1
|
Yan G, Zhu T, Zhou J, Li X, Wen Z, Miuhuitijiang B, Zhang Z, Du Y, Li C, Shi X, Tan W. GOLM1 promotes prostate cancer progression via interaction with PSMD1 and enhancing AR-driven transcriptional activation. J Cell Mol Med 2024; 28:e70186. [PMID: 39470578 PMCID: PMC11520440 DOI: 10.1111/jcmm.70186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Aberrant transcriptional activation of the androgen receptor (AR) is a predominant cause of prostate cancer (PCa), including both in the initial and androgen-independent stages. Our study highlights Golgi membrane protein 1 (GOLM1) as a key regulator of AR-driven transcriptional activity in PCa progression. Utilizing local clinical data and TCGA data, we have established a robust association between GOLM1 and AR target genes, and further demonstrated that GOLM1 can enhance the expression of AR target genes. We discovered that GOLM1 interacts with PSMD1, a component of the 19S regulatory complex in the 26S proteasome, using mass spectrometry and Co-IP analysis. It is well known that ubiquitin-proteasome plays a vital role in AR expression and transcriptional regulation. Our findings demonstrate that GOLM1 enhances ubiquitin proteasome activity by binding to PSMD1, thereby facilitating AR-driven transcriptional activity and PCa progression. These results indicate that GOLM1 and its associated proteins may become potential therapeutic targets for PCa characterized by dysregulated AR-driven transcriptional activation.
Collapse
Affiliation(s)
- Guang Yan
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Andrology, Shanghai Seventh People's HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tianhang Zhu
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jiawei Zhou
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xia Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular BiologyThe Fourth Military Medical UniversityXi'anShaanxiChina
| | - Zonghua Wen
- Department of PathologyShenzhen University General HospitalShenzhenChina
| | | | - Zhiyong Zhang
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuejun Du
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Xiaojun Shi
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wanlong Tan
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Kim MY, Park ER, Cho EH, Park SH, Han CJ, Kim SB, Gu MB, Shin HJ, Lee KH. Depletion of proteasome subunit PSMD1 induces cancer cell death via protein ubiquitination and DNA damage, irrespective of p53 status. Sci Rep 2024; 14:7997. [PMID: 38580756 PMCID: PMC10997673 DOI: 10.1038/s41598-024-58215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high incidence and fatality rates worldwide. In our exploration of prognostic factors in HCC, the 26s proteasome subunit, non-ATPase 1 (PSMD1) protein emerged as a significant contributor, demonstrating its potential as a therapeutic target in this aggressive cancer. PSMD1 is a subunit of the 19S regulatory particle in the 26S proteasome complex; the 19S particle controls the deubiquitination of ubiquitinated proteins, which are then degraded by the proteolytic activity of the complex. Proteasome-targeting in cancer therapy has received significant attention because of its practical application as an established anticancer agent. We investigated whether PSMD1 plays a critical role in cancer owing to its prognostic significance. PSMD1 depletion induced cell cycle arrest in G2/M phase, DNA damage and apoptosis of cancer cells, irrespective of the p53 status. PSMD1 depletion-mediated cell death was accompanied by an increase in overall protein ubiquitination. These phenotypes occurred exclusively in cancer cells, with no effects observed in normal cells. These findings indicate that PSMD1 depletion-mediated ubiquitination of cellular proteins induces cell cycle arrest and eventual death in cancer cells, emphasizing PSMD1 as a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Mi-Yeun Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eun-Ran Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea
| | - Eung-Ho Cho
- Department of Surgery, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sun-Hoo Park
- Department of Pathology, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Chul Ju Han
- Department of Internal Medicine, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sang-Bum Kim
- Department of Surgery, Division of Radiological and Clinical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Hyun-Jin Shin
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea.
| | - Kee-Ho Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Korea University, 75, Nowon-Ro, Nowon-Gu, Seoul, 01812, South Korea.
| |
Collapse
|
3
|
Tang X, Ping B, Liu Y, Zhou Y. Novel disulfidptosis-derived gene blueprint stratifying patients with breast cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:1715-1728. [PMID: 38050844 DOI: 10.1002/tox.24043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Breast cancer remains the predominant cancer among females, accounting for about 24.2% of all cancer cases. Alarmingly, it is the primary cause of cancer-related mortality in women under 45. METHODS This research analyzed RNA sequencing data from 1082 TCGA-BRCA and 107 GSE58812 breast cancer patients. Single-cell RNA data from five patients in the GSE118389 data set were also studied. Using Random forest and COX regression, we developed a prognostic model. Pathway analysis employed GSVA and GO, while immune profiles were assessed via ssGSEA and MCPcounter. Mutation patterns utilized maftools, and drug sensitivity scores were derived from the GDSC database with oncoPredict. RESULTS Analysis of the GSE118389 data set identified three distinct cell types: immune, epithelial, and stromal. P53 and VEGF were notably enriched. Five key genes (TMEM251, ADAMTSL2, CDC123, PSMD1, TLE1) were pinpointed for their prognostic significance. We introduced a disulfidptosis-associated score as a novel risk factor for breast cancer prognosis. Survival outcomes varied significantly between training and validation sets. Comprehensive immune profiling revealed no difference in activated CD8-positive T cells between risk groups, but a positive correlation of NK cells, neutrophils, cytotoxic lymphocytes, and monocytic cells with the riskscore was noted. Importantly, a negative association between the drug Nelarabine and riskscore was identified. CONCLUSION This research underscores the significance of a disulfidptosis-associated gene signature in breast cancer prognosis.
Collapse
Affiliation(s)
- Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Baohua Ping
- Division of Infection Control Management, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuhui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Liu X, Sun K, Yang H, Zou D, Xia L, Lu K, Meng X, Li Y. Molecular subtype identification and prognosis stratification based on lysosome-related genes in breast cancer. Heliyon 2024; 10:e25643. [PMID: 38420434 PMCID: PMC10900431 DOI: 10.1016/j.heliyon.2024.e25643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Background Lysosomes are known to have a significant impact on the development and recurrence of breast cancer. However, the association between lysosome-related genes (LRGs) and breast cancer remains unclear. This study aims to explore the potential role of LRGs in predicting the prognosis and treatment response of breast cancer. Methods Breast cancer gene expression profile data and clinical information were downloaded from TCGA and GEO databases, and prognosis-related LRGs were screened for consensus clustering analysis. Lasso Cox regression analysis was used to construct risk features derived from LRGs, and immune cell infiltration, immune therapy response, drug sensitivity, and clinical pathological feature differences were evaluated for different molecular subtypes and risk groups. A nomogram based on risk features derived from LRGs was constructed and evaluated. Results Our study identified 176 differentially expressed LRGs that are associated with breast cancer prognosis. Based on these genes, we divided breast cancer into two molecular subtypes with significant prognostic differences. We also found significant differences in immune cell infiltration between these subtypes. Furthermore, we constructed a prognostic risk model consisting of 7 LRGs, which effectively divides breast cancer patients into high-risk and low-risk groups. Patients in the low-risk group have better prognostic characteristics, respond better to immunotherapy, and have lower sensitivity to chemotherapy drugs, indicating that the low-risk group is more likely to benefit from immunotherapy and chemotherapy. Additionally, the risk score based on LRGs is significantly correlated with immune cell infiltration, including CD8 T cells and macrophages. This risk score model, along with age, chemotherapy, clinical stage, and N stage, is an independent prognostic factor for breast cancer. Finally, the nomogram composed of these factors has excellent performance in predicting overall survival of breast cancer. Conclusions In conclusion, this study has constructed a novel LRG-derived breast cancer risk feature, which performs well in prognostic prediction when combined with clinical pathological features.
Collapse
Affiliation(s)
- Xiaozhen Liu
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Kewang Sun
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Hongjian Yang
- Department of Breast Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Dehomg Zou
- Department of Breast Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Lingli Xia
- Department of Breast Surgery, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
| | - Kefeng Lu
- Department of Outpatient Service, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yongfeng Li
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
5
|
Park HC, Kim H, Kim JY, Lee HY, Lee J, Cha W, Ahn SH, Jeong WJ. PSMD1 as a prognostic marker and potential target in oropharyngeal cancer. BMC Cancer 2023; 23:1242. [PMID: 38104103 PMCID: PMC10725586 DOI: 10.1186/s12885-023-11689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Despite the diverse genetic mutations in head and neck cancer, the chemotherapy outcome for this cancer has not improved for decades. It is urgent to select prognostic factors and therapeutic targets for oropharyngeal cancer to establish precision medicine. Recent studies have identified PSMD1 as a potential prognostic marker in several cancers. We aimed to assess the prognostic significance of PSMD1 expression in oropharyngeal squamous cell carcinoma (OPSCC) patients using immunohistochemistry. METHODS We studied 64 individuals with OPSCC tissue from surgery at Seoul National University Bundang Hospital between April 2008 and August 2017. Immunostaining analysis was conducted on the tissue microarray (TMA) sections (4 μm) for p16 and PSMD1. H-score, which scale from 0 to 300, was calculated from each nucleus, cytoplasm, and cellular expression. Clinicopathological data were compared with Chi-squared test, Fisher's exact test, t-test, and logistic regression. Survival data until 2021 were achieved from national statistical office of Korea. Kaplan-Meier method and cox-regression model were used for disease-specific survival (DSS) analysis. RESULTS H-score of 90 in nucleus was appropriate cutoff value for 'High PSMD1 expression' in OPSCC. Tonsil was more frequent location in low PSMD1 group (42/52, 80.8%) than in high PSMD1 group (4/12, 33.3%; P = .002). Early-stage tumor was more frequent in in low PSMD1 group (45/52, 86.5%) than in high PSMD1 group (6/12, 50%; P = .005). HPV was more positive in low PSMD1 group (43/52, 82.7%) than in high PSMD1 group (5/12, 41.7%; P = .016). Patients with PSMD1 high expression showed poorer DSS than in patients with PSMD1 low expression (P = .006 in log rank test). In multivariate analysis, PSMD1 expression, pathologic T staging, and specimen age were found to be associated with DSS (P = .011, P = .025, P = .029, respectively). CONCLUSIONS In our study, we established PSMD1 as a negative prognostic factor in oropharyngeal squamous cell carcinoma, indicating its potential as a target for targeted therapy and paving the way for future in vitro studies on drug repositioning.
Collapse
Affiliation(s)
- Hae Chan Park
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji-Yeong Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hye-Yeon Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jinyi Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - WonJae Cha
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soon-Hyun Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Woo-Jin Jeong
- Department of Otorhinolaryngology-Head & Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
6
|
Chen X, Liu G, Wu B. Analysis and experimental validation of the innate immune gene PSMD1 in liver hepatocellular carcinoma and pan-cancer. Heliyon 2023; 9:e21164. [PMID: 37928041 PMCID: PMC10623288 DOI: 10.1016/j.heliyon.2023.e21164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
This work intends to examine the diagnostic, prognostic, and biological roles of PSMD1 (proteasome 26S subunit, non-ATPase 1) in liver hepatocellular carcinoma (LIHC) and other malignancies, using bioinformatics techniques. PSMD1 is an innate immune gene that has been identified as a biomarker for several cancers. By analyzing TCGA data, we determined that PSMD1 has excellent diagnostic and prognostic value in LIHC. We also examined its correlation with stage-matching clinical features, particularly T staging and stage staging. Independent prognostic analysis, nomogram, and Decision Curve Analysis (DCA) analysis confirmed the predictive ability of PSMD1 on patient clinical outcomes. Our focus was on exploring the biological process, immune infiltration, and genetic variation in which PSMD1 is involved in LIHC. We found a close relationship between PSMD1 and the tumor microenvironment (TME), as well as various immune cell infiltration, immune function, and immune checkpoints. Furthermore, our results suggested that liver cancer patients with low PSMD1 expression were more actively responsive to immunotherapy according to TIDE predictions. Additionally, we observed significant differences in patient survival based on the different immune molecular types of tumors and their correlation with PSMD1 expression. The close relationship between PSMD1 and copy number variation (CNV), tumor mutational burden (TMB), and methylation was also confirmed, showing a significant impact on patient survival. Moreover, the pan-cancer analysis revealed that PSMD1 is closely related to the diagnosis and prognosis of various cancers, as well as immune infiltration across different cancer types. In summary, PSMD1 has the potential to be a useful diagnostic and prognostic biomarker for LIHC and other types of cancers. It is closely associated with indicators such as immune infiltration, CNV, TMB, and methylation. The identification of PSMD1 may offer a potential intervention target for LIHC and various cancers.
Collapse
Affiliation(s)
- Xing Chen
- Hepatobiliary Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, China
- Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Guihai Liu
- Clinical Drug Experiment Center, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Buqiang Wu
- Hepatobiliary Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi 046000, China
| |
Collapse
|
7
|
Tychhon B, Allen JC, Gonzalez MA, Olivas IM, Solecki JP, Keivan M, Velazquez VV, McCall EB, Tapia DN, Rubio AJ, Jordan C, Elliott D, Eiring AM. The prognostic value of 19S ATPase proteasome subunits in acute myeloid leukemia and other forms of cancer. Front Med (Lausanne) 2023; 10:1209425. [PMID: 37502358 PMCID: PMC10371016 DOI: 10.3389/fmed.2023.1209425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction The ubiquitin-proteasome system (UPS) is an intracellular organelle responsible for targeted protein degradation, which represents a standard therapeutic target for many different human malignancies. Bortezomib, a reversible inhibitor of chymotrypsin-like proteasome activity, was first approved by the FDA in 2003 to treat multiple myeloma and is now used to treat a number of different cancers, including relapsed mantle cell lymphoma, diffuse large B-cell lymphoma, colorectal cancer, and thyroid carcinoma. Despite the success, bortezomib and other proteasome inhibitors are subject to severe side effects, and ultimately, drug resistance. We recently reported an oncogenic role for non-ATPase members of the 19S proteasome in chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and several different solid tumors. In the present study, we hypothesized that ATPase members of the 19S proteasome would also serve as biomarkers and putative therapeutic targets in AML and multiple other cancers. Methods We used data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) available at UALCAN and/or GEPIA2 to assess the expression and prognostic value of proteasome 26S subunit, ATPases 1-6 (PSMC1-6) of the 19S proteasome in cancer. UALCAN was also used to associate PSMC1-6 mRNA expression with distinct clinicopathological features. Finally, cBioPortal was employed to assess genomic alterations of PSMC genes across different cancer types. Results The mRNA and protein expression of PSMC1-6 of the 19S proteasome were elevated in several cancers compared with normal controls, which often correlated with worse overall survival. In contrast, AML patients demonstrated reduced expression of these proteasome subunits compared with normal mononuclear cells. However, AML patients with high expression of PSMC2-5 had worse outcomes. Discussion Altogether, our data suggest that components of the 19S proteasome could serve as prognostic biomarkers and novel therapeutic targets in AML and several other human malignancies.
Collapse
Affiliation(s)
- Boranai Tychhon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Jesse C. Allen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Mayra A. Gonzalez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Idaly M. Olivas
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Jonathan P. Solecki
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Mehrshad Keivan
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Vanessa V. Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Emily B. McCall
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Desiree N. Tapia
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Andres J. Rubio
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Connor Jordan
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - David Elliott
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| | - Anna M. Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX, United States
| |
Collapse
|
8
|
Li X, Li X, Hu Y, Liu O, Wang Y, Li S, Yang Q, Lin B. PSMD8 can serve as potential biomarker and therapeutic target of the PSMD family in ovarian cancer: based on bioinformatics analysis and in vitro validation. BMC Cancer 2023; 23:573. [PMID: 37349676 DOI: 10.1186/s12885-023-11017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND The ubiquity-proteasome system is an indispensable mechanism for regulating intracellular protein degradation, thereby affecting human antigen processing, signal transduction, and cell cycle regulation. We used bioinformatics database to predict the expression and related roles of all members of the PSMD family in ovarian cancer. Our findings may provide a theoretical basis for early diagnosis, prognostic assessment, and targeted therapy of ovarian cancer. METHODS GEPIA, cBioPortal, and Kaplan-Meier Plotter databases were used to analyze the mRNA expression levels, gene variation, and prognostic value of PSMD family members in ovarian cancer. PSMD8 was identified as the member with the best prognostic value. The TISIDB database was used to analyze the correlation between PSMD8 and immunity, and the role of PSMD8 in ovarian cancer tissue was verified by immunohistochemical experiments. The relationship of PSMD8 expression with clinicopathological parameters and survival outcomes of ovarian cancer patients was analyzed. The effects of PSMD8 on malignant biological behaviors of invasion, migration, and proliferation of ovarian cancer cells were studied by in vitro experiments. RESULTS The expression levels of PSMD8/14 mRNA in ovarian cancer tissues were significantly higher than those in normal ovarian tissues, and the expression levels of PSMD2/3/4/5/8/11/12/14 mRNA were associated with prognosis. Up-regulation of PSMD4/8/14 mRNA expression was associated with poor OS, and the up-regulation of PSMD2/3/5/8 mRNA expression was associated with poor PFS in patients with ovarian serous carcinomas. Gene function and enrichment analysis showed that PSMD8 is mainly involved in biological processes such as energy metabolism, DNA replication, and protein synthesis. Immunohistochemical experiments showed that PSMD8 was mainly expressed in the cytoplasm and the expression level was correlated with FIGO stage. Patients with high PSMD8 expression had poor prognosis. Overexpression of PSMD8 significantly enhanced the proliferation, migration, and invasion abilities in ovarian cancer cells. CONCLUSION We observed different degrees of abnormal expression of members of PSMD family in ovarian cancer. Among these, PSMD8 was significantly overexpressed in ovarian malignant tissue, and was associated with poor prognosis. PSMDs, especially PSMD8, can serve as potential diagnostic and prognostic biomarkers and therapeutic targets in ovarian cancer.
Collapse
Affiliation(s)
- Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xinru Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Yuxuan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Siting Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People's Republic of China.
- Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China.
| |
Collapse
|
9
|
Lara JJ, Bencomo-Alvarez AE, Gonzalez MA, Olivas IM, Young JE, Lopez JL, Velazquez VV, Glovier S, Keivan M, Rubio AJ, Dang SK, Solecki JP, Allen JC, Tapia DN, Tychhon B, Astudillo GE, Jordan C, Chandrashekar DS, Eiring AM. 19S Proteasome Subunits as Oncogenes and Prognostic Biomarkers in FLT3-Mutated Acute Myeloid Leukemia (AML). Int J Mol Sci 2022; 23:ijms232314586. [PMID: 36498916 PMCID: PMC9740165 DOI: 10.3390/ijms232314586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
26S proteasome non-ATPase subunits 1 (PSMD1) and 3 (PSMD3) were recently identified as prognostic biomarkers and potential therapeutic targets in chronic myeloid leukemia (CML) and multiple solid tumors. In the present study, we analyzed the expression of 19S proteasome subunits in acute myeloid leukemia (AML) patients with mutations in the FMS-like tyrosine kinase 3 (FLT3) gene and assessed their impact on overall survival (OS). High levels of PSMD3 but not PSMD1 expression correlated with a worse OS in FLT3-mutated AML. Consistent with an oncogenic role for PSMD3 in AML, shRNA-mediated PSMD3 knockdown impaired colony formation of FLT3+ AML cell lines, which correlated with increased OS in xenograft models. While PSMD3 regulated nuclear factor-kappa B (NF-κB) transcriptional activity in CML, we did not observe similar effects in FLT3+ AML cells. Rather, proteomics analyses suggested a role for PSMD3 in neutrophil degranulation and energy metabolism. Finally, we identified additional PSMD subunits that are upregulated in AML patients with mutated versus wild-type FLT3, which correlated with worse outcomes. These findings suggest that different components of the 19S regulatory complex of the 26S proteasome can have indications for OS and may serve as prognostic biomarkers in AML and other types of cancers.
Collapse
Affiliation(s)
- Joshua J. Lara
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Alfonso E. Bencomo-Alvarez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Mayra A. Gonzalez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Idaly M. Olivas
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - James E. Young
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Jose L. Lopez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Vanessa V. Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Steven Glovier
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Mehrshad Keivan
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Andres J. Rubio
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Sara K. Dang
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Jonathan P. Solecki
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Jesse C. Allen
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Desiree N. Tapia
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Boranai Tychhon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Gonzalo E. Astudillo
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Connor Jordan
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Darshan S. Chandrashekar
- Department of Pathology-Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anna M. Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Correspondence: ; Tel.: +1-(915)-215-4812
| |
Collapse
|
10
|
Chen YY, Zhang SM, Zhao HX, Zhang JY, Lian LR, Liu DL, Chu SF. Identification and validation of immune and prognosis-related genes in hepatocellular carcinoma: A review. Medicine (Baltimore) 2022; 101:e31814. [PMID: 36401409 PMCID: PMC9678506 DOI: 10.1097/md.0000000000031814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Bioinformatics methods were used to identify the key genes associated with the immune microenvironment of hepatocellular carcinoma (HCC) to construct an immune risk prognostic model (IRPM) and to study the correlation between IRPM's risk groups and immune characteristics of patients with HCC. METHODS HCC transcriptome sequencing information was searched for immune-related genes (IRGs) that were regularly expressed in cancer tissues. The IRGs, which were strongly linked to overall survival were screened; the prognostic characteristics model was constructed using Cox regression analysis. IRPM's independent prognostic value was explored; Kaplan-Meier survival and receiver-operating characteristic curves were used to determine the model prediction ability in the led-to queue. RESULTS Patients in the high-risk group (HRG) showed significantly poor outcomes. Gene Set Enrichment Analysis revealed factors involved in both the HRG and low risk group. Immune-related hub genes (IRHGs) and drug sensitivity expression levels revealed that all IRHGs were correlated with drug sensitivity for certain chemotherapy drugs. CONCLUSION The study results may serve as a reference for improving prognosis, early screening, and immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Yu-Yang Chen
- Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen, Guangdong, People’s Republic of China
- * Correspondence: Yu-Yang Chen, Shenzhen Bao’an Traditional Chinese Medicine Hospital Group, Shenzhen, People’s Republic of China, Fuhua Road 1, Shenzhen, People’s Republic of China (e-mail: )
| | - Shi-Mao Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Heng-Xia Zhao
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Jing-Yue Zhang
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Li-Rong Lian
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - De-Liang Liu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| | - Shu-Fang Chu
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
11
|
Liu L, Liu A, Liu X. PRRX2 predicts poor survival prognosis, and promotes malignant phenotype of lung adenocarcinoma via transcriptional activates PSMD1. Transl Oncol 2022; 27:101586. [PMID: 36379103 PMCID: PMC9661514 DOI: 10.1016/j.tranon.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Paired-related homeobox transcription factor 2 (PRRX2) has been proved involves in the pathogenesis of tumors, but the role of PRRX2 in lung adenocarcinoma (LUAD) is basically not clear. MATERIALS AND METHODS LUAD datasets were obtained from Gene Expression Omnibus datasets. Functional enrichment analyses were performed based on R language. Several online analysis tools were used for PRRX2 expression, survival curves, and immune cell infiltration analyses. CCK-8, flow cytometry assays were used to detect the cell proliferation and apoptosis. Dual luciferase reporter system and chromatin immunoprecipitation were used to explore the interaction of PRRX2 and Proteasome 26S subunit, non-ATPases 1 (PSMD1). Xenograft in nude mice was used to assess the function of PRRX2 regulation in vivo. RESULTS AND DISCUSSION Bioinformatics analyses found that PRRX2 was highly expressed in LUAD tissues and the high PRRX2 expression had a poor prognostic value. PRRX2 was highly expressed in LUAD clinical samples and cell lines. PRRX2 acted as a positive regulator of cell proliferation and a negative regulator of apoptosis. PRRX2 could bind with the PSMD1 promoter and regulate PSMD1 expression, thereby affected LUAD cells' malignant phenotype. Result of xenografts in nude mice confirmed that PRRX2 promotes LUAD tumor growth in vivo. Summary, our study results reveal the crucial roles for PRRX2 in the proliferation and apoptosis of LUAD progression and suggest that PRRX2 may regulate PSMD1 expression by combining with the PSMD1 promoter, thereby participating in the malignant behavior of LUAD.
Collapse
Affiliation(s)
- Lihua Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Department of Respiratory Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Aihua Liu
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xuezheng Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China,Corresponding author.
| |
Collapse
|
12
|
Elghzaly AA, Sun C, Looger LL, Hirose M, Salama M, Khalil NM, Behiry ME, Hegazy MT, Hussein MA, Salem MN, Eltoraby E, Tawhid Z, Alwasefy M, Allam W, El-Shiekh I, Elserafy M, Abdelnaser A, Hashish S, Shebl N, Shahba AA, Elgirby A, Hassab A, Refay K, El-Touchy HM, Youssef A, Shabacy F, Hashim AA, Abdelzaher A, Alshebini E, Fayez D, El-Bakry SA, Elzohri MH, Abdelsalam EN, El-Khamisy SF, Ibrahim S, Ragab G, Nath SK. Genome-wide association study for systemic lupus erythematosus in an egyptian population. Front Genet 2022; 13:948505. [PMID: 36324510 PMCID: PMC9619055 DOI: 10.3389/fgene.2022.948505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/30/2022] [Indexed: 04/11/2024] Open
Abstract
Systemic lupus erythematosus (SLE) susceptibility has a strong genetic component. Genome-wide association studies (GWAS) across trans-ancestral populations show both common and distinct genetic variants of susceptibility across European and Asian ancestries, while many other ethnic populations remain underexplored. We conducted the first SLE GWAS on Egyptians-an admixed North African/Middle Eastern population-using 537 patients and 883 controls. To identify novel susceptibility loci and replicate previously known loci, we performed imputation-based association analysis with 6,382,276 SNPs while accounting for individual admixture. We validated the association analysis using adaptive permutation tests (n = 109). We identified a novel genome-wide significant locus near IRS1/miR-5702 (Pcorrected = 1.98 × 10-8) and eight novel suggestive loci (Pcorrected < 1.0 × 10-5). We also replicated (Pperm < 0.01) 97 previously known loci with at least one associated nearby SNP, with ITGAM, DEF6-PPARD and IRF5 the top three replicated loci. SNPs correlated (r 2 > 0.8) with lead SNPs from four suggestive loci (ARMC9, DIAPH3, IFLDT1, and ENTPD3) were associated with differential gene expression (3.5 × 10-95 < p < 1.0 × 10-2) across diverse tissues. These loci are involved in cellular proliferation and invasion-pathways prominent in lupus and nephritis. Our study highlights the utility of GWAS in an admixed Egyptian population for delineating new genetic associations and for understanding SLE pathogenesis.
Collapse
Affiliation(s)
- Ashraf A. Elghzaly
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Loren L. Looger
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, San Diego, CA, United States
| | - Misa Hirose
- Division of Genetics, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| | - Noha M. Khalil
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat Essam Behiry
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Tharwat Hegazy
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Ahmed Hussein
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamad Nabil Salem
- Department of Internal Medicine, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Ehab Eltoraby
- Department of Internal Medicine, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Ziyad Tawhid
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Mona Alwasefy
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, El-Mansoura, Egypt
| | - Walaa Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| | - Sara Hashish
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| | - Nourhan Shebl
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| | | | - Amira Elgirby
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Bab Sharqi, Egypt
| | - Amina Hassab
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Bab Sharqi, Egypt
| | - Khalida Refay
- Department of Internal Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Ali Youssef
- Department of Rheumatology and Immunology, Faculty of Medicine, Benha University Hospital, Benha, Egypt
| | - Fatma Shabacy
- Department of Rheumatology and Immunology, Faculty of Medicine, Benha University Hospital, Benha, Egypt
| | | | - Asmaa Abdelzaher
- Department of Clinical Pathology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Emad Alshebini
- Department of Internal Medicine, Faculty of Medicine, Menoufia University, Al Minufiyah, Egypt
| | - Dalia Fayez
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samah A. El-Bakry
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona H. Elzohri
- Department of Internal Medicine, Faculty of Medicine, Assiut University, Asyut, Egypt
| | | | - Sherif F. El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- The Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
- The Institute of Cancer Therapeutics, University of Bradford, Bradford, United Kingdom
| | - Saleh Ibrahim
- Division of Genetics, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gaafar Ragab
- Rheumatology and Clinical Immunology Unit, Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| |
Collapse
|
13
|
Zhao H, Lu G. Prognostic Implication and Immunological Role of PSMD2 in Lung Adenocarcinoma. Front Genet 2022; 13:905581. [PMID: 35754829 PMCID: PMC9214243 DOI: 10.3389/fgene.2022.905581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Background: Although previous studies reported that 26S proteasome non-ATPase regulatory subunit 2 (PSMD2) is involved in many human cancers. However, its clinical significance and function in lung adenocarcinoma remain unclear. Here, we examined the prognostic and immunological role of PSMD2 in lung adenocarcinoma. Methods: The Cancer Genome Atlas (TCGA) was conducted to analyze PSMD2 expression and verified using UALCAN. PrognoScan and Kaplan-Meier curves were utilized to assess the effect of PSMD2 on survival. cBioPortal database was conducted to identify the mutation characteristics of PSMD2. Functional enrichment was performed to determine PSMD2-related function. Cancer Single-cell State Atlas (CancerSEA) was used to explore the cancer functional status of PSMD2 at single-cell resolution. PSMD2-related immune infiltration analysis was conducted. Tumor-Immune system interaction database (TISIDB) was performed to verify the correlation between PSMD2 expression and tumor-infiltrating lymphocytes (TILs). Results: Both mRNA and protein expression of PSMD2 were significantly elevated in lung adenocarcinoma. High expression of PSMD2 was significantly correlated with high T stage (p = 0.014), lymph node metastases (p < 0.001), and TNM stage p = 0.005). Kaplan-Meier curves indicated that high expression of PSMD2 was correlated with poor overall survival (38.2 vs. 59.7 months, p < 0.001) and disease-specific survival (59.9 months vs. not available, p = 0.004). Multivariate analysis suggested that PSMD2 was an independent biomarker for poor overall survival (HR 1.471, 95%CI, 1.024–2.114, p = 0.037). PSMD2 had a high mutation frequency of 14% in lung adenocarcinoma. The genetic mutation of PSMD2 was also correlated with poor overall survival, disease-specific survival, and progression-free survival in lung adenocarcinoma. Functional enrichment suggested PSMD2 expression was involved in the cell cycle, RNA transport, and cellular senescence. CancerSEA analysis indicated PSMD2 expression was positively correlated with cell cycle, DNA damage, and DNA repair. Immune infiltration analysis suggested that PSMD2 expression was correlated with immune cell infiltration levels and abundance of TILs. Conclusion: The upregulation of PSMD2 is significantly correlated with poor prognosis and immune infiltration levels in lung adenocarcinoma. Our findings suggest that PSMD2 is a potential biomarker for poor prognosis and immune therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Huihui Zhao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Tang Y, Guo Y. A Ubiquitin-Proteasome Gene Signature for Predicting Prognosis in Patients With Lung Adenocarcinoma. Front Genet 2022; 13:893511. [PMID: 35711913 PMCID: PMC9194557 DOI: 10.3389/fgene.2022.893511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Dysregulation of the ubiquitin-proteasome system (UPS) can lead to instability in the cell cycle and may act as a crucial factor in both tumorigenesis and tumor progression. However, there is no established prognostic signature based on UPS genes (UPSGs) for lung adenocarcinoma (LUAD) despite their value in other cancers. Methods: We retrospectively evaluated a total of 703 LUAD patients through multivariate Cox and Lasso regression analyses from two datasets, the Cancer Genome Atlas (n = 477) and GSE31210 (n = 226). An independent dataset (GSE50081) containing 128 LUAD samples were used for validation. Results: An eight-UPSG signature, including ARIH2, FBXO9, KRT8, MYLIP, PSMD2, RNF180, TRIM28, and UBE2V2, was established. Kaplan-Meier survival analysis and time-receiver operating characteristic curves for the training and validation datasets revealed that this risk signature presented with good performance in predicting overall and relapsed-free survival. Based on the signature and its associated clinical features, a nomogram and corresponding web-based calculator for predicting survival were established. Calibration plot and decision curve analyses showed that this model was clinically useful for both the training and validation datasets. Finally, a web-based calculator (https://ostool.shinyapps.io/lungcancer) was built to facilitate convenient clinical application of the signature. Conclusion: An UPSG based model was developed and validated in this study, which may be useful as a novel prognostic predictor for LUAD.
Collapse
Affiliation(s)
- Yunliang Tang
- Department of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yinhong Guo
- Department of Oncology, Zhuji People's Hospital of Zhejiang Province, Zhuji, China
| |
Collapse
|
15
|
Adham AN, Abdelfatah S, Naqishbandi A, Sugimoto Y, Fleischer E, Efferth T. Transcriptomics, molecular docking, and cross-resistance profiling of nobiletin in cancer cells and synergistic interaction with doxorubicin upon SOX5 transfection. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154064. [PMID: 35344715 DOI: 10.1016/j.phymed.2022.154064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Nobiletin is a polymethoxylated flavone from citrus fruit peels. Among other bioactivities, it acts antioxidative, anti-inflammatory, neuroprotective, and cardiovascular-protective. Nobiletin exerts profound anticancer activity in vitro and in vivo but the underlying mechanisms are not well understood. PURPOSE The aim was to unravel the multiple modes of action against cancer cells by bioinformatic and transcriptomic techniques and their verification by molecular pharmacological methods. METHODS The in silico methods used were COMPARE analysis of transcriptomic data, signaling pathway analysis, transcription factor binding motif analysis in promoter sequences of target genes, and molecular docking. The in vitro methods used were resazurin assay, isobologram analysis, generation of stably SOX5-tranfected cells, and Western blotting. RESULTS Nobiletin was cytotoxic against a wide range of cell lines from different tumor types, including diverse phenotypes to established anticancer drugs (e.g., P-glycoprotein, ABCB5, p53, EGFR). Cross-resistance profiling with 83 standard anticancer drugs revealed a correlation to antihormonal anticancer drugs, which can be explained by the phytoestrogenic features of nobiletin. Transcriptomic analysis showed that the responsiveness of tumor cells was predictable by their specific mRNA expression profile. Nobiletin bound to the transcription factor SOX5 in silico. SOX5 conferred resistance to the control drug doxorubicin but collateral sensitivity to nobiletin in HEK293 cells transfected with a lentiviral GFP-tagged pLOCORF-SOX5 vector. The combination of nobiletin and doxorubicin synergistically killed HEK293-SOX5 cells in isobologram analyses, implying attractive new treatment options. CONCLUSION Nobiletin represents an interesting candidate for cancer therapy with broad-spectrum activity and multiple modes of action. The identification of novel targets (i.e., SOX5) may allow its use for targeted tumor therapy in individualized treatment protocols.
Collapse
Affiliation(s)
- Aveen N Adham
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq
| | - Sara Abdelfatah
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Alaadin Naqishbandi
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Kurdistan Region, Iraq
| | - Yoshikazu Sugimoto
- Division of Chemotherapy, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Edmond Fleischer
- Fischer Analytics, Department Fischer Organics, 55413 Weiler, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
16
|
Liu L, Liu A, Dong J, Zuo Z, Liu X. Proteasome 26S subunit, non-ATPase 1 (PSMD1) facilitated the progression of lung adenocarcinoma by the de-ubiquitination and stability of PTEN-induced kinase 1 (PINK1). Exp Cell Res 2022; 413:113075. [DOI: 10.1016/j.yexcr.2022.113075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/19/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
|
17
|
Xuan DTM, Wu CC, Kao TJ, Ta HDK, Anuraga G, Andriani V, Athoillah M, Chiao CC, Wu YF, Lee KH, Wang CY, Chuang JY. Prognostic and immune infiltration signatures of proteasome 26S subunit, non-ATPase (PSMD) family genes in breast cancer patients. Aging (Albany NY) 2021; 13:24882-24913. [PMID: 34839279 PMCID: PMC8660617 DOI: 10.18632/aging.203722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
The complexity of breast cancer includes many interacting biological processes that make it difficult to find appropriate therapeutic treatments. Therefore, identifying potential diagnostic and prognostic biomarkers is urgently needed. Previous studies demonstrated that 26S proteasome delta subunit, non-ATPase (PSMD) family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcriptional expressions of PSMD family genes in breast cancer still remain largely unexplored. Consequently, we used a holistic bioinformatics approach to explore PSMD genes involved in breast cancer patients by integrating several high-throughput databases, including The Cancer Genome Atlas (TCGA), cBioPortal, Oncomine, and Kaplan-Meier plotter. These data demonstrated that PSMD1, PSMD2, PSMD3, PSMD7, PSMD10, PSMD12, and PSMD14 were expressed at significantly higher levels in breast cancer tissue compared to normal tissues. Notably, the increased expressions of PSMD family genes were correlated with poor prognoses of breast cancer patients, which suggests their roles in tumorigenesis. Meanwhile, network and pathway analyses also indicated that PSMD family genes were positively correlated with ubiquinone metabolism, immune system, and cell-cycle regulatory pathways. Collectively, this study revealed that PSMD family members are potential prognostic biomarkers for breast cancer progression and possible promising clinical therapeutic targets.
Collapse
Affiliation(s)
- Do Thi Minh Xuan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Chung-Che Wu
- Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Neurosurgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tzu-Jen Kao
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hoang Dang Khoa Ta
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Gangga Anuraga
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya 60234, East Java, Indonesia
| | - Vivin Andriani
- Department of Biological Science, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya 60234, East Java, Indonesia
| | - Muhammad Athoillah
- Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, Surabaya 60234, East Java, Indonesia
| | - Chung-Chieh Chiao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Yung-Fu Wu
- Department of Medical Research, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Kuen-Haur Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
18
|
Ragusi MAA, Bismeijer T, van der Velden BHM, Loo CE, Canisius S, Wesseling J, Wessels LFA, Elias SG, Gilhuijs KGA. Contralateral parenchymal enhancement on MRI is associated with tumor proteasome pathway gene expression and overall survival of early ER+/HER2-breast cancer patients. Breast 2021; 60:230-237. [PMID: 34763270 PMCID: PMC8591464 DOI: 10.1016/j.breast.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose To assess whether contralateral parenchymal enhancement (CPE) on MRI is associated with gene expression pathways in ER+/HER2-breast cancer, and if so, whether such pathways are related to survival. Methods Preoperative breast MRIs were analyzed of early ER+/HER2-breast cancer patients eligible for breast-conserving surgery included in a prospective observational cohort study (MARGINS). The contralateral parenchyma was segmented and CPE was calculated as the average of the top-10% delayed enhancement. Total tumor RNA sequencing was performed and gene set enrichment analysis was used to reveal gene expression pathways associated with CPE (N = 226) and related to overall survival (OS) and invasive disease-free survival (IDFS) in multivariable survival analysis. The latter was also done for the METABRIC cohort (N = 1355). Results CPE was most strongly correlated with proteasome pathways (normalized enrichment statistic = 2.04, false discovery rate = .11). Patients with high CPE showed lower tumor proteasome gene expression. Proteasome gene expression had a hazard ratio (HR) of 1.40 (95% CI = 0.89, 2.16; P = .143) for OS in the MARGINS cohort and 1.53 (95% CI = 1.08, 2.14; P = .017) for IDFS, in METABRIC proteasome gene expression had an HR of 1.09 (95% CI = 1.01, 1.18; P = .020) for OS and 1.10 (95% CI = 1.02, 1.18; P = .012) for IDFS. Conclusion CPE was negatively correlated with tumor proteasome gene expression in early ER+/HER2-breast cancer patients. Low tumor proteasome gene expression was associated with improved survival in the METABRIC data. Contralateral parenchymal enhancement on MRI was associated with tumor proteasome gene expression in ER+/HER2-breast cancer. A high contralateral parenchymal enhancement was associated with a low proteasome gene expression in the breast cancer. Low proteasome tumor gene expression was associated with improved survival in an independent patient cohort.
Collapse
Affiliation(s)
- Max A A Ragusi
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| | - Tycho Bismeijer
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bas H M van der Velden
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Claudette E Loo
- Department of Radiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sander Canisius
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jelle Wesseling
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Pathology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis - Oncode Institute, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, Mekelweg 5, 2628 CD Delft, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Kenneth G A Gilhuijs
- Department of Radiology / Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
19
|
Rubio AJ, Bencomo-Alvarez AE, Young JE, Velazquez VV, Lara JJ, Gonzalez MA, Eiring AM. 26S Proteasome Non-ATPase Regulatory Subunits 1 (PSMD1) and 3 (PSMD3) as Putative Targets for Cancer Prognosis and Therapy. Cells 2021; 10:2390. [PMID: 34572038 PMCID: PMC8472613 DOI: 10.3390/cells10092390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Ever since the ubiquitin proteasome system was characterized, efforts have been made to manipulate its function to abrogate the progression of cancer. As a result, the anti-cancer drugs bortezomib, carfilzomib, and ixazomib targeting the 26S proteasome were developed to treat multiple myeloma, mantle cell lymphoma, and diffuse large B-cell lymphoma, among others. Despite success, adverse side effects and drug resistance are prominent, raising the need for alternative therapeutic options. We recently demonstrated that knockdown of the 19S regulatory components, 26S proteasome non-ATPase subunits 1 (PSMD1) and 3 (PSMD3), resulted in increased apoptosis of chronic myeloid leukemia (CML) cells, but had no effect on normal controls, suggesting they may be good targets for therapy. Therefore, we hypothesized that PSMD1 and PSMD3 are potential targets for anti-cancer therapeutics and that their relevance stretches beyond CML to other types of cancers. In the present study, we analyzed PSMD1 and PSMD3 mRNA and protein expression in cancerous tissue versus normal controls using data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC), comparing expression with overall survival. Altogether, our data suggest that PSMD1 and PSMD3 may be novel putative targets for cancer prognosis and therapy that are worthy of future investigation.
Collapse
Affiliation(s)
- Andres J Rubio
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Alfonso E Bencomo-Alvarez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - James E Young
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Vanessa V Velazquez
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Joshua J Lara
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Mayra A Gonzalez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| | - Anna M Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
20
|
Chai Y, Sun Y, Liu B, Guo L, Liu Z, Zhou L, Dai L, Jia C, Zhang W, Li C. Role of Sulfur Metabolism Gene and High-Sulfur Gene Expression in Wool Growth Regulation in the Cashmere Goat. Front Genet 2021; 12:715526. [PMID: 34484302 PMCID: PMC8416455 DOI: 10.3389/fgene.2021.715526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Sulfur, an essential mineral element for animals, mainly exists in the form of organic sulfur-containing amino acids (SAAs), such as cystine, methionine, and cysteine, within the body. The content, form, and structure of sulfur play an important role in determining the wool fiber quality. In addition, keratin-associated proteins, one of the most crucial wool fiber components, are rich in SAAs. However, sulfur metabolism from the blood to the skin and hair follicles remains unclear. In this study, we analyzed high-sulfur protein gene and sulfur metabolism genes in the cashmere goat and explored the effects of melatonin on their expression. In total, 53 high-sulfur protein genes and 321 sulfur metabolism genes were identified. We found that high-sulfur protein genes were distributed in the 3-4 and 144M regions of chromosome 1 and the 40-41M region of chromosome 19 in goats. Moreover, all year round, allele-specific expression (ASE) is higher in the 40-41M region of chromosome 19 than in the other regions. Total of 47 high-sulfur protein genes showed interaction with transcription factors and cofactors with ASE. These transcription factors and cofactors were inhibited after melatonin implantation. The network analysis revealed that melatonin may activate the sulfur metabolism process via the regulation of the genes related to cell energy metabolism and cell cycle in the skin, which provided sufficient SAAs for wool and cashmere growth. In conclusion, our findings provide a new insight into wool growth regulation by sulfur metabolism genes and high-sulfur protein genes in cashmere goats.
Collapse
Affiliation(s)
- Yuan Chai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanyong Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.,College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Bin Liu
- Nei Mongol BioNew Technology Co., Ltd., Hohhot, China
| | - Lili Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Le Zhou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunyan Jia
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China.,Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Chun Li
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| |
Collapse
|
21
|
Direito I, Monteiro L, Melo T, Figueira D, Lobo J, Enes V, Moura G, Henrique R, Santos MAS, Jerónimo C, Amado F, Fardilha M, Helguero LA. Protein Aggregation Patterns Inform about Breast Cancer Response to Antiestrogens and Reveal the RNA Ligase RTCB as Mediator of Acquired Tamoxifen Resistance. Cancers (Basel) 2021; 13:cancers13133195. [PMID: 34206811 PMCID: PMC8269126 DOI: 10.3390/cancers13133195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Acquired resistance to antiestrogenic therapy remains the major obstacle to curing luminal subtype breast cancer. While current treatment in acquired endocrine-resistant settings includes combined therapy with receptor tyrosine kinase or cyclin-dependent kinase inhibitors, progression to incurable disease remains possible. In recent years, the antioxidant system and the protein quality control network have been associated with the enhanced resistance of breast cancer cells to hormonal therapy. In this work, we raise the hypothesis that antiestrogen treatment induces the accumulation of protein aggregates in sensitive cells, which in turn could hinder the activation of survival pathways. We present evidence concerning a novel way to identify antiestrogen response and disclose a novel protein, RTBC, that controls acquired antiestrogen resistance. This work opens a new avenue for research towards finding breast cancer prognostic markers and therapeutic targets, where the identification of proteins prone to aggregate could help to identify antiestrogen response and understand mechanisms of disease. Abstract The protein quality control network, including autophagy, the proteasome and the unfolded protein response (UPR), is triggered by stress and is overactive in acquired antiestrogen therapy resistance. We show for the first time that the aggresome load correlates with apoptosis and is increased in antiestrogen-sensitive cells compared to endocrine-resistant variants. LC-MS/MS analysis of the aggregated proteins obtained after 4OH-tamoxifen and Fulvestrant treatment identified proteins with essential function in protein quality control in antiestrogen-sensitive cells, but not in resistant variants. These include the UPR modulators RTCB and PDIA6, as well as many proteasome proteins such as PSMC2 and PSMD11. RTCB is a tRNA and XBP1 ligase and its aggregation induced by antiestrogens correlated with impaired XBP1s expression in sensitive cells. Knock down of RTCB was sufficient to restore sensitivity to tamoxifen in endocrine-resistant cells and increased the formation of aggresomes, leading to apoptotic cell death. Analysis of primary human breast cancer samples and their metastases appearing after endocrine treatment showed that RTCB is only localized to aggresomes in the primary tumors, while total aggresomes, including aggregated RTCB, were significantly reduced in the metastases. Therefore, different protein aggregation patterns may indicate loss of function of essential proteins resulting in enhanced protein aggregation that can be used to identify antiestrogen-resistant breast cancer cells and improve the response to antiestrogenic therapy.
Collapse
Affiliation(s)
- Inês Direito
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Liliana Monteiro
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Tânia Melo
- LaQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (F.A.)
| | - Daniela Figueira
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Vera Enes
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Gabriela Moura
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Manuel A. S. Santos
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Carmen Jerónimo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), 4200-072 Porto, Portugal; (J.L.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Francisco Amado
- LaQV-REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, University of Aveiro, 3810-193 Aveiro, Portugal; (T.M.); (F.A.)
| | - Margarida Fardilha
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
| | - Luisa A. Helguero
- iBiMED—Institute of Biomedicine, University of Aveiro, 3810-193 Aveiro, Portugal; (I.D.); (L.M.); (D.F.); (V.E.); (G.M.); (M.A.S.S.); (M.F.)
- Correspondence:
| |
Collapse
|
22
|
Bencomo-Alvarez AE, Rubio AJ, Olivas IM, Gonzalez MA, Ellwood R, Fiol CR, Eide CA, Lara JJ, Barreto-Vargas C, Jave-Suarez LF, Nteliopoulos G, Reid AG, Milojkovic D, Druker BJ, Apperley J, Khorashad JS, Eiring AM. Proteasome 26S subunit, non-ATPases 1 (PSMD1) and 3 (PSMD3), play an oncogenic role in chronic myeloid leukemia by stabilizing nuclear factor-kappa B. Oncogene 2021; 40:2697-2710. [PMID: 33712704 PMCID: PMC7952820 DOI: 10.1038/s41388-021-01732-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/31/2023]
Abstract
Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL1 have revolutionized therapy for chronic myeloid leukemia (CML), paving the way for clinical development in other diseases. Despite success, targeting leukemic stem cells and overcoming drug resistance remain challenges for curative cancer therapy. To identify drivers of kinase-independent TKI resistance in CML, we performed genome-wide expression analyses on TKI-resistant versus sensitive CML cell lines, revealing a nuclear factor-kappa B (NF-κB) expression signature. Nucleocytoplasmic fractionation and luciferase reporter assays confirmed increased NF-κB activity in the nucleus of TKI-resistant versus sensitive CML cell lines and CD34+ patient samples. Two genes that were upregulated in TKI-resistant CML cells were proteasome 26S subunit, non-ATPases 1 (PSMD1) and 3 (PSMD3), both members of the 19S regulatory complex in the 26S proteasome. PSMD1 and PSMD3 were also identified as survival-critical genes in a published small hairpin RNA library screen of TKI resistance. We observed markedly higher levels of PSMD1 and PSMD3 mRNA in CML patients who had progressed to the blast phase compared with the chronic phase of the disease. Knockdown of PSMD1 or PSMD3 protein correlated with reduced survival and increased apoptosis in CML cells, but not in normal cord blood CD34+ progenitors. Luciferase reporter assays and immunoblot analyses demonstrated that PSMD1 and PSMD3 promote NF-κB protein expression in CML, and that signal transducer and activator of transcription 3 (STAT3) further activates NF-κB in scenarios of TKI resistance. Our data identify NF-κB as a transcriptional driver in TKI resistance, and implicate PSMD1 and PSMD3 as plausible therapeutic targets worthy of future investigation in CML and possibly other malignancies.
Collapse
MESH Headings
- Animals
- Apoptosis/physiology
- Drug Resistance, Neoplasm
- Heterografts
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Nude
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Kinase Inhibitors/pharmacology
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Alfonso E Bencomo-Alvarez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Andres J Rubio
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Idaly M Olivas
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Mayra A Gonzalez
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Rebecca Ellwood
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | - Carme Ripoll Fiol
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | - Christopher A Eide
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Joshua J Lara
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | | | - Luis F Jave-Suarez
- Instituto Mexicano del Seguro Social, Centro de Investigaciόn Biomédica de Occidente, Guadalajara, Jalisco, México
| | - Georgios Nteliopoulos
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Alistair G Reid
- Molecular Pathology Unit, Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Liverpool, UK
| | - Dragana Milojkovic
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | - Brian J Druker
- Knight Cancer Institute, Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Jane Apperley
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | - Jamshid S Khorashad
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | - Anna M Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
23
|
Wan J, Liu S, Sun W, Yu H, Tang W, Liu W, Ji J, Liu B. Ring finger protein 152-dependent degradation of TSPAN12 suppresses hepatocellular carcinoma progression. Cancer Cell Int 2021; 21:122. [PMID: 33602225 PMCID: PMC7890835 DOI: 10.1186/s12935-021-01806-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/03/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the third cause of cancer death in the world, and few molecularly targeted anticancer therapies have been developed to treat it. The E3 ubiquitin ligase RNF152 has been reported to regulate the activity of the mechanistic target of rapamycin complex 1 (mTORC1), induce autophagy and apoptosis. However, the relationship between RNF152 and HCC is unclear. METHODS Transcriptome RNA-sequencing data of HCC samples and normal tissues were used to detect the mRNA expression of RNF152. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to determine the transcriptional regulation of RNF152 in HCC by FoxO1. RNAi, cell proliferation, colony formation and transwell assays were used to determine the in vitro functions of RNF152. Mouse xenograft models were used to study the in vivo effects of RNF152. The immunoprecipitation assay was used to determine the interaction between RNF152 and TSPAN12. The in vivo ubiquitination assay was performed to determine the regulation of TSPAN12 by RNF152. RESULTS We found that RNF152 is significantly down-regulated in clinic HCC samples, and its down-regulation is associated with pool overall survival (OS), progression-free survival (PFS) and disease-specific survival (DSS) in HCC patients. The transcription factor FoxO1 was significantly positively correlated RNF152 expression in HCC tissues. FoxO1 recognizes a classic insulin response element (IRE) on the RNF152 promoter to regulate its expression in HCC. RNF152 suppressed HCC cell proliferation, clonogenic survival, invasion in vitro, and tumorigenesis in vivo. Mechanistically, RNF152 interacted with TSPAN12 and targeted it for ubiquitination and proteasomal degradation, thereby inhibiting TSPAN12-dependent CXCL6 expression and HCC progression. CONCLUSION Collectively, our data revealed a tumor suppressor role of RNF152 and a connection between RNF152 and FoxO1 in HCC. Our results support an important role of the FoxO1-RNF152-TSPAN12 axis in the development of HCC. Therapeutic targeting this axis may be an effective means of treating HCC.
Collapse
Affiliation(s)
- Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201299, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shunfang Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road 1095, Wuhan, 430030, People's Republic of China
| | - Wanju Sun
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201299, China
| | - Haiyi Yu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wenlian Tang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jing Ji
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Bin Liu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
24
|
Du X, Shen X, Dai L, Bi F, Zhang H, Lu C. PSMD12 promotes breast cancer growth via inhibiting the expression of pro-apoptotic genes. Biochem Biophys Res Commun 2020; 526:368-374. [PMID: 32222279 DOI: 10.1016/j.bbrc.2020.03.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Breast cancer (BC), the most frequent cancer in women worldwide, is extremely heterogeneous. For effective and precise treatment and to cope with drug resistance in BC, we need to find more therapeutic molecular targets. In this study, we found that the Proteasome 26S Subunit, Non-ATPase 12 (PSMD12) was upregulated in BC samples, its expression was heterogeneous among different cell lines, and high levels of PSMD12 were related to poor prognosis of BC patients. Notably, the expression of PSMD12 increased in the nucleus. Cytological experiments revealed that PSMD12 knockdown inhibited cell growth and migration, and a genome-wide CRISPR-Cas9 knockout (GeCKO) screen also confirmed that PSMD12 is a crucial gene for the growth of BC cells. Flow cytometry showed that cell apoptosis increased in the PSMD12 knockdown, and RNA-seq indicated that the apoptosis pathway was activated, and the TXNIP, GADD45A, GADD45B, RHOB, and CDKN1A pro-apoptotic genes were highly expressed, a result that was validated by RT-qPCR and Western blot. Furthermore, restoration of PSMD12 expression decreased the expression of pro-apoptotic genes. A tumor-bearing mice assay demonstrated that BC growth was arrested by reduced PSMD12 levels in vivo. Taken together, PSMD12, a subunit of 19S regulator of 26S proteasome, was identified as a potential prognostic and therapeutic molecular target for BC, which provides a new insight for developing anticancer drugs that promote apoptosis based on the targeting of the 26S proteasome complex.
Collapse
Affiliation(s)
- Xinna Du
- Department of Pharmacology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China; Department of Physiology and Biochemistry, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, PR China
| | - Xuan Shen
- Department of Physiology and Biochemistry, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, PR China
| | - Li Dai
- Department of Physiology and Biochemistry, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, PR China
| | - Fangjie Bi
- Department of Medicine, Zibo Central Hospital, Zibo, Shandong, 255000, PR China
| | - Hu Zhang
- Department of Physiology and Biochemistry, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, PR China.
| | - Chunfeng Lu
- Department of Pharmacology, College of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China; School of Medicine, Huzhou University, Huzhou Central Hospital, Huzhou, Zhejiang, 313000, PR China.
| |
Collapse
|
25
|
CRISPR-based gene knockout screens reveal deubiquitinases involved in HIV-1 latency in two Jurkat cell models. Sci Rep 2020; 10:5350. [PMID: 32210344 PMCID: PMC7093534 DOI: 10.1038/s41598-020-62375-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
The major barrier to a HIV-1 cure is the persistence of latent genomes despite treatment with antiretrovirals. To investigate host factors which promote HIV-1 latency, we conducted a genome-wide functional knockout screen using CRISPR-Cas9 in a HIV-1 latency cell line model. This screen identified IWS1, POLE3, POLR1B, PSMD1, and TGM2 as potential regulators of HIV-1 latency, of which PSMD1 and TMG2 could be confirmed pharmacologically. Further investigation of PSMD1 revealed that an interacting enzyme, the deubiquitinase UCH37, was also involved in HIV-1 latency. We therefore conducted a comprehensive evaluation of the deubiquitinase family by gene knockout, identifying several deubiquitinases, UCH37, USP14, OTULIN, and USP5 as possible HIV-1 latency regulators. A specific inhibitor of USP14, IU1, reversed HIV-1 latency and displayed synergistic effects with other latency reversal agents. IU1 caused degradation of TDP-43, a negative regulator of HIV-1 transcription. Collectively, this study is the first comprehensive evaluation of deubiquitinases in HIV-1 latency and establishes that they may hold a critical role.
Collapse
|
26
|
Tan Y, Jin Y, Wu X, Ren Z. PSMD1 and PSMD2 regulate HepG2 cell proliferation and apoptosis via modulating cellular lipid droplet metabolism. BMC Mol Biol 2019; 20:24. [PMID: 31703613 PMCID: PMC6842266 DOI: 10.1186/s12867-019-0141-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 10/29/2019] [Indexed: 01/18/2023] Open
Abstract
Background Obesity and nonalcoholic steatohepatitis (NASH) are well-known risk factors of hepatocellular carcinoma (HCC). The lipid-rich environment enhances the proliferation and metastasis abilities of tumor cells. Previous studies showed the effect of the ubiquitin–proteasome system (UPS) on tumor cell proliferation. However, the underlying mechanism of UPS in regulating the proliferation of lipid-rich tumor cells is not totally clear. Results Here, we identify two proteasome 26S subunits, non-ATPase 1 and 2 (PSMD1 and PSMD2), which regulate HepG2 cells proliferation via modulating cellular lipid metabolism. Briefly, the knockdown of PSMD1 and/or PSMD2 decreases the formation of cellular lipid droplets, the provider of the energy and membrane components for tumor cell proliferation. Mechanically, PSMD1 and PSMD2 regulate the expression of genes related to de novo lipid synthesis via p38-JNK and AKT signaling. Moreover, the high expression of PSMD1 and PSMD2 is significantly correlated with poor prognosis of HCC. Conclusion We demonstrate that PSMD1 and PSMD2 promote the proliferation of HepG2 cells via facilitating cellular lipid droplet accumulation. This study provides a potential therapeutic strategy for the treatment of lipid-rich tumors.
Collapse
Affiliation(s)
- Yanjie Tan
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yi Jin
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xiang Wu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China. .,Bio-Medical Center of Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Wang X, Rusin A, Walkey CJ, Lin JJ, Johnson DL. The RNA polymerase III repressor MAF1 is regulated by ubiquitin-dependent proteasome degradation and modulates cancer drug resistance and apoptosis. J Biol Chem 2019; 294:19255-19268. [PMID: 31645432 DOI: 10.1074/jbc.ra119.008849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/01/2019] [Indexed: 01/03/2023] Open
Abstract
MAF1 homolog, negative regulator of RNA polymerase III (MAF1) is a key repressor of RNA polymerase (pol) III-dependent transcription and functions as a tumor suppressor. Its expression is frequently down-regulated in primary human hepatocellular carcinomas (HCCs). However, this reduction in MAF1 protein levels does not correlate with its transcript levels, indicating that MAF1 is regulated post-transcriptionally. Here, we demonstrate that MAF1 is a labile protein whose levels are regulated through the ubiquitin-dependent proteasome pathway. We found that MAF1 ubiquitination is enhanced upon mTOR complex 1 (TORC1)-mediated phosphorylation at Ser-75. Moreover, we observed that the E3 ubiquitin ligase cullin 2 (CUL2) critically regulates MAF1 ubiquitination and controls its stability and subsequent RNA pol III-dependent transcription. Analysis of the phenotypic consequences of modulating either CUL2 or MAF1 protein expression revealed changes in actin cytoskeleton reorganization and altered sensitivity to doxorubicin-induced apoptosis. Repression of RNA pol III-dependent transcription by chemical inhibition or knockdown of BRF1 RNA pol III transcription initiation factor subunit (BRF1) enhanced HCC cell sensitivity to doxorubicin, suggesting that MAF1 regulates doxorubicin resistance in HCC by controlling RNA pol III-dependent transcription. Together, our results identify the ubiquitin proteasome pathway and CUL2 as important regulators of MAF1 levels. They suggest that decreases in MAF1 protein underlie chemoresistance in HCC and perhaps other cancers and point to an important role for MAF1 and RNA pol III-mediated transcription in chemosensitivity and apoptosis.
Collapse
Affiliation(s)
- Xianlong Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandra Rusin
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Christopher J Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | - Deborah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
28
|
Xiong W, Wang W, Huang H, Jiang Y, Guo W, Liu H, Yu J, Hu Y, Wan J, Li G. Prognostic Significance of PSMD1 Expression in Patients with Gastric Cancer. J Cancer 2019; 10:4357-4367. [PMID: 31413756 PMCID: PMC6691719 DOI: 10.7150/jca.31543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background: PSMD1 has been considered to be involved in many human cancers, but its prognostic significance in gastric cancer (GC) has not been elucidated. The aim of this study was to evaluate the prognostic value of PSMD1 expression in tumor tissues of GC patients. Methods: We retrospectively analyzed the expression of PSMD1 in 241 paraffin-embedded GC specimens of the training cohort by immunohistochemistry. The prognostic value of PSMD1 expression was assessed using Kaplan-Meier survival curves and multivariate COX regression models. PSMD1 expression and other GC-associated risk factors were used to generate two nomograms to evaluate prognosis, and the performance of the two nomograms was assessed with respect to its calibration, discrimination, and clinical usefulness. Further validation was performed using an independent cohort of 170 cases. Results: High PSMD1 expression was significantly associated with decreased disease-free survival (DFS) and overall survival (OS) in GC patients. Furthermore, multivariate Cox proportional hazard analysis demonstrated that PSMD1 was an independent prognostic factor for DFS and OS. The two nomograms that were developed by integrating PSMD1 expression and the TNM staging system showed better prediction of DFS and OS than TNM staging system alone(C-index for training cohort: 0.708 (95% CI:0.670-0.746) and 0.712 (0.671-0.752), respectively; C-index for validation cohort: 0.704 (0.651-0.757) and 0.711 (0.656-0.767), respectively). Decision curve analysis demonstrated that the nomograms showed potential for clinical use. Conclusion: Intratumoral PSMD1 expression is a novel independent predictor of DFS and OS in GC patients. In the future, large-scale prospective studies will be necessary to confirm our findings regarding its potential prognostic and therapeutic value for GC patients.
Collapse
Affiliation(s)
- Wenjun Xiong
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China.,Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haipeng Huang
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Jin Wan
- Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| |
Collapse
|
29
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
30
|
Analysis of the Antiproliferative Effect of Ankaferd Hemostat on Caco-2 Colon Cancer Cells via LC/MS Shotgun Proteomics Approach. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5268031. [PMID: 31240215 PMCID: PMC6556321 DOI: 10.1155/2019/5268031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Ankaferd hemostat (ABS), a traditional herbal extract, is a hemostatic agent used for wound healing and bleeding treatment. A standardized form of plants contains many biomolecules. In recent years, previous studies have demonstrated the antineoplastic effect of ABS. In the present work, we focused on the mechanism of its antineoplastic effect over Caco-2 colon cancer cells. The LC/MS-based proteomics method was used to understand the effect of ABS at the protein level. The results were evaluated with gene ontology, protein interaction, and pathway analysis. As shown by our results, ABS altered glucose, fatty acids, and protein metabolism. Moreover, ABS affects the cell cycle machinery. Moreover, we found that ABS induced critical cancer target and suppressor proteins such as carboxyl-terminal hydrolase 1, 60S ribosomal protein L5, Tumor protein D52-like2, karyopherin alpha 2, and protein deglycase DJ-1. In conclusion, the proteomics results indicated that ABS affects various cancer targets and suppressor proteins. Moreover ABS has systematical effect on cell metabolism and cell cycle in Caco-2 cells, suggesting that it could be used as an antineoplastic agent.
Collapse
|
31
|
Shi Y, Zhao T, Yang X, Sun B, Li Y, Duan J, Sun Z. PM 2.5-induced alteration of DNA methylation and RNA-transcription are associated with inflammatory response and lung injury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:908-921. [PMID: 30308865 DOI: 10.1016/j.scitotenv.2018.09.085] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
The mechanisms of systemic pulmonary inflammation and toxicity of fine particulate matter (PM2.5) exposure remains unclear. The current study investigated the inflammatory response and lung toxicity of PM2.5 in rats following intratracheal instillation of PM2.5. After repeated (treated every 3 days for 30 days) PM2.5 exposure, total protein (TP), lactate dehydrogenase (LDH) activity and inflammatory cytokines including interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) levels in bronchoalveolar lavage fluid (BALF) were markedly elevated. The expression levels of IL-6, IL-1β, TNF-α and NF-κB in rat lung tissue and BEAS-2B cells were significantly upregulated after PM2.5 exposure. Histopathological evaluation suggested that the major pathological changes were alveolar wall thickening and inflammatory cell infiltration of the lungs. Genome wide DNA methylation and RNA-transcription analysis was performed on human bronchial epithelial cells (BEAS-2B) to explore the potential mechanisms in vitro. PM2.5 induced genome wide DNA methylation and transcription changes. Differentially methylated CpGs were located in gene promoter region linked with CpG islands. Integrated analysis with DNA methylation and transcription data indicated a clear bias toward transcriptional alteration by differential methylation. Disease ontology of differentially methylated and expressed genes addressed their prominent role in respiratory disease. Functional enrichment revealed their involvement in inflammation or immune response, cellular community, cellular motility, cell growth, development and differentiation, signal transduction and responses to exogenous stimuli. Gene expression validation of ACTN4, CXCL1, MARK2, ABR, PSEN1, PSMA3, PSMD1 verified their functional participation in critical biological processes and supported the microarray bioinformatics analysis. Collectively, our data shows that PM2.5 induced genome wide methylome and transcriptome alterations that could be involved in pulmonary toxicity and pathological process of respiratory disease, providing new insight into the toxicity mechanisms of PM2.5.
Collapse
Affiliation(s)
- Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|