1
|
Abstract
Autophagy is deregulated in many cancers and represents an attractive target for therapeutic intervention. However, the precise contributions of autophagy to metastatic progression, the principle cause of cancer-related mortality, is only now being uncovered. While autophagy promotes primary tumor growth, metabolic adaptation and resistance to therapy, recent studies have unexpectedly revealed that autophagy suppresses the proliferative outgrowth of disseminated tumor cells into overt and lethal macrometastases. These studies suggest autophagy plays unexpected and complex roles in the initiation and progression of metastases, which will undoubtedly impact therapeutic approaches for cancer treatment. Here, we discuss the intricacies of autophagy in metastatic progression, highlighting and integrating the pleiotropic roles of autophagy on diverse cell biological processes involved in metastasis.
Collapse
Affiliation(s)
- Timothy Marsh
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115 USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
2
|
Ma Y, Zhu S, Lv T, Gu X, Feng H, Zhen J, Xin W, Wan Q. SQSTM1/p62 Controls mtDNA Expression and Participates in Mitochondrial Energetic Adaption via MRPL12. iScience 2020; 23:101428. [PMID: 32805647 PMCID: PMC7452302 DOI: 10.1016/j.isci.2020.101428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial DNA (mtDNA) encodes thirteen core components of OXPHOS complexes, and its steady expression is crucial for cellular energy homeostasis. However, the regulation of mtDNA expression machinery, along with its sensing mechanism to energetic stresses, is not fully understood. Here, we identified SQSTM1/p62 as an important regulator of mtDNA expression machinery, which could effectively induce mtDNA expression and the effects were mediated by p38-dependent upregulation of mitochondrial ribosomal protein L12 (MRPL12) in renal tubular epithelial cells (TECs), a highly energy-demanding cell type related to OXPHOS. We further identified a direct binding site within the MRPL12 promoter to ATF2, the downstream effector of p38. Besides, SQSTM1/p62-induced mtDNA expression is involved in both serum deprivation and hypoxia-induced mitochondrial response, which was further highlighted by kidney injury phenotype of TECs-specific SQSTM1/p62 knockout mice. Collectively, these data suggest that SQSTM1/p62 is a key regulator and energetic sensor of mtDNA expression machinery. SQSTM1/p62 is an important regulator of mtDNA expression machinery SQSTM1/p62 induces MRPL12 expression via activating p38/ATF2 signaling pathway SQSTM1/p62 maintains TECs mitochondrial homeostasis and kidney function
Collapse
Affiliation(s)
- Yuan Ma
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing 100034, China
| | - Suwei Zhu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Tingting Lv
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xia Gu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Hong Feng
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China
| | - Junhui Zhen
- Department of Pathology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wei Xin
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250012, China.
| | - Qiang Wan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Lübow C, Bockstiegel J, Weindl G. Lysosomotropic drugs enhance pro-inflammatory responses to IL-1β in macrophages by inhibiting internalization of the IL-1 receptor. Biochem Pharmacol 2020; 175:113864. [PMID: 32088265 DOI: 10.1016/j.bcp.2020.113864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Interleukin (IL)-1 signaling leads to production of pro-inflammatory mediators and is regulated by receptor endocytosis. Lysosomotropic drugs have been linked to increased pro-inflammatory responses under sterile inflammatory conditions but the underlying mechanisms have not been fully elucidated. Here, we report that lysosomotropic drugs potentiate pro-inflammatory effects in response to IL-1β via a mechanism involving reactive oxygen species, p38 mitogen-activated protein kinase and reduced IL-1 receptor internalization. Chloroquine and hydroxychloroquine increased IL-1β-induced CXCL8 secretion in macrophages which was critically dependent on the lysosomotropic character and inhibition of macroautophagy but independent from the NLRP3 inflammasome. Co-stimulation with the autophagy inducer interferon gamma attenuated CXCL8 release. Other lysosomotropic drugs like bafilomycin A1, fluoxetine and chlorpromazine but also the endocytosis inhibitor dynasore showed similar pro-inflammatory responses. Increased cell surface expression of IL-1 receptor suggests reduced receptor degradation in the presence of lysosomotropic drugs. Our findings provide new insights into a potentially crucial immunoregulatory mechanism in macrophages that may explain how lysosomotropic drugs drive sterile inflammation.
Collapse
Affiliation(s)
- Charlotte Lübow
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Germany; University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany
| | - Judith Bockstiegel
- University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany
| | - Günther Weindl
- Freie Universität Berlin, Institute of Pharmacy (Pharmacology and Toxicology), Germany; University of Bonn, Pharmaceutical Institute, Section Pharmacology and Toxicology, Germany.
| |
Collapse
|
4
|
Chloroquine and Rapamycin Augment Interleukin-37 Expression via the LC3, ERK, and AP-1 Axis in the Presence of Lipopolysaccharides. J Immunol Res 2020; 2020:6457879. [PMID: 32104716 PMCID: PMC7035573 DOI: 10.1155/2020/6457879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/28/2019] [Indexed: 12/24/2022] Open
Abstract
IL-37 is a cytokine that plays critical protective roles in many metabolic inflammatory diseases, and its therapeutic potential has been confirmed by exogenous IL-37 administration. However, its regulatory mechanisms remain unclear. U937 cells were treated with autophagy-modifying reagents (3-MA, chloroquine, and rapamycin) with or without LPS stimulation. Thereafter, IL-37 expression and autophagic markers (Beclin1, P62/SQSTM1, and LC3) were determined. For regulatory signal pathways, phosphorylated proteins of NF-κB (p65 and IκBα), AP-1 (c-Fos/c-Jun), and MAPK signal pathways (Erk1/2 and p38 MAPK) were quantified, and the agonists and antagonists of MAPK and NF-κB pathways were also used. Healthy human peripheral blood mononuclear cells were treated similarly to confirm our results. Four rhesus monkeys were also administered chloroquine to evaluate IL-37 induction in vivo and its bioactivity on CD4 proliferation and activation. IL-37 was upregulated by rapamycin and chloroquine in both U937 cells and human PBMCs in the presence of LPS. IL-37 was preferentially induced in autophagic cells associated with LC3 conversion. AP-1 and p65 binding motifs could be deduced in the sequence of the IL-37 promoter. Inductive IL-37 expression was accompanied with increased phosphorylated Erk1/2 and AP-1 and could be completely abolished by an Erk1/2 inhibitor or augmented by Erk1/2 agonists. In monkeys, chloroquine increased IL-37 expression, which was inversely correlated with CD4 proliferation and phosphorylated STAT3. IL-37 levels were induced by rapamycin and chloroquine through the LC3, Erk1/2, and NF-κB/AP-1 pathways. Functional IL-37 could also be induced in vivo.
Collapse
|
5
|
Schwob A, Teruel E, Dubuisson L, Lormières F, Verlhac P, Abudu YP, Gauthier J, Naoumenko M, Cloarec-Ung FM, Faure M, Johansen T, Dutartre H, Mahieux R, Journo C. SQSTM-1/p62 potentiates HTLV-1 Tax-mediated NF-κB activation through its ubiquitin binding function. Sci Rep 2019; 9:16014. [DOI: https:/doi.org/10.1038/s41598-019-52408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/15/2019] [Indexed: 12/19/2023] Open
Abstract
AbstractThe NF-κB pathway is constitutively activated in adult T cell leukemia, an aggressive malignancy caused by Human T Leukemia Virus type 1 (HTLV-1). The viral oncoprotein Tax triggers this constitutive activation by interacting with the ubiquitin-rich IKK complex. We previously demonstrated that Optineurin and TAX1BP1, two members of the ubiquitin-binding, Sequestosome-1 (SQSTM-1/p62)-like selective autophagy receptor family, are involved in Tax-mediated NF-κB signaling. Here, using a proximity-dependent biotinylation approach (BioID), we identify p62 as a new candidate partner of Tax and confirm the interaction in infected T cells. We then demonstrate that p62 knock-out in MEF cells as well as p62 knock-down in HEK293T cells significantly reduces Tax-mediated NF-κB activity. We further show that although p62 knock-down does not alter NF-κB activation in Jurkat T cells nor in infected T cells, p62 does potentiate Tax-mediated NF-κB activity upon over-expression in Jurkat T cells. We next show that p62 associates with the Tax/IKK signalosome in cells, and identify the 170–206 domain of p62 as sufficient for the direct, ubiquitin-independent interaction with Tax. However, we observe that this domain is dispensable for modulating Tax activity in cells, and functional analysis of p62 mutants indicates that p62 could potentiate Tax activity in cells by facilitating the association of ubiquitin chains with the Tax/IKK signalosome. Altogether, our results identify p62 as a new ubiquitin-dependent modulator of Tax activity on NF-κB, further highlighting the importance of ubiquitin in the signaling activity of the viral Tax oncoprotein.
Collapse
|
6
|
SQSTM-1/p62 potentiates HTLV-1 Tax-mediated NF-κB activation through its ubiquitin binding function. Sci Rep 2019; 9:16014. [PMID: 31690813 PMCID: PMC6831704 DOI: 10.1038/s41598-019-52408-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022] Open
Abstract
The NF-κB pathway is constitutively activated in adult T cell leukemia, an aggressive malignancy caused by Human T Leukemia Virus type 1 (HTLV-1). The viral oncoprotein Tax triggers this constitutive activation by interacting with the ubiquitin-rich IKK complex. We previously demonstrated that Optineurin and TAX1BP1, two members of the ubiquitin-binding, Sequestosome-1 (SQSTM-1/p62)-like selective autophagy receptor family, are involved in Tax-mediated NF-κB signaling. Here, using a proximity-dependent biotinylation approach (BioID), we identify p62 as a new candidate partner of Tax and confirm the interaction in infected T cells. We then demonstrate that p62 knock-out in MEF cells as well as p62 knock-down in HEK293T cells significantly reduces Tax-mediated NF-κB activity. We further show that although p62 knock-down does not alter NF-κB activation in Jurkat T cells nor in infected T cells, p62 does potentiate Tax-mediated NF-κB activity upon over-expression in Jurkat T cells. We next show that p62 associates with the Tax/IKK signalosome in cells, and identify the 170–206 domain of p62 as sufficient for the direct, ubiquitin-independent interaction with Tax. However, we observe that this domain is dispensable for modulating Tax activity in cells, and functional analysis of p62 mutants indicates that p62 could potentiate Tax activity in cells by facilitating the association of ubiquitin chains with the Tax/IKK signalosome. Altogether, our results identify p62 as a new ubiquitin-dependent modulator of Tax activity on NF-κB, further highlighting the importance of ubiquitin in the signaling activity of the viral Tax oncoprotein.
Collapse
|
7
|
Yao L, Zhu Z, Wu J, Zhang Y, Zhang H, Sun X, Qian C, Wang B, Xie L, Zhang S, Lu G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease. FASEB J 2019; 33:8648-8665. [PMID: 30995872 DOI: 10.1096/fj.201900363r] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and nonmotor symptoms due to the selective loss of midbrain dopaminergic neurons. The evidence for a chronic inflammatory reaction mediated by microglial cells in the brain is particularly strong in PD. In our previous study, we have shown that brain-specific microRNA-124 (miR-124) is significantly down-regulated in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD and that it can also inhibit neuroinflammation during the development of PD. However, further investigation is required to understand whether the abnormal expression of miR-124 regulates microglial activation. In this study, we found that the expression of sequestosome 1 (p62) and phospho-p38 mitogen-activated protein kinases (p-p38) showed a significant increase in LPS-treated immortalized murine microglial cell line BV2 cells in an MPTP-induced mouse model of PD. Knockdown of p62 could suppress the secretion of proinflammatory cytokines and p-p38 of microglia. Besides, inhibition of p38 suppressed the secretion of proinflammatory cytokines and promoted autophagy in BV2 cells. Moreover, our study is the first to identify a unique role of miR-124 in mediating the microglial inflammatory response by targeting p62 and p38 in PD. In the microglial culture supernatant transfer model, the knockdown of p62 in BV2 cells prevented apoptosis and death of human neuroblastoma cell lines SH-SY5Y (SH-SY5Y) cells following microglia activation. In addition, the exogenous delivery of miR-124 could suppress p62 and p-p38 expression and could also attenuate the activation of microglia in the substantia nigra par compacta of MPTP-treated mice. Taken together, our data suggest that miR-124 could inhibit neuroinflammation during the development of PD by targeting p62, p38, and autophagy, indicating that miR-124 could be a potential therapeutic target for regulating the inflammatory response in PD.-Yao, L., Zhu, Z., Wu, J., Zhang, Y., Zhang, H., Sun, X., Qian, C., Wang, B., Xie, L., Zhang, S., Lu, G. MicroRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Longping Yao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Zhiyuan Zhu
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Jiayu Wu
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhou Zhang
- Tarbut V'Torah Community Day School, Irvine, California, USA
| | - Hongbo Zhang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Xiang Sun
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Chen Qian
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Linghai Xie
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Shizhong Zhang
- Department of Neurosurgery Southern Medical University, Guangzhou, China.,The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Korhonen E, Piippo N, Hytti M, Hyttinen JM, Kaarniranta K, Kauppinen A. SQSTM1/p62 regulates the production of IL-8 and MCP-1 in IL-1β-stimulated human retinal pigment epithelial cells. Cytokine 2019; 116:70-77. [DOI: 10.1016/j.cyto.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
|
9
|
Zhang C, Gao J, Li M, Deng Y, Jiang C. p38δ MAPK regulates aggresome biogenesis by phosphorylating SQSTM1 in response to proteasomal stress. J Cell Sci 2018; 131:jcs.216671. [PMID: 29930081 DOI: 10.1242/jcs.216671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Aggresome formation is a major strategy to enable cells to cope with proteasomal stress. Misfolded proteins are assembled into micro-aggregates and transported to the microtubule organizing center (MTOC) to form perinuclear aggresomes before their degradation through autophagy. So far, multiple factors have been identified as the activators of micro-aggregate formation, but much less is known about the regulatory mechanisms of their transport. Here, we report that proteasomal stress leads to the activation of p38 MAPK family members. Two of them, p38γ (MAPK12) and p38δ (MAPK13), are dispensable for micro-aggregate formation but are required for their targeting to the MTOC. Interestingly, p38δ promotes micro-aggregate transport by phosphorylating SQSTM1, a major scaffold protein that assembles soluble ubiquitylated proteins into micro-aggregates. Expression of the phospho-mimetic mutant of SQSTM1 in p38δ-knockout cells completely rescued their aggresome formation defects and enhanced their resistance to proteasomal stress to wild-type levels. This study reveals p38δ-mediated SQSTM1 phosphorylation as a critical signal for the targeting of micro-aggregates to the MTOC and provides direct evidence for the survival advantages associated with aggresome formation in cells under proteasomal stress.
Collapse
Affiliation(s)
- Chenliang Zhang
- Department of Pediatrics, West China 2nd University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Key Laboratory of Obstetric, Gynecologic, Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ju Gao
- Department of Pediatrics, West China 2nd University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Key Laboratory of Obstetric, Gynecologic, Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengen Li
- Department of Pediatrics, West China 2nd University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Key Laboratory of Obstetric, Gynecologic, Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongkang Deng
- Department of Pediatrics, West China 2nd University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Key Laboratory of Obstetric, Gynecologic, Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, China
| | - Changan Jiang
- Department of Pediatrics, West China 2nd University Hospital, Sichuan University, Chengdu, Sichuan 610041, China .,Key Laboratory of Obstetric, Gynecologic, Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu, Sichuan 610041, China.,State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
10
|
Adamik J, Silbermann R, Marino S, Sun Q, Anderson JL, Zhou D, Xie XQ, Roodman GD, Galson DL. XRK3F2 Inhibition of p62-ZZ Domain Signaling Rescues Myeloma-Induced GFI1-Driven Epigenetic Repression of the Runx2 Gene in Pre-osteoblasts to Overcome Differentiation Suppression. Front Endocrinol (Lausanne) 2018; 9:344. [PMID: 30008697 PMCID: PMC6033965 DOI: 10.3389/fendo.2018.00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/07/2018] [Indexed: 01/05/2023] Open
Abstract
Multiple myeloma bone disease (MMBD) is characterized by non-healing lytic bone lesions that persist even after a patient has achieved a hematologic remission. We previously reported that p62 (sequestosome-1) in bone marrow stromal cells (BMSC) is critical for the formation of MM-induced signaling complexes that mediate OB suppression. Importantly, XRK3F2, an inhibitor of the p62-ZZ domain, blunted MM-induced Runx2 suppression in vitro, and induced new bone formation and remodeling in the presence of tumor in vivo. Additionally, we reported that MM cells induce the formation of repressive chromatin on the Runx2 gene in BMSC via direct binding of the transcriptional repressor GFI1, which recruits the histone modifiers, histone deacetylase 1 (HDAC1) and Enhancer of zeste homolog 2 (EZH2). In this study we investigated the mechanism by which blocking p62-ZZ domain-dependent signaling prevents MM-induced suppression of Runx2 in BMSC. XRK3F2 prevented MM-induced upregulation of Gfi1 and repression of the Runx2 gene when present in MM-preOB co-cultures. We also show that p62-ZZ-domain blocking by XRK3F2 also prevented MM conditioned media and TNF plus IL7-mediated Gfi1 mRNA upregulation and the concomitant Runx2 repression, indicating that XRK3F2's prevention of p62-ZZ domain signaling within preOB is involved in the response. Chromatin immunoprecipitation (ChIP) analyses revealed that XRK3F2 decreased MM-induced GFI1 occupancy at the Runx2-P1 promoter and prevented recruitment of HDAC1, thus preserving the transcriptionally permissive chromatin mark H3K9ac on Runx2 and allowing osteogenic differentiation. Furthermore, treatment of MM-exposed preOB with XRK3F2 after MM removal decreased GFI1 enrichment at Runx2-P1 and rescued MM-induced suppression of Runx2 mRNA and its downstream osteogenic gene targets together with increased osteogenic differentiation. Further, primary BMSC (hBMSC) from MM patients (MM-hBMSC) had little ability to increase H3K9ac on the Runx2 promoter in osteogenic conditions when compared to hBMSC from healthy donors (HD). XRK3F2 treatment enriched Runx2 gene H3K9ac levels in MM-hBMSC to the level observed in HD-hBMSC, but did not alter HD-hBMSC H3K9ac. Importantly, XRK3F2 treatment of long-term MM-hBMSC cultures rescued osteogenic differentiation and mineralization. Our data show that blocking p62-ZZ domain-dependent signaling with XRK3F2 can reverse epigenetic-based mechanisms of MM-induced Runx2 suppression and promote osteogenic differentiation.
Collapse
Affiliation(s)
- Juraj Adamik
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca Silbermann
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
- Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Silvia Marino
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Quanhong Sun
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Judith L. Anderson
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Dan Zhou
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - G. David Roodman
- Division of Hematology-Oncology, Department of Medicine, Indiana University, Indianapolis, IN, United States
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Deborah L. Galson
- Division of Hematology/Oncology, Department of Medicine, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Deborah L. Galson ;
| |
Collapse
|
11
|
Manley S, Williams JA, Ding WX. Role of p62/SQSTM1 in liver physiology and pathogenesis. Exp Biol Med (Maywood) 2013; 238:525-38. [PMID: 23856904 DOI: 10.1177/1535370213489446] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p62/sequestosome-1/A170/ZIP (hereafter referred to as p62) is a scaffold protein that has multiple functions, such as signal transduction, cell proliferation, cell survival, cell death, inflammation, tumourigenesis and oxidative stress response. While p62 is an autophagy substrate and is degraded by autophagy, p62 serves as an autophagy receptor for selective autophagic clearance of protein aggregates and organelles. Moreover, p62 functions as a signalling hub for various signalling pathways, including NF-κB, Nrf2 and mTOR. In this review, we discuss the pathophysiological role of p62 in the liver, including formation of hepatic inclusion bodies, cholestasis, obesity, insulin resistance, liver cell death and tumourigenesis.
Collapse
Affiliation(s)
- Sharon Manley
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, USA
| | | | | |
Collapse
|
12
|
Rea SL, Walsh JP, Layfield R, Ratajczak T, Xu J. New insights into the role of sequestosome 1/p62 mutant proteins in the pathogenesis of Paget's disease of bone. Endocr Rev 2013; 34:501-24. [PMID: 23612225 DOI: 10.1210/er.2012-1034] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Paget's disease of bone (PDB) is characterized by focal areas of aberrant and excessive bone turnover, specifically increased bone resorption and disorganized bone formation. Germline mutations in the sequestosome 1/p62 (SQSTM1/p62) gene are common in PDB patients, with most mutations affecting the ubiquitin-associated domain of the protein. In vitro, osteoclast precursor cells expressing PDB-mutant SQSTM1/p62 protein are associated with increases in nuclear factor κB activation, osteoclast differentiation, and bone resorption. Although the precise mechanisms by which SQSTM1/p62 mutations contribute to disease pathogenesis and progression are not well defined, it is apparent that as well as affecting nuclear factor κB signaling, SQSTM1/p62 is a master regulator of ubiquitinated protein turnover via autophagy and the ubiquitin-proteasome system. Additional roles for SQSTM1/p62 in the oxidative stress-induced Keap1/Nrf2 pathway and in caspase-mediated apoptosis that were recently reported are potentially relevant to the pathogenesis of PDB. Thus, SQSTM1/p62 may serve as a molecular link or switch between autophagy, apoptosis, and cell survival signaling. The purpose of this review is to outline recent advances in understanding of the multiple pathophysiological roles of SQSTM1/p62 protein, with particular emphasis on their relationship to PDB, including challenges associated with translating SQSTM1/p62 research into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Sarah L Rea
- Department of Endocrinology and Diabetes, Level 1, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia 6009, Australia.
| | | | | | | | | |
Collapse
|
13
|
Qiang L, Wu C, Ming M, Viollet B, He YY. Autophagy controls p38 activation to promote cell survival under genotoxic stress. J Biol Chem 2013; 288:1603-11. [PMID: 23212914 PMCID: PMC3548470 DOI: 10.1074/jbc.m112.415224] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/04/2012] [Indexed: 12/25/2022] Open
Abstract
Deregulated cell survival under carcinogen-induced genotoxic stress is vital for cancer development. One of the cellular processes critical for cell survival under metabolic stress and energy starvation is autophagy, a catabolic process involved in capture and delivery of cytoplasmic components to lysosomes for degradation. However, the role of autophagy following carcinogen-induced genotoxic stress remains unclear. Here we show that UVB radiation, a known human skin carcinogen that operates by causing DNA damage, induced autophagy and autophagic flux through AMP kinase activation. Autophagy deficiency sensitizes cells to UVB-induced apoptosis through increasing p62-dependent activation of the stress-activated protein kinase p38. Compared with normal human skin, autophagy was activated in human squamous cell carcinomas, in association with decreased phosphorylation of p38, and increased phosphorylation of ATR and formation of γ-H2AX, two markers of DNA damage response. Our results demonstrate that autophagy promotes cell survival through suppressing p62-mediated p38 activation and thus may facilitate tumor development under genotoxic stress. These findings suggest that autophagy plays an oncogenic role in epithelial carcinogenesis by promoting cell survival.
Collapse
Affiliation(s)
- Lei Qiang
- From the Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Chunli Wu
- From the Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637
- the Department of Radiation Oncology, 4th Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, China, and
| | - Mei Ming
- From the Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin
- CNRS, UMR8104, and
- Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Yu-Ying He
- From the Section of Dermatology, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
14
|
Müller TD, Lee SJ, Jastroch M, Kabra D, Stemmer K, Aichler M, Abplanalp B, Ananthakrishnan G, Bhardwaj N, Collins S, Divanovic S, Endele M, Finan B, Gao Y, Habegger KM, Hembree J, Heppner KM, Hofmann S, Holland J, Küchler D, Kutschke M, Krishna R, Lehti M, Oelkrug R, Ottaway N, Perez-Tilve D, Raver C, Walch AK, Schriever SC, Speakman J, Tseng YH, Diaz-Meco M, Pfluger PT, Moscat J, Tschöp MH. p62 links β-adrenergic input to mitochondrial function and thermogenesis. J Clin Invest 2012; 123:469-78. [PMID: 23257354 DOI: 10.1172/jci64209] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 11/01/2012] [Indexed: 12/22/2022] Open
Abstract
The scaffold protein p62 (sequestosome 1; SQSTM1) is an emerging key molecular link among the metabolic, immune, and proliferative processes of the cell. Here, we report that adipocyte-specific, but not CNS-, liver-, muscle-, or myeloid-specific p62-deficient mice are obese and exhibit a decreased metabolic rate caused by impaired nonshivering thermogenesis. Our results show that p62 regulates energy metabolism via control of mitochondrial function in brown adipose tissue (BAT). Accordingly, adipocyte-specific p62 deficiency led to impaired mitochondrial function, causing BAT to become unresponsive to β-adrenergic stimuli. Ablation of p62 leads to decreased activation of p38 targets, affecting signaling molecules that control mitochondrial function, such as ATF2, CREB, PGC1α, DIO2, NRF1, CYTC, COX2, ATP5β, and UCP1. p62 ablation in HIB1B and BAT primary cells demonstrated that p62 controls thermogenesis in a cell-autonomous manner, independently of brown adipocyte development or differentiation. Together, our data identify p62 as a novel regulator of mitochondrial function and brown fat thermogenesis.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Zentrum Muenchen and Department of Medicine, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T. Accumulation of p62 in degenerated spinal cord under chronic mechanical compression: functional analysis of p62 and autophagy in hypoxic neuronal cells. Autophagy 2012; 7:1462-71. [PMID: 22082874 DOI: 10.4161/auto.7.12.17892] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intracellular accumulation of altered proteins, including p62 and ubiquitinated proteins, is the basis of most neurodegenerative disorders. The relationship among the accumulation of altered proteins, autophagy, and spinal cord dysfunction by cervical spondylotic myelopathy has not been clarified. We examined the expression of p62 and autophagy markers in the chronically compressed spinal cord of tiptoe-walking Yoshimura mice. In addition, we examined the expression and roles of p62 and autophagy in hypoxic neuronal cells. Western blot analysis showed the accumulation of p62, ubiquitinated proteins, and microtubule-associated protein 1 light chain 3 (LC3), an autophagic marker, in the compressed spinal cord. Immunohistochemical examinations showed that p62 accumulated in neurons, axons, astrocytes, and oligodendrocytes. Electron microscopy showed the expression of autophagy markers, including autolysosomes and autophagic vesicles, in the compressed spinal cord. These findings suggest the presence of p62 and autophagy in the degenerated compressed spinal cord. Hypoxic stress increased the expression of p62, ubiquitinated proteins, and LC3-II in neuronal cells. In addition, LC3 turnover assay and GFP-LC3 cleavage assay showed that hypoxic stress increased autophagy flux in neuronal cells. These findings suggest that hypoxic stress induces accumulation of p62 and autophagy in neuronal cells. The forced expression of p62 decreased the number of neuronal cells under hypoxic stress. These findings suggest that p62 accumulation under hypoxic stress promotes neuronal cell death. Treatment with 3-methyladenine, an autophagy inhibitor decreased the number of neuronal cells, whereas lithium chloride, an autophagy inducer increased the number of cells under hypoxic stress. These findings suggest that autophagy promotes neuronal cell survival under hypoxic stress. Our findings suggest that pharmacological inducers of autophagy may be useful for treating cervical spondylotic myelopathy patients.
Collapse
Affiliation(s)
- Fumito Tanabe
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Kagoshima Prefecture, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kennedy SH, Young AH, Blier P. Strategies to achieve clinical effectiveness: refining existing therapies and pursuing emerging targets. J Affect Disord 2011; 132 Suppl 1:S21-8. [PMID: 21571374 DOI: 10.1016/j.jad.2011.03.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/17/2011] [Indexed: 01/27/2023]
Abstract
BACKGROUND Clinical effectiveness reflects a balance between efficacy and tolerability as well as patient satisfaction and overall improvement in quality of life and function. This is of particular importance when considering the long term use of antidepressant therapies for relapse prevention. METHODS The purpose of this review is to explore methods to enhance the modest efficacy and effectiveness outcomes reported with current antidepressant strategies. Two strategies are addressed: a) Doing better with existing treatments and b) pursuing novel targets beyond the monoamine system for new antidepressant drug development. RESULTS In the first instance, it is important to consider the balance between antidepressant efficacy and tolerability for individual patients and also be aware of evidence supporting superiority of one agent over others. Both sequential and concurrent combination therapies with existing antidepressants are also reviewed. The second approach involves a review of emerging novel pharmacological treatments based on biomarker research. Unique targets where antidepressant treatments appear effective include the melatonergic, glutamatergic, neurotrophic, cytokine, and neuropeptide systems. CONCLUSIONS While agomelatine represents an example of a clinically available antidepressant that targets melatonin receptors, drugs that act on other candidate systems are still in the development phase.
Collapse
Affiliation(s)
- Sidney H Kennedy
- University Health Network, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | | | | |
Collapse
|
17
|
Nguyen TT, Foteinou PT, Calvano SE, Lowry SF, Androulakis IP. Computational identification of transcriptional regulators in human endotoxemia. PLoS One 2011; 6:e18889. [PMID: 21637747 PMCID: PMC3103499 DOI: 10.1371/journal.pone.0018889] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 03/23/2011] [Indexed: 12/21/2022] Open
Abstract
One of the great challenges in the post-genomic era is to decipher the underlying principles governing the dynamics of biological responses. As modulating gene expression levels is among the key regulatory responses of an organism to changes in its environment, identifying biologically relevant transcriptional regulators and their putative regulatory interactions with target genes is an essential step towards studying the complex dynamics of transcriptional regulation. We present an analysis that integrates various computational and biological aspects to explore the transcriptional regulation of systemic inflammatory responses through a human endotoxemia model. Given a high-dimensional transcriptional profiling dataset from human blood leukocytes, an elementary set of temporal dynamic responses which capture the essence of a pro-inflammatory phase, a counter-regulatory response and a dysregulation in leukocyte bioenergetics has been extracted. Upon identification of these expression patterns, fourteen inflammation-specific gene batteries that represent groups of hypothetically ‘coregulated’ genes are proposed. Subsequently, statistically significant cis-regulatory modules (CRMs) are identified and decomposed into a list of critical transcription factors (34) that are validated largely on primary literature. Finally, our analysis further allows for the construction of a dynamic representation of the temporal transcriptional regulatory program across the host, deciphering possible combinatorial interactions among factors under which they might be active. Although much remains to be explored, this study has computationally identified key transcription factors and proposed a putative time-dependent transcriptional regulatory program associated with critical transcriptional inflammatory responses. These results provide a solid foundation for future investigations to elucidate the underlying transcriptional regulatory mechanisms under the host inflammatory response. Also, the assumption that coexpressed genes that are functionally relevant are more likely to share some common transcriptional regulatory mechanism seems to be promising, making the proposed framework become essential in unravelling context-specific transcriptional regulatory interactions underlying diverse mammalian biological processes.
Collapse
Affiliation(s)
- Tung T. Nguyen
- BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Panagiota T. Foteinou
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steven E. Calvano
- Department of Surgery, Robert Wood Johnson Medical School, University of Medicine and Dentistry, New Jersey, New Brunswick, New Jersey, United States of America
| | - Stephen F. Lowry
- Department of Surgery, Robert Wood Johnson Medical School, University of Medicine and Dentistry, New Jersey, New Brunswick, New Jersey, United States of America
| | - Ioannis P. Androulakis
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Surgery, Robert Wood Johnson Medical School, University of Medicine and Dentistry, New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
18
|
Neighbor of Brca1 gene (Nbr1) functions as a negative regulator of postnatal osteoblastic bone formation and p38 MAPK activity. Proc Natl Acad Sci U S A 2010; 107:12913-8. [PMID: 20616007 DOI: 10.1073/pnas.0913058107] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The neighbor of Brca1 gene (Nbr1) functions as an autophagy receptor involved in targeting ubiquitinated proteins for degradation. It also has a dual role as a scaffold protein to regulate growth-factor receptor and downstream signaling pathways. We show that genetic truncation of murine Nbr1 leads to an age-dependent increase in bone mass and bone mineral density through increased osteoblast differentiation and activity. At 6 mo of age, despite normal body size, homozygous mutant animals (Nbr1(tr/tr)) have approximately 50% more bone than littermate controls. Truncated Nbr1 (trNbr1) co-localizes with p62, a structurally similar interacting scaffold protein, and the autophagosome marker LC3 in osteoblasts, but unlike the full-length protein, trNbr1 fails to complex with activated p38 MAPK. Nbr1(tr/tr) osteoblasts and osteoclasts show increased activation of p38 MAPK, and significantly, pharmacological inhibition of the p38 MAPK pathway in vitro abrogates the increased osteoblast differentiation of Nbr1(tr/tr) cells. Nbr1 truncation also leads to increased p62 protein expression. We show a role for Nbr1 in bone remodeling, where loss of function leads to perturbation of p62 levels and hyperactivation of p38 MAPK that favors osteoblastogenesis.
Collapse
|
19
|
p62/sequestosome-1 associates with and sustains the expression of retroviral restriction factor TRIM5alpha. J Virol 2010; 84:5997-6006. [PMID: 20357094 DOI: 10.1128/jvi.02412-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TRIM5 proteins mediate a potent block to the cross-species transmission of retroviruses, the most well known being the TRIM5alpha protein from rhesus macaques, which potently inhibits human immunodeficiency virus type 1 (HIV-1) infection. This restriction occurs at an early stage in the replication cycle and is mediated by the binding of TRIM5 proteins to determinants present in the retroviral capsid. TRIM5alpha, as well as other TRIM family proteins, has been shown to be regulated by interferons (IFN). Here we show that TRIM5alpha associates with another IFN-induced gene, sequestosome-1/p62 (p62). p62 plays a role in several signal transduction cascades that are important for maintaining the antiviral state of cells. Here we demonstrate that p62 localizes to both human and rhesus macaque TRIM5alpha cytoplasmic bodies, and fluorescence resonance energy transfer (FRET) analysis demonstrates that these proteins closely associate in these structures. When p62 expression was knocked down via small interfering RNA (siRNA), the number of TRIM5alpha cytoplasmic bodies and the level of TRIM5alpha protein expression were reduced in cell lines stably expressing epitope-tagged versions of TRIM5alpha. In accordance with these data, p62 knockdown resulted in reduced TRIM5alpha-mediated retroviral restriction in cells expressing epitope-tagged TRIM5alpha or expressing endogenously expressed human TRIM5alpha. p62 may therefore operate to enhance TRIM5alpha-mediated retroviral restriction, contributing to the antiviral state of cells following IFN treatment.
Collapse
|
20
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
21
|
Tabuchi K, Oikawa K, Hoshino T, Nishimura B, Hayashi K, Yanagawa T, Warabi E, Ishii T, Tanaka S, Hara A. Cochlear protection from acoustic injury by inhibitors of p38 mitogen-activated protein kinase and sequestosome 1 stress protein. Neuroscience 2009; 166:665-70. [PMID: 20036720 DOI: 10.1016/j.neuroscience.2009.12.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/13/2009] [Accepted: 12/14/2009] [Indexed: 11/27/2022]
Abstract
This study evaluated the protective role of p38 mitogen-activated protein kinase (p38 MAPK) inhibitors and sequestosome 1 (Sqstm1/A170/p62), a stress-induced signal modulator, in acoustic injury of the cochlea in mice. Two weeks after the exposure of mice to acoustic stress, threshold shifts of the auditory brainstem response (ABR) from the pre-exposure level and hair cell loss were evaluated. The activation of p38 MAPK was observed in cochlea by immunostaining 4 h after acoustic stress. To examine the role of p38 MAPK in tissue injury, its inhibitors were i.p. injected into male wild-type C57BL mice before the acoustic overexposure. The inhibitors SB202190 and SB203580 but not the inactive analogue SB202474 dose-dependently decreased the auditory threshold shift and outer hair cell loss induced by acoustic overexposure, suggesting the involvement of p38 MAPK in ototoxicity. We found that acoustic overexposure induced the up-regulation of Sqstm1 mRNA expression in the cochlea of wild-type mice and that SQSTM1-deficient mice exhibited an enhanced ABR threshold shift and hair cell loss, suggesting a role of SQSTM1 in the protection of tissue from acoustic stress.
Collapse
Affiliation(s)
- K Tabuchi
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu HB, Kielczewska A, Rozek A, Takenaka S, Li Y, Thorson L, Hancock REW, Guarna MM, North JR, Foster LJ, Donini O, Finlay BB. Sequestosome-1/p62 is the key intracellular target of innate defense regulator peptide. J Biol Chem 2009; 284:36007-36011. [PMID: 19850933 PMCID: PMC2794716 DOI: 10.1074/jbc.c109.073627] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Innate defense regulator-1 (IDR-1) is a synthetic peptide with no antimicrobial activity that enhances microbial infection control while suppressing inflammation. Previously, the effects of IDR-1 were postulated to impact several regulatory pathways including mitogen-activated protein kinase (MAPK) p38 and CCAAT-enhancer-binding protein, but how this was mediated was unknown. Using a combined stable isotope labeling by amino acids in cell culture-proteomics methodology, we identified the cytoplasmic scaffold protein p62 as the molecular target of IDR-1. Direct IDR-1 binding to p62 was confirmed by several biochemical binding experiments, and the p62 ZZ-type zinc finger domain was identified as the IDR-1 binding site. Co-immunoprecipitation analysis of p62 molecular complexes demonstrated that IDR-1 enhanced the tumor necrosis factor α-induced p62 receptor-interacting protein 1 (RIP1) complex formation but did not affect tumor necrosis factor α-induced p62-protein kinase ζ complex formation. In addition, IDR-1 induced p38 MAPK activity in a p62-dependent manner and increased CCAAT-enhancer-binding protein β activity, whereas NF-κB activity was unaffected. Collectively, these results demonstrate that IDR-1 binding to p62 specifically affects protein-protein interactions and subsequent downstream events. Our results implicate p62 in the molecular mechanisms governing innate immunity and identify p62 as a potential therapeutic target in both infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Hong Bing Yu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | | | - Annett Rozek
- Inimex Pharmaceuticals, Vancouver, British Columbia V5A 4T8
| | | | - Yuling Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Lisa Thorson
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4
| | - M Marta Guarna
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, Vancouver, British Columbia V6T 1Z4, Canada
| | - John R North
- Inimex Pharmaceuticals, Vancouver, British Columbia V5A 4T8
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Centre for High-Throughput Biology, Vancouver, British Columbia V6T 1Z4, Canada
| | - Oreola Donini
- Inimex Pharmaceuticals, Vancouver, British Columbia V5A 4T8
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4.
| |
Collapse
|
23
|
Corcelle EA, Puustinen P, Jäättelä M. Apoptosis and autophagy: Targeting autophagy signalling in cancer cells -'trick or treats'? FEBS J 2009; 276:6084-96. [PMID: 19788415 DOI: 10.1111/j.1742-4658.2009.07332.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) is a tightly regulated lysosome-dependent catabolic pathway. During this process, cytosolic constituents are sequestered into autophagosomes, which subsequently fuse with lysosomes to become autolysosomes, where their contents are degraded. Autophagy contributes to the maintenance of the cellular energy homeostasis, to the clearance of damaged organelles and to adaptation to environmental stresses. Accordingly, autophagy defects have been linked to a wide range of human pathologies, including cancer. The recent discovery of several evolutionarily conserved genes involved in autophagosome formation has greatly stimulated the autophagy research, and the complex signalling networks regulating mammalian autophagy have begun to emerge. Here, we draw the current picture of signalling pathways connecting mitogenic and stress-induced signals to the initiation and maturation of autophagosomes and discuss the possibilities of their targeting as therapeutic adjuvants in anticancer therapy.
Collapse
Affiliation(s)
- Elisabeth A Corcelle
- Apoptosis Department and Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark
| | | | | |
Collapse
|
24
|
Sugimoto R, Warabi E, Katayanagi S, Sakai S, Uwayama J, Yanagawa T, Watanabe A, Harada H, Kitamura K, Noguchi N, Yoshida H, Siow RCM, Mann GE, Ishii T. Enhanced neointimal hyperplasia and carotid artery remodelling in sequestosome 1 deficient mice. J Cell Mol Med 2009; 14:1546-54. [PMID: 19780870 PMCID: PMC3829020 DOI: 10.1111/j.1582-4934.2009.00914.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Deficiency in the signal adaptor protein sequestosome 1 (SQSTM1/A170/p62) in mice is associated with mature-onset obesity, accompanied by insulin and leptin resistance. We previously established that redox sensitive transcription factor Nrf2 up-regulates SQSTM1 expression in response to atherogenic stimuli or laminar shear stress in vascular cells, and here examine the role of SQSTM1 in neointimal hyperplasia and vascular remodelling in vivo following carotid artery ligation. Neointimal hyperplasia was markedly enhanced at ligation sites after 3 weeks in SQSTM1(-/-) compared with wild-type (WT) mice. The intimal area and stenotic ratio were, respectively, 2.1- and 1.7-fold higher in SQSTM1(-/-) mice, indicating enhanced proliferation of vascular smooth muscle cells (SMCs). When aortic SMCs were isolated from WT and SQSTM1(-/-) mice and cultured in vitro, we found that SQSTM1(-/-) SMCs proliferated more rapidly in response to foetal calf serum (FCS) and attained 2-3-fold higher cell densities compared to WT SMCs. Moreover, migration of SQSTM1(-/-) SMCs was enhanced compared to WT SMCs. Early and late phases of p38(MAPK) activation in response to FCS stimulation were also more enhanced in SQSTM1(-/-) SMCs, and inhibitors of p38 and ERK1/2 signalling pathways significantly attenuated SMC proliferation. In summary, SQSTM1(-/-) mice exhibit enhanced neointimal hyperplasia and vascular remodelling following arterial ligation in vivo. The enhanced proliferation of SQSTM1(-/-) aortic SMCs in vitro highlights a novel role for SQSTM1 in suppressing smooth muscle proliferation following vascular injury.
Collapse
Affiliation(s)
- Rika Sugimoto
- Majors of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|