1
|
Pandey S, Wohland T. EGFR does not directly interact with cortical actin: A SRRF'n'TIRF study. Biophys J 2024:S0006-3495(24)00634-9. [PMID: 39340155 DOI: 10.1016/j.bpj.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) governs pivotal signaling pathways in cell proliferation and survival, with mutations implicated in numerous cancers. The organization of EGFR on the plasma membrane (PM) is influenced by the lipids and the cortical actin (CA) cytoskeleton. Despite the presence of a putative actin-binding domain (ABD) spanning 13 residues, a direct interaction between EGFR and CA has not been definitively established. While disrupting the cytoskeleton can impact EGFR behavior, suggesting a connection, the influence of the static actin cytoskeleton has been found to be indirect. Here, we investigate the potential interaction between EGFR and CA, as well as the extent to which CA regulates EGFR's distribution on the PM using SRRF'n'TIRF, a spatiotemporal super-resolution microscopy technique that provides sub-100 nm resolution and ms-scale dynamics from the same data set. To label CA, we constructed PMT-mEGFP-F-tractin, which combines an inner leaflet targeting domain PMT, fluorescent probe mEGFP, and the actin-binding protein F-tractin. In addition to EGFR-mEGFP, we included two control constructs: 1) an ABD deletion mutant, EGFRΔABD-mEGFP serving as a negative control and 2) EGFR-mApple-F-tractin, where F-tractin is fused to the C-terminus of EGFR-mApple, serving as the positive control. We find that EGFR-mEGFP and EGFRΔABD-mEGFP show similar membrane dynamics, implying that EGFR-mEGFP dynamics and organization are independent of CA. EGFR dynamics show CA dependence when F-tractin is anchored to the cytoplasmic tail. Together, our results demonstrate that EGFR does not directly interact with the CA in its resting and activated state.
Collapse
Affiliation(s)
- Shambhavi Pandey
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Thorsten Wohland
- Centre for Bio-Imaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Lomize AL, Todd SC, Pogozheva ID. Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci 2022; 31:209-220. [PMID: 34716622 PMCID: PMC8740824 DOI: 10.1002/pro.4219] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Cellular protrusions, invaginations, and many intracellular organelles have strongly curved membrane regions. Transmembrane and peripheral membrane proteins that induce, sense, or stabilize such regions cannot be properly fitted into a single flat bilayer. To treat such proteins, we developed a new method and a web tool, PPM 3.0, for positioning proteins in curved or planar, single or multiple membranes. This method determines the energetically optimal spatial position, the hydrophobic thickness, and the radius of intrinsic curvature of a membrane-deforming protein structure by arranging it in a single or several sphere-shaped or planar membrane sections. In addition, it can define the lipid-embedded regions of a protein that simultaneously spans several membranes or determine the optimal position of a peptide in a spherical micelle. The PPM 3.0 web server operates with 17 types of biological membranes and 4 types of artificial bilayers. It is publicly available at https://opm.phar.umich.edu/ppm_server3. PPM 3.0 was applied to identify and characterize arrangements in membranes of 128 proteins with a significant intrinsic curvature, such as BAR domains, annexins, Piezo, and MscS mechanosensitive channels, cation-chloride cotransporters, as well as mitochondrial ATP synthases, calcium uniporters, and TOM complexes. These proteins form large complexes that are mainly localized in mitochondria, plasma membranes, and endosomes. Structures of bacterial drug efflux pumps, AcrAB-TolC, MexAB-OrpM, and MacAB-TolC, were positioned in both membranes of the bacterial cell envelop, while structures of multimeric gap-junction channels were arranged in two opposed cellular membranes.
Collapse
Affiliation(s)
- Andrei L. Lomize
- College of Pharmacy, Department of Medicinal ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Spencer C. Todd
- Department of Electrical Engineering and Computer Science, College of EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Irina D. Pogozheva
- College of Pharmacy, Department of Medicinal ChemistryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Mechanism of negative membrane curvature generation by I-BAR domains. Structure 2021; 29:1440-1452.e4. [PMID: 34520736 DOI: 10.1016/j.str.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
Abstract
The membrane sculpting ability of BAR domains has been attributed to the intrinsic curvature of their banana-shaped dimeric structure. However, there is often a mismatch between this intrinsic curvature and the diameter of the membrane tubules generated. I-BAR domains are especially mysterious since they are almost flat but generate high negative membrane curvature. Here, we use atomistic implicit-solvent computer modeling to show that the membrane bending of the IRSp53 I-BAR domain is dictated by its higher oligomeric structure, whose curvature is completely unrelated to the intrinsic curvature of the dimer. Two other I-BARs give similar results, whereas a flat F-BAR sheet develops a concave membrane-binding interface, consistent with its observed positive membrane curvature generation. Laterally interacting helical spirals of I-BAR dimers on tube interiors are stable and have an enhanced binding energy that is sufficient for membrane bending to experimentally observed tubule diameters at a reasonable surface density.
Collapse
|
4
|
Abe M, Makino A, Murate M, Hullin-Matsuda F, Yanagawa M, Sako Y, Kobayashi T. PMP2/FABP8 induces PI(4,5)P 2-dependent transbilayer reorganization of sphingomyelin in the plasma membrane. Cell Rep 2021; 37:109935. [PMID: 34758297 DOI: 10.1016/j.celrep.2021.109935] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/20/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sphingomyelin (SM) is a mammalian lipid mainly distributed in the outer leaflet of the plasma membrane (PM). We show that peripheral myelin protein 2 (PMP2), a member of the fatty-acid-binding protein (FABP) family, can localize at the PM and controls the transbilayer distribution of SM. Genetic screening with genome-wide small hairpin RNA libraries identifies PMP2 as a protein involved in the transbilayer movement of SM. A biochemical assay demonstrates that PMP2 is a phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-binding protein. PMP2 induces the tubulation of model membranes in a PI(4,5)P2-dependent manner, accompanied by the modification of the transbilayer membrane distribution of lipids. In the PM of PMP2-overexpressing cells, inner-leaflet SM is increased whereas outer-leaflet SM is reduced. PMP2 is a causative protein of Charcot-Marie-Tooth disease (CMT). A mutation in PMP2 associated with CMT increases its affinity for PI(4,5)P2, inducing membrane tubulation and the subsequent transbilayer movement of lipids.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan.
| | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France
| | - Françoise Hullin-Matsuda
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Université de Lyon, CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Claude Bernard Lyon 1, 69495 Pierre-Benite, France
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Cellular Informatics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France.
| |
Collapse
|
5
|
Nishimura T, Oyama T, Hu HT, Fujioka T, Hanawa-Suetsugu K, Ikeda K, Yamada S, Kawana H, Saigusa D, Ikeda H, Kurata R, Oono-Yakura K, Kitamata M, Kida K, Hikita T, Mizutani K, Yasuhara K, Mimori-Kiyosue Y, Oneyama C, Kurimoto K, Hosokawa Y, Aoki J, Takai Y, Arita M, Suetsugu S. Filopodium-derived vesicles produced by MIM enhance the migration of recipient cells. Dev Cell 2021; 56:842-859.e8. [PMID: 33756122 DOI: 10.1016/j.devcel.2021.02.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/31/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are classified as large EVs (l-EVs, or microvesicles) and small EVs (s-EVs, or exosomes). S-EVs are thought to be generated from endosomes through a process that mainly depends on the ESCRT protein complex, including ALG-2 interacting protein X (ALIX). However, the mechanisms of l-EV generation from the plasma membrane have not been identified. Membrane curvatures are generated by the bin-amphiphysin-rvs (BAR) family proteins, among which the inverse BAR (I-BAR) proteins are involved in filopodial protrusions. Here, we show that the I-BAR proteins, including missing in metastasis (MIM), generate l-EVs by scission of filopodia. Interestingly, MIM-containing l-EV production was promoted by in vivo equivalent external forces and by the suppression of ALIX, suggesting an alternative mechanism of vesicle formation to s-EVs. The MIM-dependent l-EVs contained lysophospholipids and proteins, including IRS4 and Rac1, which stimulated the migration of recipient cells through lamellipodia formation. Thus, these filopodia-dependent l-EVs, which we named as filopodia-derived vesicles (FDVs), modify cellular behavior.
Collapse
Affiliation(s)
- Tamako Nishimura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takuya Oyama
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hooi Ting Hu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Toshifumi Fujioka
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kyoko Hanawa-Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; Kazusa DNA Research Institute, 2-6-7 Kazusa, kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Sohei Yamada
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Hiroki Kawana
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Daisuke Saigusa
- Tohoku University Tohoku Medical Megabank Organization, 2-1, Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara 634-0813, Nara, Japan
| | - Rie Kurata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kayoko Oono-Yakura
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Manabu Kitamata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Kazuki Kida
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Kiyohito Mizutani
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Minatojima-minaminachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara 634-0813, Nara, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Junken Aoki
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshimi Takai
- Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0047, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-0011, Japan
| | - Shiro Suetsugu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan; Data Science Center, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| |
Collapse
|
6
|
Motegi T, Takiguchi K, Tanaka-Takiguchi Y, Itoh T, Tero R. Physical Properties and Reactivity of Microdomains in Phosphatidylinositol-Containing Supported Lipid Bilayer. MEMBRANES 2021; 11:membranes11050339. [PMID: 34063660 PMCID: PMC8147626 DOI: 10.3390/membranes11050339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/03/2023]
Abstract
We characterized the size, distribution, and fluidity of microdomains in a lipid bilayer containing phosphatidylinositol (PI) and revealed their roles during the two-dimensional assembly of a membrane deformation protein (FBP17). The morphology of the supported lipid bilayer (SLB) consisting of PI and phosphatidylcholine (PC) on a mica substrate was observed with atomic force microscope (AFM). Single particle tracking (SPT) was performed for the PI+PC-SLB on the mica substrate by using the diagonal illumination setup. The AFM topography showed that PI-derived submicron domains existed in the PI+PC-SLB. The spatiotemporal dependence of the lateral lipid diffusion obtained by SPT showed that the microdomain had lower fluidity than the surrounding region and worked as the obstacles for the lipid diffusion. We observed the two-dimensional assembly of FBP17, which is one of F-BAR family proteins included in endocytosis processes and has the function generating lipid bilayer tubules in vitro. At the initial stage of the FBP17 assembly, the PI-derived microdomain worked as a scaffold for the FBP17 adsorption, and the fluid surrounding region supplied FBP17 to grow the FBP17 domain via the lateral molecular diffusion. This study demonstrated an example clearly revealing the roles of two lipid microregions during the protein reaction on a lipid bilayer.
Collapse
Affiliation(s)
- Toshinori Motegi
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Toyohashi 441-8580, Japan
- Correspondence: (T.M.); (R.T.)
| | - Kingo Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (K.T.); (Y.T.-T.)
| | - Yohko Tanaka-Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (K.T.); (Y.T.-T.)
| | - Toshiki Itoh
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan;
| | - Ryugo Tero
- Electronics-Inspired Interdisciplinary Research Institute, Toyohashi University of Technology, Toyohashi 441-8580, Japan
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
- Correspondence: (T.M.); (R.T.)
| |
Collapse
|
7
|
Mesarec L, Drab M, Penič S, Kralj-Iglič V, Iglič A. On the Role of Curved Membrane Nanodomains, and Passive and Active Skeleton Forces in the Determination of Cell Shape and Membrane Budding. Int J Mol Sci 2021; 22:2348. [PMID: 33652934 PMCID: PMC7956631 DOI: 10.3390/ijms22052348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/03/2023] Open
Abstract
Biological membranes are composed of isotropic and anisotropic curved nanodomains. Anisotropic membrane components, such as Bin/Amphiphysin/Rvs (BAR) superfamily protein domains, could trigger/facilitate the growth of membrane tubular protrusions, while isotropic curved nanodomains may induce undulated (necklace-like) membrane protrusions. We review the role of isotropic and anisotropic membrane nanodomains in stability of tubular and undulated membrane structures generated or stabilized by cyto- or membrane-skeleton. We also describe the theory of spontaneous self-assembly of isotropic curved membrane nanodomains and derive the critical concentration above which the spontaneous necklace-like membrane protrusion growth is favorable. We show that the actin cytoskeleton growth inside the vesicle or cell can change its equilibrium shape, induce higher degree of segregation of membrane nanodomains or even alter the average orientation angle of anisotropic nanodomains such as BAR domains. These effects may indicate whether the actin cytoskeleton role is only to stabilize membrane protrusions or to generate them by stretching the vesicle membrane. Furthermore, we demonstrate that by taking into account the in-plane orientational ordering of anisotropic membrane nanodomains, direct interactions between them and the extrinsic (deviatoric) curvature elasticity, it is possible to explain the experimentally observed stability of oblate (discocyte) shapes of red blood cells in a broad interval of cell reduced volume. Finally, we present results of numerical calculations and Monte-Carlo simulations which indicate that the active forces of membrane skeleton and cytoskeleton applied to plasma membrane may considerably influence cell shape and membrane budding.
Collapse
Affiliation(s)
- Luka Mesarec
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Mitja Drab
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Samo Penič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
| | - Veronika Kralj-Iglič
- Faculty of Health Sciences, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
- Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy
| | - Aleš Iglič
- Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (L.M.); (M.D.); (S.P.)
- Institute of Biosciences and Bioresources, National Research Council, 80131 Napoli, Italy
| |
Collapse
|
8
|
Chen Y, Zhang W, Chen B, Liu Y, Dong Y, Xu A, Hao Q. Crystal Structure of Human APPL BAR-PH Heterodimer Reveals a Flexible Dimeric BAR curve: Implication in Mutual Regulation of Endosomal Targeting. Biochem J 2020; 477:BCJ20200438. [PMID: 33258922 DOI: 10.1042/bcj20200438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
The APPL (adaptor proteins containing pleckstrin homology domain, phosphotyrosine binding domain and a leucine zipper motif) family consists of two isoforms, APPL1 and APPL2. By binding to curved plasma membrane, these adaptor proteins associate with multiple transmembrane receptors and recruit various downstream signaling components. They are involved in the regulation of signaling pathways evoked by a variety of extracellular stimuli, such as adiponectin, insulin, FSH (follicle stimulating hormone), EGF (epidermal growth factor). And they play important roles in cell proliferation, apoptosis, glucose uptake, insulin secretion and sensitivity. However, emerging evidence suggests that APPL1 and APPL2 perform different or even opposite functions and the underlying mechanism remains unclear. As APPL proteins can either homodimerize or heterodimerize in vivo, we hypothesized that heterodimerization of APPL proteins might account for the mechanism. By solving the crystal structure of APPL1-APPL2 BAR-PH heterodimer, we find that the overall structure is crescent-shaped with a longer curvature radius of 76 Å, compared to 55 Å of the APPL1 BAR-PH homodimer. However, there is no significant difference of the curvature between APPL BAR-PH heterodimer and APPL2 homodimer. The data suggest that the APPL1 BAR-PH homodimer, APPL2 BAR-PH homodimer and APPL1/APPL2 BAR-PH heterodimer may bind to endosomes of different sizes. Different positive charge distribution is observed on the concave surface of APPL BAR-PH heterodimer than the homodimers, which may change the affinity of membrane association and subcellular localization. Collectively, APPL2 may regulate APPL1 function through altering the preference of endosome binding by heterodimerization.
Collapse
Affiliation(s)
- Yujie Chen
- University of Hong Kong, Hong Kong, China
| | - Wen Zhang
- University of Hong Kong, Hong Kong, China
| | - Bin Chen
- University of Hong Kong, Hong Kong, China
| | - Ying Liu
- Institute of High Energy Physics, CAS, Beijing, China
| | - Yuhui Dong
- Institute of High Energy Physics, CAS, Beijing, China
| | - Aimin Xu
- University of Hong Kong, Hong Kong, China
| | - Quan Hao
- University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Bisi S, Marchesi S, Rizvi A, Carra D, Beznoussenko GV, Ferrara I, Deflorian G, Mironov A, Bertalot G, Pisati F, Oldani A, Cattaneo A, Saberamoli G, Pece S, Viale G, Bachi A, Tripodo C, Scita G, Disanza A. IRSp53 controls plasma membrane shape and polarized transport at the nascent lumen in epithelial tubules. Nat Commun 2020; 11:3516. [PMID: 32665580 PMCID: PMC7360740 DOI: 10.1038/s41467-020-17091-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 02/07/2023] Open
Abstract
It is unclear whether the establishment of apical–basal cell polarity during the generation of epithelial lumens requires molecules acting at the plasma membrane/actin interface. Here, we show that the I-BAR-containing IRSp53 protein controls lumen formation and the positioning of the polarity determinants aPKC and podocalyxin. Molecularly, IRSp53 acts by regulating the localization and activity of the small GTPase RAB35, and by interacting with the actin capping protein EPS8. Using correlative light and electron microscopy, we further show that IRSp53 ensures the shape and continuity of the opposing plasma membrane of two daughter cells, leading to the formation of a single apical lumen. Genetic removal of IRSp53 results in abnormal renal tubulogenesis, with altered tubular polarity and architectural organization. Thus, IRSp53 acts as a membrane curvature-sensing platform for the assembly of multi-protein complexes that control the trafficking of apical determinants and the integrity of the luminal plasma membrane. The I-BAR protein IRSp53 senses membrane curvature but its physiological role is unclear. Here, the authors show that during early lumen morphogenesis, IRSp53 controls the shape of the apical plasma membrane and polarized trafficking and ensures the correct epithelial tubular architecture and if deleted, affects renal tubules morphogenesis in various organisms.
Collapse
Affiliation(s)
- Sara Bisi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Stefano Marchesi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Abrar Rizvi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Davide Carra
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Galina V Beznoussenko
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Ines Ferrara
- Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Via del Vespro 129, 90127, Palermo, Italy
| | | | - Alexander Mironov
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Giovanni Bertalot
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Amanda Oldani
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | | | - Ghazaleh Saberamoli
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Salvatore Pece
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Via Santa Sofia 9/1, 20122, Milan, Italy
| | - Giuseppe Viale
- European Institute of Oncology (IEO) IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Angela Bachi
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Claudio Tripodo
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy.,Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Via del Vespro 129, 90127, Palermo, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy. .,Department of Oncology and Haemato-Oncology, University of Milan, Via Santa Sofia 9/1, 20122, Milan, Italy.
| | - Andrea Disanza
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
10
|
Nepal B, Sepehri A, Lazaridis T. Mechanisms of negative membrane curvature sensing and generation by ESCRT III subunit Snf7. Protein Sci 2020; 29:1473-1485. [PMID: 32142182 DOI: 10.1002/pro.3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
Abstract
Certain proteins have the propensity to bind to negatively curved membranes and generate negative membrane curvature. The mechanism of action of these proteins is much less studied and understood than those that sense and generate positive curvature. In this work, we use implicit membrane modeling to explore the mechanism of an important negative curvature sensing and generating protein: the main ESCRT III subunit Snf7. We find that Snf7 monomers alone can sense negative curvature and that curvature sensitivity increases for dimers and trimers. We have observed spontaneous bending of Snf7 oligomers into circular structures with preferred radius of ~20 nm. The preferred curvature of Snf7 filaments is further confirmed by the simulations of preformed spirals on a cylindrical membrane surface. Snf7 filaments cannot bind with the same interface to flat and curved membranes. We find that even when a filament has the preferred radius, it is always less stable on the flat membrane surface than on the interior cylindrical membrane surface. This provides an additional energy for membrane bending which has not been considered in the spiral spring model. Furthermore, the rings on the cylindrical spirals are bridged together by helix 4 and hence are extra stabilized compared to the spirals on the flat membrane surface.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Aliasghar Sepehri
- Department of Chemistry, City College of New York, New York, New York, USA
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York, USA.,Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
11
|
Li X, Matino L, Zhang W, Klausen L, McGuire AF, Lubrano C, Zhao W, Santoro F, Cui B. A nanostructure platform for live-cell manipulation of membrane curvature. Nat Protoc 2019; 14:1772-1802. [PMID: 31101905 PMCID: PMC6716504 DOI: 10.1038/s41596-019-0161-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/05/2019] [Indexed: 11/09/2022]
Abstract
Membrane curvatures are involved in essential cellular processes, such as endocytosis and exocytosis, in which they are believed to act as microdomains for protein interactions and intracellular signaling. These membrane curvatures appear and disappear dynamically, and their locations are difficult or impossible to predict. In addition, the size of these curvatures is usually below the diffraction limit of visible light, making it impossible to resolve their values using live-cell imaging. Therefore, precise manipulation of membrane curvature is important to understanding how membrane curvature is involved in intracellular processes. Recent studies show that membrane curvatures can be induced by surface topography when cells are in direct contact with engineered substrates. Here, we present detailed procedures for using nanoscale structures to manipulate membrane curvatures and probe curvature-induced phenomena in live cells. We first describe detailed procedures for the design of nanoscale structures and their fabrication using electron-beam (E-beam) lithography. The fabrication process takes 2 d, but the resultant chips can be cleaned and reused repeatedly over the course of 2 years. Then we describe how to use these nanostructures to manipulate local membrane curvatures and probe intracellular protein responses, discussing surface coating, cell plating, and fluorescence imaging in detail. Finally, we describe a procedure to characterize the nanostructure-cell membrane interface using focused ion beam and scanning electron microscopy (FIB-SEM). Nanotopography-based methods can induce stable membrane curvatures with well-defined curvature values and locations in live cells, which enables the generation of a library of curvatures for probing curvature-related intracellular processes.
Collapse
Affiliation(s)
- Xiao Li
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Laura Matino
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lasse Klausen
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Claudia Lubrano
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Francesca Santoro
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem Soc Trans 2018. [PMID: 29540508 DOI: 10.1042/bst20170322] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors.
Collapse
|
13
|
Takemura K, Hanawa-Suetsugu K, Suetsugu S, Kitao A. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature. Sci Rep 2017; 7:6808. [PMID: 28754893 PMCID: PMC5533756 DOI: 10.1038/s41598-017-06334-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight “zeppelin-shaped” dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.
Collapse
Affiliation(s)
- Kazuhiro Takemura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | - Kyoko Hanawa-Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
14
|
Mesarec L, Góźdź W, Kralj S, Fošnarič M, Penič S, Kralj-Iglič V, Iglič A. On the role of external force of actin filaments in the formation of tubular protrusions of closed membrane shapes with anisotropic membrane components. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:705-718. [PMID: 28488019 DOI: 10.1007/s00249-017-1212-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 02/08/2023]
Abstract
Biological membranes are composed of different components and there is no a priori reason to assume that all components are isotropic. It was previously shown that the anisotropic properties of membrane components may explain the stability of membrane tubular protrusions even without the application of external force. Our theoretical study focuses on the role of anisotropic membrane components in the stability of membrane tubular structures generated or stabilized by actin filaments. We show that the growth of the actin cytoskeleton inside the vesicle can induce the partial lateral segregation of different membrane components. The entropy of mixing of membrane components hinders the total lateral segregation of the anisotropic and isotropic membrane components. Self-assembled aggregates formed by anisotropic membrane components facilitate the growth of long membrane tubular protrusions. Protrusive force generated by actin filaments favors strong segregation of membrane components by diminishing the opposing effect of mixing entropy.
Collapse
Affiliation(s)
- Luka Mesarec
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.
| | - Wojciech Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.,Jožef Stefan Institute, PO Box 3000, 1000, Ljubljana, Slovenia
| | - Miha Fošnarič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Samo Penič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, 1000, Ljubljana, Slovenia.,Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Zaloška 9, 1000, Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.,Laboratory of Clinical Biophysics, Faculty of Medicine, University of Ljubljana, Zaloška 9, 1000, Ljubljana, Slovenia
| |
Collapse
|
15
|
Mtss1 promotes maturation and maintenance of cerebellar neurons via splice variant-specific effects. Brain Struct Funct 2017; 222:2787-2805. [DOI: 10.1007/s00429-017-1372-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 01/17/2017] [Indexed: 11/26/2022]
|
16
|
Abstract
I-BAR proteins are well-known actin-cytoskeleton adaptors and have been observed to be involved in the formation of plasma membrane protrusions (filopodia). I-BAR proteins contain an all-helical, crescent-shaped IRSp53-MIM domain (IMD) dimer that is believed to be able to couple with a membrane shape. This coupling could involve the sensing and even the generation of negative plasma membrane curvature. Indeed, the in vitro studies have shown that IMDs can induce inward tubulation of liposomes. While N-BAR domains, which generate positive membrane curvature, have received a considerable amount of attention from both theory and experiments, the mechanisms of curvature coupling through IMDs are comparatively less studied and understood. Here we used a membrane-shape stability assay developed recently in our lab to quantitatively characterize IMD-induced membrane-shape transitions. We determined a membrane-shape stability diagram for IMDs that reveals how membrane tension and protein density can comodulate the generation of IMD-induced membrane protrusions. From comparison to analytical theory, we determine three key parameters that characterize the curvature coupling of IMD. We find that the curvature generation capacity of IMDs is significantly stronger compared to that of endophilin, an N-BAR protein known to be involved in plasma membrane shape transitions. Contrary to N-BAR domains, where amphipathic helix insertion is known to promote its membrane curvature generation, for IMDs we find that amphipathic helices inhibit membrane shape transitions, consistent with the inverse curvature that IMDs generate. Importantly, in both of these types of BAR domains, electrostatic interactions affect membrane-binding capacity, but do not appear to affect the curvature generation capacity of the protein. These two types of BAR domain proteins show qualitatively similar membrane shape stability diagrams, suggesting an underlying ubiquitous mechanism by which peripheral proteins regulate membrane curvature.
Collapse
|
17
|
Zobel T, Brinkmann K, Koch N, Schneider K, Seemann E, Fleige A, Qualmann B, Kessels MM, Bogdan S. Cooperative functions of the two F-BAR proteins Cip4 and Nostrin in the regulation of E-cadherin in epithelial morphogenesis. J Cell Sci 2016; 128:499-515. [PMID: 25413347 DOI: 10.1242/jcs.155929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
F-BAR proteins are prime candidates to regulate membrane curvature and dynamics during different developmental processes. Here, we analyzed nostrin, a so-far-unknown Drosophila melanogaster F-BAR protein related to Cip4. Genetic analyses revealed a strong synergism between nostrin and cip4 functions.Whereas single mutant flies are viable and fertile, combined loss of nostrin and cip4 results in reduced viability and fertility. Double mutant escaper flies show enhanced wing polarization defects and females exhibit strong egg chamber encapsulation defects. Live imaging analysis suggests that the observed phenotypes are caused by an impaired turnover of E-cadherin at the membrane. Simultaneous knockdown of Cip4 and Nostrin strongly increases the formation of tubular E-cadherin vesicles at adherens junctions. Cip4 and Nostrin localize at distinct membrane subdomains. Both proteins prefer similar membrane curvatures but seem to form distinct membrane coats and do not heterooligomerize. Our data suggest an important synergistic function of both F-BAR proteins in membrane dynamics. We propose a cooperative recruitment model, in which Cip4 initially promotes membrane invagination and early-actin-based endosomal motility, and Nostrin makes contacts with microtubules through the kinesin Khc-73 for trafficking of recycling endosomes.
Collapse
|
18
|
Mesarec L, Góźdź W, Iglič VK, Kralj S, Iglič A. Closed membrane shapes with attached BAR domains subject to external force of actin filaments. Colloids Surf B Biointerfaces 2016; 141:132-140. [PMID: 26854580 DOI: 10.1016/j.colsurfb.2016.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/02/2016] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Membrane deformations induced by attached BAR superfamily domains could trigger or facilitate the growth of plasma membrane protrusions. The BAR domain family consists of BAR, F-BAR and I-BAR domains, each enforcing a different local curvature when attached to the membrane surface. Our theoretical study mainly focuses on the role of I-BAR in the membrane tubular deformations generated or stabilised by actin filaments. The influence of the area density of membrane attached BAR domains and their intrinsic curvature on the closed membrane shapes (vesicles) was investigated numerically. We derived an analytical approximative expression for the critical relative area density of BARs at which the membrane tubular protrusions on vesicles are most prominent. We have shown that the BARs with a higher intrinsic curvature induce thinner and longer cylindrical protrusions. The average orientation of the membrane attached BARs is altered when the vesicle shape is subjected to external force of growing actin rod-like structure inside a vesicle. The average orientation angle of membrane attached BARs may indicate whether the actin filaments are just stabilising the protrusion or generating it by stretching the vesicle.
Collapse
Affiliation(s)
- Luka Mesarec
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| | - Wojciech Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Veronika Kralj Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia
| | - Samo Kralj
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; Jožef Stefan Institute, P.O. Box 3000, SI-1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Biophysics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Zdravstvena 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Abstract
Dynamins and BAR proteins are crucial in a wide variety of cellular processes for their ability to mediate membrane remodeling, such as membrane curvature and membrane fission and fusion. In this review, we highlight dynamins and BAR proteins and the cellular mechanisms that are involved in the initiation and progression of cancer. We specifically discuss the roles of the seproteinsin endocytosis, endo-lysosomal trafficking, autophagy, and apoptosis as these processes are all tightly linked to membrane remodeling and cancer.
Collapse
Affiliation(s)
- Anna C. Sundborger
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jenny E. Hinshaw
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
20
|
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 2014; 94:1219-48. [PMID: 25287863 DOI: 10.1152/physrev.00040.2013] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shusaku Kurisu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
21
|
Abstract
Dynamin is a large GTPase that mediates plasma membrane fission during clathrin-mediated endocytosis. Dynamin assembles into polymers on the necks of budding membranes in cells and has been shown to undergo GTP-dependent conformational changes that lead to membrane fission in vitro. Recent efforts have shed new light on the mechanisms of dynamin-mediated fission, yet exactly how dynamin performs this function in vivo is still not fully understood. Dynamin interacts with a number of proteins during the endocytic process. These interactions are mediated by the C-terminal proline-rich domain (PRD) of dynamin binding to SH3 domain-containing proteins. Three of these dynamin-binding partners (intersectin, amphiphysin and endophilin) have been shown to play important roles in the clathrin-mediated endocytosis process. They promote dynamin-mediated plasma membrane fission by regulating three important sequential steps in the process: recruitment of dynamin to sites of endocytosis; assembly of dynamin into a functional fission complex at the necks of clathrin-coated pits (CCPs); and regulation of dynamin-stimulated GTPase activity, a key requirement for fission.
Collapse
|
22
|
Lenhart KC, Becherer AL, Li J, Xiao X, McNally EM, Mack CP, Taylor JM. GRAF1 promotes ferlin-dependent myoblast fusion. Dev Biol 2014; 393:298-311. [PMID: 25019370 DOI: 10.1016/j.ydbio.2014.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/17/2014] [Accepted: 06/26/2014] [Indexed: 01/08/2023]
Abstract
Myoblast fusion (a critical process by which muscles grow) occurs in a multi-step fashion that requires actin and membrane remodeling; but important questions remain regarding the spatial/temporal regulation of and interrelationship between these processes. We recently reported that the Rho-GAP, GRAF1, was particularly abundant in muscles undergoing fusion to form multinucleated fibers and that enforced expression of GRAF1 in cultured myoblasts induced robust fusion by a process that required GAP-dependent actin remodeling and BAR domain-dependent membrane sculpting. Herein we developed a novel line of GRAF1-deficient mice to explore a role for this protein in the formation/maturation of myotubes in vivo. Post-natal muscles from GRAF1-depleted mice exhibited a significant and persistent reduction in cross-sectional area, impaired regenerative capacity and a significant decrease in force production indicative of lack of efficient myoblast fusion. A significant fusion defect was recapitulated in isolated myoblasts depleted of GRAF1 or its closely related family member GRAF2. Mechanistically, we show that GRAF1 and 2 facilitate myoblast fusion, at least in part, by promoting vesicle-mediated translocation of fusogenic ferlin proteins to the plasma membrane.
Collapse
Affiliation(s)
- Kaitlin C Lenhart
- Department of Pathology and Laboratory, Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Abby L Becherer
- Department of Pathology and Laboratory, Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jianbin Li
- Department of Gene Therapy Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiao Xiao
- Department of Gene Therapy Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Christopher P Mack
- Department of Pathology and Laboratory, Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory, Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
23
|
The interplay between cell signalling and mechanics in developmental processes. Nat Rev Genet 2013; 14:733-44. [PMID: 24045690 DOI: 10.1038/nrg3513] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Force production and the propagation of stress and strain within embryos and organisms are crucial physical processes that direct morphogenesis. In addition, there is mounting evidence that biomechanical cues created by these processes guide cell behaviours and cell fates. In this Review we discuss key roles for biomechanics during development to directly shape tissues, to provide positional information for cell fate decisions and to enable robust programmes of development. Several recently identified molecular mechanisms suggest how cells and tissues might coordinate their responses to biomechanical cues. Finally, we outline long-term challenges in integrating biomechanics with genetic analysis of developing embryos.
Collapse
|
24
|
CIP4 is required for the hypertrophic growth of neonatal cardiac myocytes. J Biomed Sci 2013; 20:56. [PMID: 23915320 PMCID: PMC3750294 DOI: 10.1186/1423-0127-20-56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CIP4 is a scaffold protein that regulates membrane deformation and tubulation, organization of the actin cytoskeleton, endocytosis of growth factor receptors, and vesicle trafficking. Although expressed in the heart, CIP4 has not been studied with regards to its potential function in cardiac myocytes. RESULTS We now show using RNA interference that CIP4 expression in neonatal rat ventricular myocytes is required for the induction of non-mitotic, hypertrophic growth by the α-adrenergic agonist phenylephrine, the IL-6 cytokine leukemia inhibitor factor, and fetal bovine serum, as assayed using morphometry, immunocytochemistry for the hypertrophic marker atrial natriuretic factor and [3H]leucine incorporation for de novo protein synthesis. This requirement was consistent with the induction of CIP4 expression by hypertrophic stimulation. The inhibition of myocyte hypertrophy by CIP4 small interfering oligonucleotides (siRNA) was rescued by expression of a recombinant CIP4 protein, but not by a mutant lacking the N-terminal FCH domain responsible for CIP4 intracellular localization. CONCLUSIONS These results imply that CIP4 plays a significant role in the intracellular hypertrophic signal transduction network that controls the growth of cardiac myocytes in heart disease.
Collapse
|
25
|
Simionescu-Bankston A, Leoni G, Wang Y, Pham PP, Ramalingam A, DuHadaway JB, Faundez V, Nusrat A, Prendergast GC, Pavlath GK. The N-BAR domain protein, Bin3, regulates Rac1- and Cdc42-dependent processes in myogenesis. Dev Biol 2013; 382:160-71. [PMID: 23872330 DOI: 10.1016/j.ydbio.2013.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022]
Abstract
Actin dynamics are necessary at multiple steps in the formation of multinucleated muscle cells. BAR domain proteins can regulate actin dynamics in several cell types, but have been little studied in skeletal muscle. Here, we identify novel functions for the N-BAR domain protein, Bridging integrator 3 (Bin3), during myogenesis in mice. Bin3 plays an important role in regulating myofiber size in vitro and in vivo. During early myogenesis, Bin3 promotes migration of differentiated muscle cells, where it colocalizes with F-actin in lamellipodia. In addition, Bin3 forms a complex with Rac1 and Cdc42, Rho GTPases involved in actin polymerization, which are known to be essential for myotube formation. Importantly, a Bin3-dependent pathway is a major regulator of Rac1 and Cdc42 activity in differentiated muscle cells. Overall, these data classify N-BAR domain proteins as novel regulators of actin-dependent processes in myogenesis, and further implicate BAR domain proteins in muscle growth and repair.
Collapse
Affiliation(s)
- Adriana Simionescu-Bankston
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Suetsugu S. Activation of nucleation promoting factors for directional actin filament elongation: allosteric regulation and multimerization on the membrane. Semin Cell Dev Biol 2013; 24:267-71. [PMID: 23380397 DOI: 10.1016/j.semcdb.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 01/02/2023]
Abstract
Nucleation promoting factors (NPFs) activate the Arp2/3 complex to produce branched actin filaments. Branched actin filaments are observed in most organelles, and specific NPFs, such as WASP, N-WASP, WAVEs, WASH, and WHAMM, exist for each organelle. Interestingly, Arp2/3 and NPFs are both inactive by themselves, and thus require activation. The exposure of the Arp2/3 activating region, the VCA fragment, is recognized to be a key event in the activation of the NPFs. Together, small GTPase binding, phosphorylation, SH3 binding, and membrane binding promote VCA exposure synergistically. The increase in the local concentration of NPF by multimerization is thought to occur with the combination of such activators, to maximally activate the NPF and confine the region of actin polymerization. The mechanism of uni-directional filament extension beneath the membrane also is discussed.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
27
|
Gorelik J, Wright PT, Lyon AR, Harding SE. Spatial control of the βAR system in heart failure: the transverse tubule and beyond. Cardiovasc Res 2013; 98:216-24. [PMID: 23345264 DOI: 10.1093/cvr/cvt005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The beta1-adrenoceptors (β(1)AR) and beta-2 (β(2)AR) adrenoceptors represent the predominant pathway for sympathetic control of myocardial function. Diverse mechanisms have evolved to translate signalling via these two molecules into differential effects on physiology. In this review, we discuss how the functions of the βAR are organized from the level of secondary messengers to the whole heart to achieve this. Using novel microscopy and bio-imaging methods researchers have uncovered subtle organization of the control of cyclic adenosine monophosphate (cAMP), the predominant positively inotropic pathway for the βAR. The β(2)AR in particular is demonstrated to give rise to highly compartmentalized, spatially confined cAMP signals. Organization of β(2)AR within the T-tubule and caveolae of cardiomyocytes concentrates this receptor with molecules which buffer and shape its cAMP signal to give fine control. This situation is undermined in various forms of heart failure. Human and animal models of heart failure demonstrate disruption of cellular micro-architecture which contributes to the change in response to cardiac βARs. Loss of cellular structure has proved key to the observed loss of confined β(2)AR signalling. Some pharmacological and genetic treatments have been successful in returning failing cells to a more structured phenotype. Within these cells it has been possible to observe the partial restoration of normal β(2)AR signalling. At the level of the organ, the expression of the two βAR subtypes varies between regions with the β(2)AR forming a greater proportion of the βAR population at the apex. This distribution may contribute to regional wall motion abnormalities in Takotsubo cardiomyopathy, a syndrome of high sympathetic activity, where the phosphorylated β(2)AR can signal via Gi protein to produce negatively inotropic effects.
Collapse
Affiliation(s)
- Julia Gorelik
- Department of Cardiovascular Medicine, National Heart and Lung Institute, Imperial College, 4th floor, Imperial Centre for Translational and Experimental Medicine, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | |
Collapse
|
28
|
Effect of amino acid distribution of amphipathic helical peptide derived from human apolipoprotein A-I on membrane curvature sensing. FEBS Lett 2013; 587:510-5. [PMID: 23347831 DOI: 10.1016/j.febslet.2013.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/22/2022]
Abstract
Amphipathic helix, which senses membrane curvature, is of growing interest. Here we explore the effect of amino acid distribution of amphipathic helical peptide derived from the C-terminal region (residues 220-241) of human apolipoprotein (apo) A-I on membrane curvature sensing. This peptide preferred a curved membrane in a manner similar to full-length apoA-I, although its model peptide did not sense membrane curvature. Substitution of several residues both on the polar and non-polar faces of the amphipathic helix had no significant effect on sensing, suggestive of the elaborate molecular architecture in the C-terminal helical region of apoA-I to exert lipid efflux function.
Collapse
|
29
|
Abstract
Endocytosis includes a number of processes by which cells internalize segments of their plasma membrane, enclosing a wide variety of material from outside the cell. Endocytosis can contribute to uptake of nutrients, regulation of signaling molecules, control of osmotic pressure, and function of synapses. The actin cytoskeleton plays an essential role in several of these processes. Actin assembly can create protrusions that encompass extracellular materials. Actin can also support the processes of invagination of a membrane segment into the cytoplasm, elongation of the invagination, scission of the new vesicle from the plasma membrane, and movement of the vesicle away from the membrane. We briefly discuss various types of endocytosis, including phagocytosis, macropinocytosis, and clathrin-independent endocytosis. We focus mainly on new findings on the relative importance of actin in clathrin-mediated endocytosis (CME) in yeast versus mammalian cells.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
30
|
Kelsey JS, Fastman NM, Noratel EF, Blumberg DD. Ndm, a coiled-coil domain protein that suppresses macropinocytosis and has effects on cell migration. Mol Biol Cell 2012; 23:3407-19. [PMID: 22809629 PMCID: PMC3431939 DOI: 10.1091/mbc.e12-05-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ampA gene has a role in cell migration in Dictyostelium discoideum. Cells overexpressing AmpA show an increase in cell migration, forming large plaques on bacterial lawns. A second-site suppressor of this ampA-overexpressing phenotype identified a previously uncharacterized gene, ndm, which is described here. The Ndm protein is predicted to contain a coiled-coil BAR-like domain-a domain involved in endocytosis and membrane bending. ndm-knockout and Ndm-monomeric red fluorescent protein-expressing cell lines were used to establish a role for ndm in suppressing endocytosis. An increase in the rate of endocytosis and in the number of endosomes was detected in ndm(-) cells. During migration ndm(-) cells formed numerous endocytic cups instead of the broad lamellipodia structure characteristic of moving cells. A second lamellipodia-based function-cell spreading-was also defective in the ndm(-) cells. The increase in endocytosis and the defect in lamellipodia formation were associated with reduced chemotaxis in ndm(-) cells. Immunofluorescence results and glutathione S-transferase pull-down assays revealed an association of Ndm with coronin and F-actin. The results establish ndm as a gene important in regulating the balance between formation of endocytic cups and lamellipodia structures.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
31
|
Mueller NS, Wedlich-Söldner R, Spira F. From mosaic to patchwork: matching lipids and proteins in membrane organization. Mol Membr Biol 2012; 29:186-96. [PMID: 22594654 DOI: 10.3109/09687688.2012.687461] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biological membranes encompass and compartmentalize cells and organelles and are a prerequisite to life as we know it. One defining feature of membranes is an astonishing diversity of building blocks. The mechanisms and principles organizing the thousands of proteins and lipids that make up membrane bilayers in cells are still under debate. Many terms and mechanisms have been introduced over the years to account for certain phenomena and aspects of membrane organization and function. Recently, the different viewpoints - focusing on lipids vs. proteins or physical vs. molecular driving forces for membrane organization - are increasingly converging. Here we review the basic properties of biological membranes and the most common theories for lateral segregation of membrane components before discussing an emerging model of a self-organized, multi-domain membrane or 'patchwork membrane'.
Collapse
Affiliation(s)
- Nikola S Mueller
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
32
|
Lyon AR, Nikolaev VO, Miragoli M, Sikkel MB, Paur H, Benard L, Hulot JS, Kohlbrenner E, Hajjar RJ, Peters NS, Korchev YE, Macleod KT, Harding SE, Gorelik J. Plasticity of surface structures and β(2)-adrenergic receptor localization in failing ventricular cardiomyocytes during recovery from heart failure. Circ Heart Fail 2012; 5:357-65. [PMID: 22456061 PMCID: PMC4886822 DOI: 10.1161/circheartfailure.111.964692] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Cardiomyocyte surface morphology and T-tubular structure are significantly disrupted in chronic heart failure, with important functional sequelae, including redistribution of sarcolemmal β(2)-adrenergic receptors (β(2)AR) and localized secondary messenger signaling. Plasticity of these changes in the reverse remodeled failing ventricle is unknown. We used AAV9.SERCA2a gene therapy to rescue failing rat hearts and measured z-groove index, T-tubule density, and compartmentalized β(2)AR-mediated cAMP signals, using a combined nanoscale scanning ion conductance microscopy-Förster resonance energy transfer technique. METHODS AND RESULTS Cardiomyocyte surface morphology, quantified by z-groove index and T-tubule density, was normalized in reverse-remodeled hearts after SERCA2a gene therapy. Recovery of sarcolemmal microstructure correlated with functional β(2)AR redistribution back into the z-groove and T-tubular network, whereas minimal cAMP responses were initiated after local β(2)AR stimulation of crest membrane, as observed in failing cardiomyocytes. Improvement of β(2)AR localization was associated with recovery of βAR-stimulated contractile responses in rescued cardiomyocytes. Retubulation was associated with reduced spatial heterogeneity of electrically stimulated calcium transients and recovery of myocardial BIN-1 and TCAP protein expression but not junctophilin-2. CONCLUSIONS In summary, abnormalities of sarcolemmal structure in heart failure show plasticity with reappearance of z-grooves and T-tubules in reverse-remodeled hearts. Recovery of surface topology is necessary for normalization of β(2)AR location and signaling responses.
Collapse
Affiliation(s)
- Alexander R Lyon
- Myocardial Function Unit, National Heart and Lung Institute, Imperial College, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
34
|
Abstract
High-resolution structural analysis of branched actin networks at the sites of clathrin-mediated endocytosis sheds light on the role of actin in endocytosis and mechanisms controlling actin assembly.
Collapse
Affiliation(s)
- Vladimir Sirotkin
- Department of Cell and Developmental Biology, State University of New York (SUNY) Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
35
|
Hansen CG, Howard G, Nichols BJ. Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. J Cell Sci 2011; 124:2777-85. [PMID: 21807942 DOI: 10.1242/jcs.084319] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The pacsin (also termed syndapin) protein family is well characterised structurally. They contain F-BAR domains associated with the generation or maintenance of membrane curvature. The cell biology of these proteins remains less understood. Here, we initially confirm that EHD2, a protein previously shown biochemically to be present in caveolar fractions and to bind to pacsins, is a caveolar protein. We go on to report that GFP-pacsin 2 can be recruited to caveolae, and that endogenous pacsin 2 partially colocalises with caveolin 1 at the plasma membrane. Analysis of the role of pacsin 2 in caveolar biogenesis using small interfering RNA (siRNA) reveals that loss of pacsin 2 function results in loss of morphologically defined caveolae and accumulation of caveolin proteins within the plasma membrane. Overexpression of the F-BAR domain of pacsin 2 (but not the related F-BAR domains of CIP4 and FBP17) disrupts caveolar morphogenesis or trafficking, implying that pacsin 2 interacts with components required for these processes. We propose that pacsin 2 has an important role in the formation of plasma membrane caveolae.
Collapse
|
36
|
Koch J, Brocard C. Membrane elongation factors in organelle maintenance: the case of peroxisome proliferation. Biomol Concepts 2011; 2:353-364. [PMID: 21984887 DOI: 10.1515/bmc.2011.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Separation of metabolic pathways in organelles is critical for eukaryotic life. Accordingly, the number, morphology and function of organelles have to be maintained through processes linked with membrane remodeling events. Despite their acknowledged significance and intense study many questions remain about the molecular mechanisms by which organellar membranes proliferate. Here, using the example of peroxisome proliferation, we give an overview of how proteins elongate membranes. Subsequent membrane fission is achieved by dynamin-related proteins shared with mitochondria. We discuss basic criteria that membranes have to fulfill for these fission factors to complete the scission. Because peroxisome elongation is always associated with unequal distribution of matrix and membrane proteins, we propose peroxisomal division to be non-stochastic and asymmetric. We further show that these organelles need not be functional to carry on membrane elongation and present the most recent findings concerning members of the Pex11 protein family as membrane elongation factors. These factors, beside known proteins such as BAR-domain proteins, represent another family of proteins containing an amphipathic α-helix with membrane bending activity.
Collapse
Affiliation(s)
- Johannes Koch
- Department of Biochemistry and Cell Biology, University of Vienna, Max F. Perutz Laboratories, Center of Molecular Biology, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | | |
Collapse
|
37
|
Gongadze E, Kabaso D, Bauer S, Slivnik T, Schmuki P, van Rienen U, Iglič A. Adhesion of osteoblasts to a nanorough titanium implant surface. Int J Nanomedicine 2011; 6:1801-16. [PMID: 21931478 PMCID: PMC3173045 DOI: 10.2147/ijn.s21755] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This work considers the adhesion of cells to a nanorough titanium implant surface with sharp edges. The basic assumption was that the attraction between the negatively charged titanium surface and a negatively charged osteoblast is mediated by charged proteins with a distinctive quadrupolar internal charge distribution. Similarly, cation-mediated attraction between fibronectin molecules and the titanium surface is expected to be more efficient for a high surface charge density, resulting in facilitated integrin mediated osteoblast adhesion. We suggest that osteoblasts are most strongly bound along the sharp convex edges or spikes of nanorough titanium surfaces where the magnitude of the negative surface charge density is the highest. It is therefore plausible that nanorough regions of titanium surfaces with sharp edges and spikes promote the adhesion of osteoblasts.
Collapse
Affiliation(s)
- Ekaterina Gongadze
- Institute of General Electrical Engineering, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Hayn-Leichsenring G, Liebig C, Miething A, Schulz A, Kumar S, Schwalbe M, Eiberger B, Baader S. Cellular distribution of metastasis suppressor 1 and the shape of cell bodies are temporarily altered in Engrailed-2 overexpressing cerebellar Purkinje cells. Neuroscience 2011; 189:68-78. [DOI: 10.1016/j.neuroscience.2011.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/05/2011] [Accepted: 05/16/2011] [Indexed: 02/07/2023]
|
39
|
Wakita Y, Kakimoto T, Katoh H, Negishi M. The F-BAR protein Rapostlin regulates dendritic spine formation in hippocampal neurons. J Biol Chem 2011; 286:32672-83. [PMID: 21768103 DOI: 10.1074/jbc.m111.236265] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pombe Cdc15 homology proteins, characterized by Fer/CIP4 homology Bin-Amphiphysin-Rvs/extended Fer/CIP4 homology (F-BAR/EFC) domains with membrane invaginating property, play critical roles in a variety of membrane reorganization processes. Among them, Rapostlin/formin-binding protein 17 (FBP17) has attracted increasing attention as a critical coordinator of endocytosis. Here we found that Rapostlin was expressed in the developing rat brain, including the hippocampus, in late developmental stages when accelerated dendritic spine formation and maturation occur. In primary cultured rat hippocampal neurons, knockdown of Rapostlin by shRNA or overexpression of Rapostlin-QQ, an F-BAR domain mutant of Rapostlin that has no ability to induce membrane invagination, led to a significant decrease in spine density. Expression of shRNA-resistant wild-type Rapostlin effectively restored spine density in Rapostlin knockdown neurons, whereas expression of Rapostlin deletion mutants lacking the protein kinase C-related kinase homology region 1 (HR1) or Src homology 3 (SH3) domain did not. In addition, knockdown of Rapostlin or overexpression of Rapostlin-QQ reduced the uptake of transferrin in hippocampal neurons. Knockdown of Rnd2, which binds to the HR1 domain of Rapostlin, also reduced spine density and the transferrin uptake. These results suggest that Rapostlin and Rnd2 cooperatively regulate spine density. Indeed, Rnd2 enhanced the Rapostlin-induced tubular membrane invagination. We conclude that the F-BAR protein Rapostlin, whose activity is regulated by Rnd2, plays a key role in spine formation through the regulation of membrane dynamics.
Collapse
Affiliation(s)
- Yohei Wakita
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
40
|
Doherty JT, Lenhart KC, Cameron MV, Mack CP, Conlon FL, Taylor JM. Skeletal muscle differentiation and fusion are regulated by the BAR-containing Rho-GTPase-activating protein (Rho-GAP), GRAF1. J Biol Chem 2011; 286:25903-21. [PMID: 21622574 DOI: 10.1074/jbc.m111.243030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although RhoA activity is necessary for promoting myogenic mesenchymal stem cell fates, recent studies in cultured cells suggest that down-regulation of RhoA activity in specified myoblasts is required for subsequent differentiation and myotube formation. However, whether this phenomenon occurs in vivo and which Rho modifiers control these later events remain unclear. We found that expression of the Rho-GTPase-activating protein, GRAF1, was transiently up-regulated during myogenesis, and studies in C2C12 cells revealed that GRAF1 is necessary and sufficient for mediating RhoA down-regulation and inducing muscle differentiation. Moreover, forced expression of GRAF1 in pre-differentiated myoblasts drives robust muscle fusion by a process that requires GTPase-activating protein-dependent actin remodeling and BAR-dependent membrane binding or sculpting. Moreover, morpholino-based knockdown studies in Xenopus laevis determined that GRAF1 expression is critical for muscle development. GRAF1-depleted embryos exhibited elevated RhoA activity and defective myofibrillogenesis that resulted in progressive muscle degeneration, defective motility, and embryonic lethality. Our results are the first to identify a GTPase-activating protein that regulates muscle maturation and to highlight the functional importance of BAR domains in myotube formation.
Collapse
|
41
|
Theoretical model for cellular shapes driven by protrusive and adhesive forces. PLoS Comput Biol 2011; 7:e1001127. [PMID: 21573201 PMCID: PMC3088653 DOI: 10.1371/journal.pcbi.1001127] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/31/2011] [Indexed: 01/27/2023] Open
Abstract
The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. Cells have highly varied and dynamic shapes, which are determined by internal forces generated by the cytoskeleton. These forces include protrusive forces due to the formation of new internal fibers and forces produced due to attachment of the cell to an external substrate. A long standing challenge is to explain how the myriad components of the cytoskeleton self-organize to form the observed shapes of cells. We present here a theoretical study of the shapes of cells that are driven only by protrusive forces of two types; one is the force due to polymerization of actin filaments which acts as an internal pressure on the membrane, and the second is the force due to adhesion between the membrane and external substrate. The key property is that both forces are localized on the cell membrane by protein complexes that have convex spontaneous curvature. This leads to a positive feedback that destabilizes the uniform cell shape and induces the spontaneous formation of patterns. We compare the resulting patterns to observed cellular shapes and find good agreement, which allows us to explain some of the puzzling dependencies of cell shapes on the properties of the surrounding matrix.
Collapse
|
42
|
Peleg B, Disanza A, Scita G, Gov N. Propagating cell-membrane waves driven by curved activators of actin polymerization. PLoS One 2011; 6:e18635. [PMID: 21533032 PMCID: PMC3080874 DOI: 10.1371/journal.pone.0018635] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/10/2011] [Indexed: 11/18/2022] Open
Abstract
Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape.
Collapse
Affiliation(s)
- Barak Peleg
- Department of Chemical Physics, the Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Disanza
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy
| | - Giorgio Scita
- IFOM, the FIRC Institute for Molecular Oncology Foundation, Milan, Italy
- Department of Medicine, Surgery and Dentistry, Università degli Studi di Milano, Milan, Italy
| | - Nir Gov
- Department of Chemical Physics, the Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|