LacNAc and GalNAc Lewis-a were non-binding to WGA, those with α1-2Fucosyl, α1-3-Galactosyl LacNAc, α2-3-sialyl T-hapten plus 3'/6'sulfo LacNAc displayed weak binding, and compounds with α2-3-sialyl T-hapten, α2.6-Sialyl LacdiNAc, α2-3-sialyl D-Fucβ1-3 GalNAc and Fucα-1-2 D-Fucβ-1-3GalNAc displaying regular binding and GalNAc LewisX and LacdiNAc plus D-Fuc β-1-3 GalNAcα resulting in tight binding. RCA-I binds Fetuin triantennary asialoglycopeptide 100 % after α-2-3 and 25 % after α-2-6 sialylation, 30 % after α-1-2 and 100 % after α-1-3 fucosylation, and 50 % after α-1-3 galactosylation. WGA binds 3-but not 6-Fucosyl chitobiose core. Thus, information on the influence of complex carbohydrate chain constituents on lectin binding is apparently essential for the potential application of lectins in glycoconjugate research.
Collapse
Affiliation(s)
- E V Chandrasekaran
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
| | - Jun Xue
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Jie Xia
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Siraj D Khaja
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Conrad F Piskorz
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Robert D Locke
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA
| | - Khushi L Matta
- Department of Cancer Biology, Roswell Park Cancer Institute, Buffalo, NY, 14263, USA.
- Department of Chemical and Biological Engineering, State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
28
|
Castillo-Acosta VM, Ruiz-Pérez LM, Etxebarria J, Reichardt NC, Navarro M, Igarashi Y, Liekens S, Balzarini J, González-Pacanowska D. Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models. PLoS Pathog 2016; 12:e1005851. [PMID: 27662652 PMCID: PMC5035034 DOI: 10.1371/journal.ppat.1005851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/08/2016] [Indexed: 12/21/2022] Open
Abstract
Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT.
Collapse
Affiliation(s)
- Víctor M. Castillo-Acosta
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada), Spain
| | - Luis M. Ruiz-Pérez
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada), Spain
| | - Juan Etxebarria
- Glycotechnology Laboratory, CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa, San Sebastián, Spain
| | - Niels C. Reichardt
- Glycotechnology Laboratory, CIC biomaGUNE, Parque Científico y Tecnológico de Gipuzkoa, San Sebastián, Spain
- CIBER of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), San Sebastián, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada), Spain
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Sandra Liekens
- KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | - Jan Balzarini
- KU Leuven, Rega Institute for Medical Research, Leuven, Belgium
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Armilla (Granada), Spain
- * E-mail:
| |
Collapse
|
29
|
Salem DP, Nelson JT, Kim S, Strano MS. A Dynamic, Mathematical Model for Quantitative Glycoprofiling Using Label-Free Lectin Microarrays. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel P. Salem
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Justin T. Nelson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sojin Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Jiménez-Castells C, Stanton R, Yan S, Kosma P, Wilson IB. Development of a multifunctional aminoxy-based fluorescent linker for glycan immobilization and analysis. Glycobiology 2016; 26:1297-1307. [PMID: 27222531 DOI: 10.1093/glycob/cww051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
Glycan arrays have become a technique of choice to screen glycan-protein interactions in a high-throughput manner with high sensitivity and low sample consumption. Here, the synthesis of a new multifunctional fluorescent linker for glycan labeling via aminoxy ligation and immobilization is described; the linker features a fluorescent naphthalene group suitable for highly sensitive high-performance liquid chromatography-based purification and an azido- or amino-modified pentanoyl moiety for the immobilization onto solid supports. Several glycoconjugates displaying small sugar epitopes via chemical or chemoenzymatic synthesis were covalently attached onto a microarray support and tested with lectins of known carbohydrate binding specificity. The glycan library was extended using glycosyltransferases (e.g. galactosyl-, sialyl- and fucosyltransferases); the resulting neoglycoconjugates, which are easily detected by mass spectrometry, mimic antennal elements of N- and O-glycans, including ABH blood group epitopes and sialylated structures. Furthermore, an example natural plant N-glycan containing core α1,3-fucose and β1,2-xylose was also successfully conjugated to the fluorescent linker, immobilized and probed with lectins as well as antihorseradish peroxidase. These experiments validate our linker as being a potentially valuable tool to study glycozyme and lectin specificities, sensitive enough to allow purification of natural glycans.
Collapse
Affiliation(s)
| | - Rhiannon Stanton
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Paul Kosma
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| | - Iain Bh Wilson
- Department für Chemie, Universität für Bodenkultur, 1190 Wien, Austria
| |
Collapse
|
31
|
Pomin VH. Phylogeny, structure, function, biosynthesis and evolution of sulfated galactose-containing glycans. Int J Biol Macromol 2016; 84:372-9. [DOI: 10.1016/j.ijbiomac.2015.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 11/30/2015] [Accepted: 12/11/2015] [Indexed: 01/20/2023]
|
32
|
Onitsuka M, Omasa T. Rapid evaluation of N-glycosylation status of antibodies with chemiluminescent lectin-binding assay. J Biosci Bioeng 2015; 120:107-10. [DOI: 10.1016/j.jbiosc.2014.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 01/05/2023]
|
33
|
Hirabayashi J, Tateno H, Shikanai T, Aoki-Kinoshita KF, Narimatsu H. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules 2015; 20:951-73. [PMID: 25580689 PMCID: PMC6272529 DOI: 10.3390/molecules20010951] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 12/03/2022] Open
Abstract
Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms—from humans to microorganisms, including viruses—and while their functions are yet to be fully elucidated, their main underlying actions are thought to mediate cell-cell and cell-glycoconjugate interactions, which play important roles in an extensive range of biological processes. The basic feature of each lectin’s function resides in its specific sugar-binding properties. In this regard, it is beneficial for researchers to have access to fundamental information about the detailed oligosaccharide specificities of diverse lectins. In this review, the authors describe a publicly available lectin database named “Lectin frontier DataBase (LfDB)”, which undertakes the continuous publication and updating of comprehensive data for lectin-standard oligosaccharide interactions in terms of dissociation constants (Kd’s). For Kd determination, an advanced system of frontal affinity chromatography (FAC) is used, with which quantitative datasets of interactions between immobilized lectins and >100 fluorescently labeled standard glycans have been generated. The FAC system is unique in its clear principle, simple procedure and high sensitivity, with an increasing number (>67) of associated publications that attest to its reliability. Thus, LfDB, is expected to play an essential role in lectin research, not only in basic but also in applied fields of glycoscience.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Hiroaki Tateno
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Toshihide Shikanai
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
34
|
The development of new molecular tools containing a chemically synthesized carbohydrate ligand for the elucidation of carbohydrate roles via photoaffinity labeling: Carbohydrate–protein interactions are affected by the structures of the glycosidic bonds and the reducing-end sugar. Bioorg Med Chem 2014; 22:3829-37. [DOI: 10.1016/j.bmc.2014.06.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 11/19/2022]
|
35
|
Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc Natl Acad Sci U S A 2014; 111:E2241-50. [PMID: 24843157 DOI: 10.1073/pnas.1323162111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.
Collapse
|
36
|
Malik A, Lee J, Lee J. Community-based network study of protein-carbohydrate interactions in plant lectins using glycan array data. PLoS One 2014; 9:e95480. [PMID: 24755681 PMCID: PMC3995809 DOI: 10.1371/journal.pone.0095480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/27/2014] [Indexed: 12/14/2022] Open
Abstract
Lectins play major roles in biological processes such as immune recognition and regulation, inflammatory responses, cytokine signaling, and cell adhesion. Recently, glycan microarrays have shown to play key roles in understanding glycobiology, allowing us to study the relationship between the specificities of glycan binding proteins and their natural ligands at the omics scale. However, one of the drawbacks in utilizing glycan microarray data is the lack of systematic analysis tools to extract information. In this work, we attempt to group various lectins and their interacting carbohydrates by using community-based analysis of a lectin-carbohydrate network. The network consists of 1119 nodes and 16769 edges and we have identified 3 lectins having large degrees of connectivity playing the roles of hubs. The community based network analysis provides an easy way to obtain a general picture of the lectin-glycan interaction and many statistically significant functional groups.
Collapse
Affiliation(s)
- Adeel Malik
- Center for In Silico Protein Science, School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Juyong Lee
- Center for In Silico Protein Science, School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Jooyoung Lee
- Center for In Silico Protein Science, School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
- * E-mail:
| |
Collapse
|
37
|
KASAI K. Frontal affinity chromatography: a unique research tool for biospecific interaction that promotes glycobiology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:215-234. [PMID: 25169774 PMCID: PMC4237894 DOI: 10.2183/pjab.90.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Combination of bioaffinity and chromatography gave birth to affinity chromatography. A further combination with frontal analysis resulted in creation of frontal affinity chromatography (FAC). This new versatile research tool enabled detailed analysis of weak interactions that play essential roles in living systems, especially those between complex saccharides and saccharide-binding proteins. FAC now becomes the best method for the investigation of saccharide-binding proteins (lectins) from viewpoints of sensitivity, accuracy, and efficiency, and is contributing greatly to the development of glycobiology. It opened a door leading to deeper understanding of the significance of saccharide recognition in life. The theory is also concisely described.
Collapse
|
38
|
Sharma R, Naresh K, Chabre YM, Rej R, Saadeh NK, Roy R. “Onion peel” dendrimers: a straightforward synthetic approach towards highly diversified architectures. Polym Chem 2014. [DOI: 10.1039/c4py00218k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report herein a novel “onion peel strategy” for the divergent construction of glycodendrimers using different building blocks at each layer of the dendritic growth.
Collapse
Affiliation(s)
- Rishi Sharma
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Kottari Naresh
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Yoann M. Chabre
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | - Rabindra Rej
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| | | | - René Roy
- Pharmaqam and Nanoqam
- Department of Chemistry
- University du Québec à Montréal
- Montréal, Canada
| |
Collapse
|
39
|
Kittur FS, Bah M, Archer-Hartmann S, Hung CY, Azadi P, Ishihara M, Sane DC, Xie J. Cytoprotective effect of recombinant human erythropoietin produced in transgenic tobacco plants. PLoS One 2013; 8:e76468. [PMID: 24124563 PMCID: PMC3790672 DOI: 10.1371/journal.pone.0076468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO) lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPO(M)) by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT) genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC) promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPO(P)) was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPO(P) bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPO(P) (20 U/ml) provides 2-fold better cytoprotection (44%) to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPO(M) (21%). The cytoprotective effect of the asialo-rhuEPO(P) was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2) and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.
Collapse
Affiliation(s)
- Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Mamudou Bah
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - David C. Sane
- Carilion Clinic and Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States of America
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, North Carolina, United States of America
| |
Collapse
|
40
|
Shang J, Piskarev VE, Xia M, Huang P, Jiang X, Likhosherstov LM, Novikova OS, Newburg DS, Ratner DM. Identifying human milk glycans that inhibit norovirus binding using surface plasmon resonance. Glycobiology 2013; 23:1491-8. [PMID: 24026239 DOI: 10.1093/glycob/cwt077] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Human milk glycans inhibit binding between norovirus and its host glycan receptor; such competitive inhibition by human milk glycans is associated with a reduced risk of infection. The relationship between the presence of specific structural motifs in the human milk glycan and its ability to inhibit binding by specific norovirus strains requires facile, accurate and miniaturized-binding assays. Toward this end, a high-throughput biosensor platform was developed based on surface plasmon resonance imaging (SPRi) of glycan microarrays. The SPRi was validated, and its utility was tested, by measuring binding specificities between defined human milk glycan epitopes and the capsids of two common norovirus strains, VA387 and Norwalk. Human milk oligosaccharide (HMOS)-based neoglycoconjugates, including chemically derived neoglycoproteins and oligosaccharide-glycine derivatives, were used to represent polyvalent glycoconjugates and monovalent oligosaccharides, respectively, in human milk. SPRi binding results established that the glycan motifs that bind norovirus capsids depend upon strain; VA387 capsid interacts with two neoglycoproteins, whereas Norwalk capsid binds to a different set of HMOS motifs in the form of both polyvalent neoglycoproteins and monovalent oligosaccharides. SPRi competitive binding assays further demonstrated that specific norovirus-binding glycans are able to inhibit norovirus capsid binding to their host receptors. A polyvalent neoglycoconjugate with clustered carbohydrate moieties is required for the inhibition of VA387 capsid binding to host receptor glycans, whereas both monovalent oligosaccharides and polyvalent neoglycoconjugates are able to inhibit Norwalk capsid binding to its host receptor. Binding of HMOS and HMOS-based neoglycoconjugates to norovirus capsids depends upon the specific strain characteristics, implying that HMOS and their polyvalent derivatives are potential anti-adhesive agents for norovirus prophylaxis.
Collapse
Affiliation(s)
- Jing Shang
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang Z, Chinoy ZS, Ambre SG, Peng W, McBride R, de Vries RP, Glushka J, Paulson JC, Boons GJ. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 2013; 341:379-83. [PMID: 23888036 DOI: 10.1126/science.1236231] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A systematic, efficient means of producing diverse libraries of asymmetrically branched N-glycans is needed to investigate the specificities and biology of glycan-binding proteins. To that end, we describe a core pentasaccharide that at potential branching positions is modified by orthogonal protecting groups to allow selective attachment of specific saccharide moieties by chemical glycosylation. The appendages were selected so that the antenna of the resulting deprotected compounds could be selectively extended by glycosyltransferases to give libraries of asymmetrical multi-antennary glycans. The power of the methodology was demonstrated by the preparation of a series of complex oligosaccharides that were printed as microarrays and screened for binding to lectins and influenza-virus hemagglutinins, which showed that recognition is modulated by presentation of minimal epitopes in the context of complex N-glycans.
Collapse
Affiliation(s)
- Zhen Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaji H, Ocho M, Togayachi A, Kuno A, Sogabe M, Ohkura T, Nozaki H, Angata T, Chiba Y, Ozaki H, Hirabayashi J, Tanaka Y, Mizokami M, Ikehara Y, Narimatsu H. Glycoproteomic Discovery of Serological Biomarker Candidates for HCV/HBV Infection-Associated Liver Fibrosis and Hepatocellular Carcinoma. J Proteome Res 2013; 12:2630-40. [PMID: 23586699 DOI: 10.1021/pr301217b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hiroyuki Kaji
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Makoto Ocho
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Akira Togayachi
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Atsushi Kuno
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Maki Sogabe
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Takashi Ohkura
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hirofumi Nozaki
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Takashi Angata
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Yasunori Chiba
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hidenori Ozaki
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Jun Hirabayashi
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver
Unit, Nagoya City University Graduate School of Medical Sciences, Mizuho, Nagoya, Aichi, Japan
| | - Masashi Mizokami
- Department of Virology and Liver
Unit, Nagoya City University Graduate School of Medical Sciences, Mizuho, Nagoya, Aichi, Japan
| | - Yuzuru Ikehara
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hisashi Narimatsu
- Research Center for Medical
Glycoscience, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
43
|
Tateno H, Matsushima A, Hiemori K, Onuma Y, Ito Y, Hasehira K, Nishimura K, Ohtaka M, Takayasu S, Nakanishi M, Ikehara Y, Nakanishi M, Ohnuma K, Chan T, Toyoda M, Akutsu H, Umezawa A, Asashima M, Hirabayashi J. Podocalyxin is a glycoprotein ligand of the human pluripotent stem cell-specific probe rBC2LCN. Stem Cells Transl Med 2013; 2:265-73. [PMID: 23526252 DOI: 10.5966/sctm.2012-0154] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In comprehensive glycome analysis with a high-density lectin microarray, we have previously shown that the recombinant N-terminal domain of the lectin BC2L-C from Burkholderia cenocepacia (rBC2LCN) binds exclusively to undifferentiated human induced pluripotent stem (iPS) cells and embryonic stem (ES) cells but not to differentiated somatic cells. Here we demonstrate that podocalyxin, a heavily glycosylated type 1 transmembrane protein, is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells. When analyzed by DNA microarray, podocalyxin was found to be highly expressed in both iPS cells and ES cells. Western and lectin blotting revealed that rBC2LCN binds to podocalyxin with a high molecular weight of more than 240 kDa in undifferentiated iPS cells of six different origins and four ES cell lines, but no binding was observed in either differentiated mouse feeder cells or somatic cells. The specific binding of rBC2LCN to podocalyxin prepared from a large set of iPS cells (138 types) and ES cells (15 types) was also confirmed using a high-throughput antibody-overlay lectin microarray. Alkaline digestion greatly reduced the binding of rBC2LCN to podocalyxin, indicating that the major glycan ligands of rBC2LCN are presented on O-glycans. Furthermore, rBC2LCN was found to exhibit significant affinity to a branched O-glycan comprising an H type 3 structure (Ka, 2.5 × 10(4) M(-1)) prepared from human 201B7 iPS cells, indicating that H type 3 is a most probable potential pluripotency marker. We conclude that podocalyxin is a glycoprotein ligand of rBC2LCN on human iPS cells and ES cells.
Collapse
Affiliation(s)
- Hiroaki Tateno
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hirabayashi J, Yamada M, Kuno A, Tateno H. Lectin microarrays: concept, principle and applications. Chem Soc Rev 2013; 42:4443-58. [PMID: 23443201 DOI: 10.1039/c3cs35419a] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lectin microarray is a novel platform for glycan analysis, having emerged only in recent years. Unlike other conventional methods, e.g., liquid chromatography and mass spectrometry, it enables rapid and high-sensitivity profiling of complex glycan features without the need for liberation of glycans. Target samples include an extensive range of glycoconjugates involved in cells, tissues, body fluids, as well as synthetic glycans and their mimics. Various procedures for rapid differential glycan profiling have been developed for glycan-related biomarkers. Such glycoproteomics targeting allows precise diagnosis of chronic diseases potentially related to cancer. Application of this method to evaluation of various types of stem cells resulted in the discovery of a new pluripotent cell-specific glycan marker. To explore this technology a more fundamental and extensive understanding of lectins is necessary in relation to the structural uniqueness of glycans. In this chapter, the essence of the lectin microarray is described with some focus on an evanescent-field-activated fluorescence detection principle as a system to achieve in situ (i.e., washing free) aqueous-phase observation under equilibrium conditions. The developed lectin microarray system allows even researchers with poor experience in glycan profiling to perform extensive high-throughput analysis targeting various forms of glycans and even cells.
Collapse
Affiliation(s)
- Jun Hirabayashi
- National Institute of Advanced Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | |
Collapse
|
45
|
Smith DF, Cummings RD. Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics 2013; 12:902-12. [PMID: 23412570 DOI: 10.1074/mcp.r112.027110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycan structures were defined historically using multiple methods to determine composition, sequence, linkage, and anomericity of component monosaccharides. Such approaches have been replaced by more sensitive MS methods to profile or predict glycan structures, but these methods are limited in their ability to completely define glycan structures. Glycan-binding proteins, including lectins and antibodies, have been found to have exquisite binding specificities that can provide information about glycan structures. Here, we show glycan-binding proteins can be used along with MS to help define glycan linkages and other determinants in unknown glycans printed as shotgun glycan microarrays.
Collapse
Affiliation(s)
- David F Smith
- Department of Biochemistry and Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
46
|
Intracellular trafficking and glycobiology of TbPDI2, a stage-specific protein disulfide isomerase in Trypanosoma brucei. EUKARYOTIC CELL 2012; 12:132-41. [PMID: 23159520 DOI: 10.1128/ec.00293-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosoma brucei protein disulfide isomerase 2 (TbPDI2) is a bloodstream stage-specific lumenal endoplasmic reticulum (ER) glycoprotein. ER localization is dependent on the TbPDI2 C-terminal tetrapeptide (KQDL) and is mediated by TbERD2, an orthologue of the yeast ER retrieval receptor. Consistent with this function, TbERD2 localizes prominently to ER exit sites, and RNA interference (RNAi) knockdown results in specific secretion of a surrogate ER retention reporter, BiPN:KQDL. TbPDI2 is highly N-glycosylated and is reactive with tomato lectin, suggesting the presence of poly-N-acetyllactosamine modifications, which are common on lyso/endosomal proteins in trypanosomes but are inconsistent with ER localization. However, TbPDI2 is reactive with tomato lectin immediately following biosynthesis-far too rapidly for transport to the Golgi compartment, the site of poly-N-acetyllactosamine addition. TbPDI2 also fails to react with Erythrina cristagalli lectin, confirming the absence of terminal N-acetyllactosamine units. We propose that tomato lectin binds the Manβ1-4GlcNAcβ1-4GlcNAc trisaccharide core of paucimannose glycans on both newly synthesized and mature TbPDI2. Consistent with this proposal, α-mannosidase treatment renders oligomannose N-glycans on the T. brucei cathepsin L orthologue TbCatL reactive with tomato lectin. These findings resolve contradictory evidence on the location and glycobiology of TbPDI2 and provide a cautionary note on the use of tomato lectin as a poly-N-acetyllactosamine-specific reagent.
Collapse
|
47
|
Zhou H, Zhang Z, Liu C, Jin C, Zhang J, Miao X, Jia L. B4GALT1 gene knockdown inhibits the hedgehog pathway and reverses multidrug resistance in the human leukemia K562/adriamycin-resistant cell line. IUBMB Life 2012; 64:889-900. [PMID: 23024026 DOI: 10.1002/iub.1080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/21/2012] [Indexed: 11/06/2022]
Abstract
B4GALT1 gene encodes type II membrane-bound glycoprotein, named β-1, 4-galactosyltransferase 1 (β1, 4-Gal-T1), which can transfer galactose to acceptor sugars. B4GALT1 gene plays important roles in physiological process and disease development. In this study, we investigate the possible role and mechanism of B4GALT1 gene in multidrug resistance of human leukemia cell line. Significantly, higher expression of B4GALT1 was observed in adriamycin-resistant (ADR) K562 cell line (K562/ADR) than that in K562 cell line by real-time polymerase chain reaction and Western blotting. The activity of β1, 4-Gal-T1 enzyme, and Galβ-1,4GlcNAc structures on cell membrane glycoproteins was found at higher levels in K562/ADR cells than those in K562 cells. Further analysis of the B4GALT1 deregulation after using RNA interference approach showed that the silencing of B4GALT1 in K562/ADR cells resulted in increased sensitivity to chemotherapeutic drugs both in vitro and in vivo. The activity of the hedgehog signaling pathway affected the chemosensitivity of K562/ADR cells and was downregulated in K562/ADR cells with suppression of B4GALT1 gene. We hypothesize that B4GALT1 is responsible for the overcoming multidrug resistance in human leukemia therapy via regulating the activity of the hedgehog signaling pathway.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Laboratory Medicine, College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Sugahara D, Kaji H, Sugihara K, Asano M, Narimatsu H. Large-scale identification of target proteins of a glycosyltransferase isozyme by Lectin-IGOT-LC/MS, an LC/MS-based glycoproteomic approach. Sci Rep 2012; 2:680. [PMID: 23002422 PMCID: PMC3448068 DOI: 10.1038/srep00680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/10/2012] [Indexed: 11/26/2022] Open
Abstract
Model organisms containing deletion or mutation in a glycosyltransferase-gene exhibit various physiological abnormalities, suggesting that specific glycan motifs on certain proteins play important roles in vivo. Identification of the target proteins of glycosyltransferase isozymes is the key to understand the roles of glycans. Here, we demonstrated the proteome-scale identification of the target proteins specific for a glycosyltransferase isozyme, β1,4-galactosyltransferase-I (β4GalT-I). Although β4GalT-I is the most characterized glycosyltransferase, its distinctive contribution to β1,4-galactosylation has been hardly described so far. We identified a large number of candidates for the target proteins specific to β4GalT-I by comparative analysis of β4GalT-I-deleted and wild-type mice using the LC/MS-based technique with the isotope-coded glycosylation site-specific tagging (IGOT) of lectin-captured N-glycopeptides. Our approach to identify the target proteins in a proteome-scale offers common features and trends in the target proteins, which facilitate understanding of the mechanism that controls assembly of a particular glycan motif on specific proteins.
Collapse
Affiliation(s)
- Daisuke Sugahara
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
49
|
Suzuki N, Nawa D, Tateno H, Yasuda T, Oda S, Mitani H, Nishimaki T, Katsumura T, Oota H, Hanihara T, Oga A, Hirabayashi J, Yamamoto K. Generation of monoclonal antibodies against the Gal 1-4Gal epitope: A key tool in studies of species-specific glycans expressed in fish, amphibians and birds. Glycobiology 2012; 23:91-105. [DOI: 10.1093/glycob/cws129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Jiménez-Castells C, Defaus S, Moise A, Przbylski M, Andreu D, Gutiérrez-Gallego R. Surface-Based and Mass Spectrometric Approaches to Deciphering Sugar–Protein Interactions in a Galactose-Specific Agglutinin. Anal Chem 2012; 84:6515-20. [DOI: 10.1021/ac300766z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Carmen Jiménez-Castells
- Department of Experimental
and
Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sira Defaus
- Department of Experimental
and
Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Adrian Moise
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Przbylski
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - David Andreu
- Department of Experimental
and
Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Ricardo Gutiérrez-Gallego
- Department of Experimental
and
Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
- Bio-analysis group, Neuroscience
Research Program, IMIM-Parc Salut Mar,
Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| |
Collapse
|