1
|
Zhao S, Yang X, Liu D, Sun X, Li G, Wu K. Performance of the domestic Bt corn event expressing pyramided Cry1Ab and Vip3Aa19 against the invasive Spodoptera frugiperda (J. E. Smith) in China. PEST MANAGEMENT SCIENCE 2023; 79:1018-1029. [PMID: 36326028 DOI: 10.1002/ps.7273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The invasive fall armyworm, Spodoptera frugiperda (J.E. Smith), has caused serious corn yield losses and increased the frequency of insecticide spraying on corn in Africa and Asia. Drawing lessons from the use of Bt corn to manage fall armyworm in the Americas, China released a certificate for the genetically modified corn event DBN3601T pyramidally expressing Cry1Ab and Vip3Aa19 for industrialization in 2021. Performance of the DBN3601T event against invasive fall armyworm in China was evaluated by plant tissue-based bioassays and field trials during 2019-2021. RESULTS In the bioassays, tissues and organs of DBN3601T corn differed significantly in lethality to fall armyworm neonates in the order: leaf > husk > tassel and kernel > silk. In field trials, compared with non-Bt corn, DBN3601T corn greatly suppressed fall armyworm populations and damage; larval density, damage incidence, and leaf damage scores for DBN3601T corn were significantly lower than for non-Bt corn at different vegetative stages, and efficacy against larval populations during the 3 years ranged from 95.24% to 98.30%. CONCLUSION A laboratory bioassay and 3-year field trials confirmed that DBN3601T corn greatly suppressed fall armyworm populations and has high potential as a control of this invasive pest, making it a key tactic for integrated management of fall armyworm in China. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Guangdong laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxu Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoping Li
- Key Laboratory of Integrated Pest Management on Crops in Southern Part of Northern China, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
de Oliveira WS, Sakuno CIR, Miraldo LL, Tavares MAGC, Komada KMA, Teresani D, Santos JLX, Huang F. Varied frequencies of resistance alleles to Cry1Ab and Cry1Ac among Brazilian populations of the sugarcane borer, Diatraea saccharalis (F.). PEST MANAGEMENT SCIENCE 2022; 78:5150-5163. [PMID: 36070208 DOI: 10.1002/ps.7133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Brazil is the largest grower of the world's 26 million ha of sugarcane, Saccharum officinarum. Pest damage mainly by the sugarcane borer, Diatraea saccharalis (F.), is a great challenge to the sugarcane industry. To control D. saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to two Bt sugarcane varieties: CTC20BT expressing Cry1Ab and CTC9001BT expressing Cry1Ac. Here we report the results of the first study related to Bt resistance in a sugarcane cropping system. RESULTS Larval survivorships of these families in an F2 screen on CTC20BT were highly correlated with their survival on CTC9001BT, whereas the Cry1Ac tissues exhibited greater insecticidal activities than Cry1Ab. Resistance allele frequencies (RAFs) for populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). CONCLUSIONS RAFs to Cry1Ab and Cry1Ac varied among Brazilian D. saccharalis populations. Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring, and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. MINI ABSTRACT To control Diatraea saccharalis, Brazil launched the world's first commercial use of Bt sugarcane in 2017. As part of the resistance management programs for Bt sugarcane planting in Brazil, 535 F2 isoline families of D. saccharalis collected from three major sugarcane planting states (Goiás, Minas Gerais and São Paulo) in Brazil during 2019-2020 were screened for resistance to Cry1Ab and Cry1Ac sugarcane plants Resistance allele frequencies (RAFs) for the populations from Goiás and Minas Gerais were relatively low at 0.0034 for Cry1Ab and 0.0045 to Cry1Ac. By contrast, RAFs for the São Paulo populations were considerably greater (0.0393 to Cry1Ab, 0.0245 to Cry1Ac). Prior selection resulting from an intensive use of single-gene Bt maize under low compliance of non-Bt maize refuge planting could be a main factor contributing to the high RAF in São Paulo. The results suggest that effective mitigation measures including sufficient non-Bt maize refuge planting, effective resistance monitoring and use of pyramided Bt sugarcane traits should be implemented promptly to prevent further increase in the RAF to ensure the sustainable use of Bt sugarcane in Brazil. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
3
|
Prasanna BM, Bruce A, Beyene Y, Makumbi D, Gowda M, Asim M, Martinelli S, Head GP, Parimi S. Host plant resistance for fall armyworm management in maize: relevance, status and prospects in Africa and Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3897-3916. [PMID: 35320376 PMCID: PMC9729323 DOI: 10.1007/s00122-022-04073-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE Sustainable control of fall armyworm (FAW) requires implementation of effective integrated pest management (IPM) strategies, with host plant resistance as a key component. Significant opportunities exist for developing and deploying elite maize cultivars with native genetic resistance and/or transgenic resistance for FAW control in both Africa and Asia. The fall armyworm [Spodoptera frugiperda (J.E. Smith); FAW] has emerged as a serious pest since 2016 in Africa, and since 2018 in Asia, affecting the food security and livelihoods of millions of smallholder farmers, especially those growing maize. Sustainable control of FAW requires implementation of integrated pest management strategies, in which host plant resistance is one of the key components. Significant strides have been made in breeding elite maize lines and hybrids with native genetic resistance to FAW in Africa, based on the strong foundation of insect-resistant tropical germplasm developed at the International Maize and Wheat Improvement Center, Mexico. These efforts are further intensified to develop and deploy elite maize cultivars with native FAW tolerance/resistance and farmer-preferred traits suitable for diverse agro-ecologies in Africa and Asia. Independently, genetically modified Bt maize with resistance to FAW is already commercialized in South Africa, and in a few countries in Asia (Philippines and Vietnam), while efforts are being made to commercialize Bt maize events in additional countries in both Africa and Asia. In countries where Bt maize is commercialized, it is important to implement a robust insect resistance management strategy. Combinations of native genetic resistance and Bt maize also need to be explored as a path to more effective and sustainable host plant resistance options. We also highlight the critical gaps and priorities for host plant resistance research and development in maize, particularly in the context of sustainable FAW management in Africa and Asia.
Collapse
Affiliation(s)
- Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya.
| | - Anani Bruce
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, P.O. Box 1041, GigiriNairobi, 00621, Kenya
| | | | | | - Graham P Head
- Regulatory Science, Bayer Crop Science US, Chesterfield, MO, USA
| | | |
Collapse
|
4
|
Franz L, Raming K, Nauen R. Recombinant Expression of ABCC2 Variants Confirms the Importance of Mutations in Extracellular Loop 4 for Cry1F Resistance in Fall Armyworm. Toxins (Basel) 2022; 14:toxins14020157. [PMID: 35202184 PMCID: PMC8878193 DOI: 10.3390/toxins14020157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/15/2023] Open
Abstract
Fall armyworm (FAW), Spodoptera frugiperda, is a highly destructive and invasive global noctuid pest. Its control is based on insecticide applications and Bacillus thuringiensis (Bt) insecticidal Cry toxins expressed in transgenic crops, such as Cry1F in Bt corn. Continuous selection pressure has resulted in populations that are resistant to Bt corn, particularly in Brazil. FAW resistance to Cry1F was recently shown to be conferred by mutations of ATP-binding cassette transporter C2 (ABCC2), but several mutations, particularly indels in extracellular loop 4 (ECL4), are not yet functionally validated. We addressed this knowledge gap by baculovirus-free insect cell expression of ABCC2 variants (and ABCC3) by electroporation technology and tested their response to Cry1F, Cry1A.105 and Cry1Ab. We employed a SYTOXTM orange cell viability test measuring ABCC2-mediated Bt toxin pore formation. In total, we tested seven different FAW ABCC2 variants mutated in ECL4, two mutants modified in nucleotide binding domain (NBD) 2, including a deletion mutant lacking NBD2, and S. frugiperda ABCC3. All tested ECL4 mutations conferred high resistance to Cry1F, but much less to Cry1A.105 and Cry1Ab, whereas mutations in NBD2 hardly affected Bt toxin activity. Our study confirms the importance of indels in ECL4 for Cry1F resistance in S. frugiperda ABCC2.
Collapse
|
5
|
Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:121-140. [PMID: 33417820 DOI: 10.1146/annurev-ento-052620-073348] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used in sprayable formulations or produced in transgenic crops as the most successful alternatives to synthetic pesticides. The most relevant threat to sustainability of Bt insecticidal proteins (toxins) is the evolution of resistance in target pests. To date, high-level resistance to Bt sprays has been limited to one species in the field and another in commercial greenhouses. In contrast, there are currently seven lepidopteran and one coleopteran species that have evolved practical resistance to transgenic plants producing insecticidal Bt proteins. In this article, we present a review of the current knowledge on mechanisms of resistance to Bt toxins, with emphasis on key resistance genes and field-evolved resistance, to support improvement of Bt technology and its sustainability.
Collapse
Affiliation(s)
- Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee 37996, USA;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
| | - Juan Ferré
- ERI of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot 46100, Spain;
| |
Collapse
|
6
|
Farhan Y, Smith JL, Limay-Rios V, Schaafsma AW. The Effect of Simulated Lepidopteran Ear Feeding Injury on Mycotoxin Accumulation in Grain Corn (Poales: Poaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2187-2196. [PMID: 32865199 DOI: 10.1093/jee/toaa174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Fusarium graminearum Schwabe (Hypocreales: Nectriaceae) and Fusarium verticillioides (Saccardo) (Hypocreales: Nectriaceae) Nirenberg infection results in accumulation of deoxynivalenol (DON), zearalenone (ZON), and fumonisin (FBs) mycotoxins in infected corn, Zea mays L. Lepidopteran insect feeding may exacerbate fungal infection by providing entry points on the ear resulting in increased mycotoxin contamination of grain. The objective of the current study was to simulate different types and severity levels (extent of injury) of lepidopteran injury to corn ears at different stages of ear development and its effect on mycotoxin accumulation in grain corn. Field experiments were conducted under conditions favorable for F. graminearum development where insect injury was simulated to corn ears and inoculated with F. graminearum. All simulated injury treatments resulted in elevated mycotoxin concentration compared with ears without simulated injury; however, the severity of injury within a treatment had little effect. Injury to kernels on the side of the ear resulted in greater DON and ZON concentration than injury to tip kernels, grazing injury applied at physiological maturity, or when no injury was simulated. Greater FBs was measured when tip kernel injury was simulated at the blister stage or when side kernel injury was simulated at milk and dent stages compared with noninjured ears, silk clipping, tip injury at milk and dent stages, or grazing injury at physiological maturity. The current study confirms that the risk of mycotoxin accumulation in the Great Lakes region is greater in the presence of ear-feeding insect pests and may differ depending on the feeding behavior of pest species.
Collapse
Affiliation(s)
- Yasmine Farhan
- University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada
| | - Jocelyn L Smith
- University of Guelph, Ridgetown Campus, Ridgetown, Ontario, Canada
| | | | | |
Collapse
|
7
|
Gassmann AJ, Shrestha RB, Kropf AL, St Clair CR, Brenizer BD. Field-evolved resistance by western corn rootworm to Cry34/35Ab1 and other Bacillus thuringiensis traits in transgenic maize. PEST MANAGEMENT SCIENCE 2020; 76:268-276. [PMID: 31207042 DOI: 10.1002/ps.5510] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) are widely planted to manage agricultural insect pests. However, widespread adoption of Bt crops has led to the evolution of Bt resistance. The western corn rootworm, Diabrotica virgifera virgifera, is among the most serious pests of maize in the midwestern United States and is currently managed with Bt maize. To date, there is evidence of field-evolved resistance to all Bt toxins used to manage this pest. While western corn rootworm resistance to Cry3Bb1, and the closely related mCry3A and eCry3.1Ab traits, is widely distributed within the Midwest, fewer cases of Cry34/35Ab1 resistance have been observed, and planting of Cry34/35Ab1 maize is one of the methods used to manage Cry3-resistant rootworm. RESULTS We found that fields with high levels of root injury to Cry34/35Ab1 maize by western corn rootworm were associated with Cry34/35Ab1-resistant western corn rootworm. Additionally, a population not associated with high levels of root injury was found to be resistant to Cry34/35Ab1. In all cases, populations that were resistant to Cry34/35Ab1 also were resistant to Cry3 traits. CONCLUSIONS Western corn rootworm resistance to Cry34/35Ab1 has continued to persist in the agricultural landscape and has likely increased. The presence of rootworm populations with resistance to all available Bt traits threatens the utility of current and future transgenic technologies to manage this pest. Decreased reliance on Cry34/35Ab1 and better use of integrated pest management will be essential to preserve Bt susceptibility in western corn rootworm. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Ram B Shrestha
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Abigail L Kropf
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Coy R St Clair
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Ben D Brenizer
- Department of Entomology, Iowa State University, Ames, IA, USA
| |
Collapse
|
8
|
Boaventura D, Ulrich J, Lueke B, Bolzan A, Okuma D, Gutbrod O, Geibel S, Zeng Q, Dourado PM, Martinelli S, Flagel L, Head G, Nauen R. Molecular characterization of Cry1F resistance in fall armyworm, Spodoptera frugiperda from Brazil. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103280. [PMID: 31740346 DOI: 10.1016/j.ibmb.2019.103280] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 05/21/2023]
Abstract
Fall armyworm, Spodoptera frugiperda (J.E. Smith) is a major lepidopteran pest of maize in Brazil and its control particularly relies on the use of genetically engineered crops expressing Bacillus thuringiensis (Bt) toxins such as Cry1F. However, control failures compromising the efficacy of this technology have been reported in many regions in Brazil, but the mechanism of Cry1F resistance in Brazilian fall armyworm populations remained elusive. Here we investigated the molecular mechanism of Cry1F resistance in two field-collected strains of S. frugiperda from Brazil exhibiting high levels of Cry1F resistance. We first rigorously evaluated several candidate reference genes for normalization of gene expression data across strains, larval instars and gut tissues, and identified ribosomal proteins L10, L17 and RPS3A to be most suitable. We then investigated the expression pattern of ten potential Bt toxin receptors/enzymes in both neonates and 2nd instar gut tissue of Cry1F resistant fall armyworm strains compared to a susceptible strain. Next we sequenced the ATP-dependent Binding Cassette subfamily C2 gene (ABCC2) and identified three mutated sites present in ABCC2 of both Cry1F resistant strains: two of them, a GY deletion (positions 788-789) and a P799 K/R amino acid substitution, located in a conserved region of ABCC2 extracellular loop 4 (EC4) and another amino acid substitution, G1088D, but in a less conserved region. We further characterized the role of the novel mutations present in EC4 by functionally expressing both wild type and mutated ABCC2 transporters in insect cell lines, and confirmed a critical role of both sites for Cry1F binding by cell viability assays. Finally, we assessed the frequency of the mutant alleles by pooled population sequencing and pyrosequencing in 40 fall armyworm populations collected from maize fields in different regions in Brazil. We found that the GY deletion being present at high frequency. However we also observed many rare alleles which disrupt residues between sites 783-799, and their diversity and abundance in field collected populations lends further support to the importance of the EC4 domain for Cry1F toxicity.
Collapse
Affiliation(s)
- Debora Boaventura
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115, Bonn, Germany; Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Julia Ulrich
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Bettina Lueke
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Anderson Bolzan
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Daniela Okuma
- Bayer S.A, Crop Science, Av. Dr. Roberto Moreira, 5005, Paulinia, SP, Brazil
| | - Oliver Gutbrod
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Sven Geibel
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany
| | - Qin Zeng
- Bayer U.S, Crop Science, R&D, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Patrick M Dourado
- Bayer S.A, Crop Science, R&D, Avenida Nacoes Unidas, São Paulo, Brazil
| | - Samuel Martinelli
- Bayer U.S, Crop Science, R&D, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Lex Flagel
- Bayer U.S, Crop Science, R&D, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Graham Head
- Bayer U.S, Crop Science, R&D, 700 Chesterfield Pkwy W, Chesterfield, MO, 63017, USA
| | - Ralf Nauen
- Bayer AG, Crop Science, R&D, Alfred Nobel Str. 50, 40789, Monheim, Germany.
| |
Collapse
|
9
|
Farhan Y, Smith JL, Schaafsma AW. Susceptibility of Different Instars of Striacosta albicosta (Lepidoptera: Noctuidae) to Vip3A, a Bacillus thuringiensis (Bacillaceae: Bacillales) Protein. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2335-2344. [PMID: 31114867 DOI: 10.1093/jee/toz118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 06/09/2023]
Abstract
Striacosta albicosta (Smith) (Lepidoptera: Noctuidae) is an important pest of corn, Zea mays L. in the Great Lakes region, which can be controlled by transgenic corn expressing Vip3A protein from Bacillus thuringiensis. To inform insect resistance management, the susceptibility, survival, and development of first, third, and fifth instar S. albicosta to Vip3A was determined using protein-overlay and corn tissue bioassays. Tissue bioassays were also used to determine the quantity of corn tissues with and without Vip3A-expression consumed by various instars. In diet bioassays, third and fifth instars were significantly less susceptible to Vip3A compared with first instars; however, no significant difference was observed in susceptibility of older instars. In tissue bioassays, survival was lowest for larvae fed Vip3A-expressing tissues, ranging from 0 to 21%, however, developmental measures of larvae fed Vip3A-expressing tissues did not differ from those fed artificial diet or tissues of other Bt events. Consumption of Vip3A × Cry1Ab tissues did not differ from that of Cry1Ab for each instar. Estimated Vip3A exposure of first instars ranged from 3 to 57 times higher than the concentration required for 99% mortality (LC99) based on the product of the reported Vip3A expression in transgenic corn tissues and the consumption observed in tissue bioassays; however, the estimated exposure of third and fifth instars to Vip3A was lower than their respective LC99. These findings suggest that first instar S. albicosta maybe exposed to a high dose of Vip3A under field conditions; however, Vip3A-expression in corn may not be high dose against older instars, increasing the risk of resistance development.
Collapse
Affiliation(s)
| | - Jocelyn L Smith
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Canada
| | - Arthur W Schaafsma
- Department of Plant Agriculture, University of Guelph Ridgetown Campus, Ridgetown, Canada
| |
Collapse
|
10
|
Muraro DS, Garlet CG, Godoy DN, Cossa GE, Rodrigues Junior GLDS, Stacke RF, Medeiros SL, Guedes JV, Bernardi O. Laboratory and field survival of Spodoptera frugiperda (Lepidoptera: Noctuidae) on Bt and non-Bt maize and its susceptibility to insecticides. PEST MANAGEMENT SCIENCE 2019; 75:2202-2210. [PMID: 30666779 DOI: 10.1002/ps.5347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Field-evolved resistance of fall armyworm (FAW), Spodoptera frugiperda (Smith), has been reported to Bt maize technologies in Brazil. The control failures of FAW by Bt maize increased the use of insecticides for their control. However, no information is available on the interaction between resistant FAW and their response to insecticides. Here, we evaluated the survival of FAW strains on Bt and non-Bt maize in laboratory and field conditions, and their susceptibility to insecticides. RESULTS In the laboratory, resistant FAW larvae reared on Bt and non-Bt maize showed a similar susceptibility to spinetoram (LC50 = 0.16-0.18 µg a.i. cm-2 ) and chlorfenapyr (LC50 = 0.17-0.20 µg a.i. cm-2 ). However, their susceptibility was lower than that of the susceptible strain reared on non-Bt maize: LC50 = 0.05 (spinetoram) and 0.08 (chlorfenapyr) µg a.i. cm-2 . In contrast, heterozygous strains had similar susceptibility to the susceptible strain. In field trials, no differences in FAW survival were detected between strains when the commercial dose of two insecticides was applied in Bt and non-Bt maize. CONCLUSION FAW strains surviving on Bt and non-Bt maize, at the same development stage, have similar susceptibility to insecticides. The integrated pest management practices and insect resistance management importance of these results are discussed. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dionei S Muraro
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Cinthia G Garlet
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniela N Godoy
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Gisele E Cossa
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Regis F Stacke
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Sandro Lp Medeiros
- Department of Plant Science, Federal University of Santa Maria, Santa Maria, Brazil
| | - Jerson Vc Guedes
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
11
|
Marques LH, Santos AC, Castro BA, Moscardini VF, Rosseto J, Silva OABN, Babcock JM. Assessing the Efficacy of Bacillus thuringiensis (Bt) Pyramided Proteins Cry1F, Cry1A.105, Cry2Ab2, and Vip3Aa20 Expressed in Bt Maize Against Lepidopteran Pests in Brazil. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:803-811. [PMID: 30561710 PMCID: PMC6427033 DOI: 10.1093/jee/toy380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Indexed: 05/10/2023]
Abstract
Field studies across four states in maize-producing areas of Brazil were conducted to characterize the efficacy of a new pyramided Bacillus thuringiensis (Bt) Berliner technology in maize, Zea mays L., and compare it to existing single and pyramided commercial Bt technologies, to control Helicoverpa zea Boddie (Lepidoptera: Noctuidae), Elasmopalpus lignosellus Zeller (Lepidoptera: Pyralidae), Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), and Diatraea saccharalis F. (Lepidoptera: Crambidae). Bt maize expressing Vip3Aa20 protein and pyramided Bt maize expressing proteins Cry1F + Cry1A.105 + Cry2Ab2 + Vip3Aa20 provided excellent protection against kernel feeding by H. zea compared to Bt technologies expressing only Cry1F or Cry1A.105 + Cry2Ab2. Bt maize expressing Cry1F, Cry1A.105 + Cry2Ab2, Cry1F + Cry1A.105 + Cry2Ab2, and Cry1F + Cry1A.105 + Cry2Ab2 + Vip3Aa20 resulted in less than 5% of plants injured by E. lignosellus, significantly less than Bt maize expressing only Vip3Aa20 and a non-Bt maize iso-hybrid with and without a thiamethoxam seed treatment. The highest protection against plant cutting injury caused by A. ipsilon was observed in the pyramid Bt maize technology expressing Cry1F + Cry1A.105 + Cry2Ab2 + Vip3Aa20. However, it did not differ statistically from the Bt maize expressing Vip3Aa20, Cry1F, or Cry1F + Cry1A.105 + Cry2Ab2. All Bt maize hybrids evaluated in our study were highly effective in reducing tunneling injury caused by D. saccharalis. These results show that a new maize technology expressing pyramided Bt proteins Cry1F + Cry1A.105 + Cry2Ab2 + Vip3Aa20 offers a higher level of protection from feeding by the above lepidopteran pest complex compared to maize with a single Bt protein or double pyramided Bt proteins.
Collapse
Affiliation(s)
- Luiz H Marques
- Dow AgroSciences Industrial Ltda, Av. Nações Unidas, São Paulo, Brazil
- Corresponding author, e-mail:
| | - Antonio C Santos
- Dow AgroSciences Industrial Ltda, Av. Nações Unidas, São Paulo, Brazil
| | | | | | - Jaedino Rosseto
- Dow AgroSciences Industrial Ltda, Av. Nações Unidas, São Paulo, Brazil
| | - Oscar A B N Silva
- Dow AgroSciences Industrial Ltda, Av. Nações Unidas, São Paulo, Brazil
| | | |
Collapse
|
12
|
Horikoshi RJ, Bernardi O, Amaral FSDAE, Miraldo LL, Durigan MR, Bernardi D, Silva SS, Omoto C. Lack of relevant cross-resistance to Bt insecticide XenTari in strains of Spodoptera frugiperda (J. E. Smith) resistant to Bt maize. J Invertebr Pathol 2018; 161:1-6. [PMID: 30582929 DOI: 10.1016/j.jip.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022]
Abstract
The resistance of fall armyworm, Spodoptera frugiperda, has been characterized to Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in maize in Brazil. Here, we investigate the cross-resistance to Bt-insecticide XenTari in selected fall armyworm strains resistant to Bt maize varieties. The LC50 of XenTari in neonates of resistant strains ranged from 0.28 to 0.68 µg a.i./cm2, while for the susceptible reference strain (Sus), LC50 was 0.21 µg a.i./cm2. This indicated a resistance ratio lower than 3.2-fold. A similar variation in susceptibility was detected in EC50 values, which ranged from 0.04 to 0.13 µg a.i./cm2, demonstrating a maximum resistance ratio of 4.3-fold relative to the Sus strain (EC50 = 0.03 µg a.i./cm2). In the F1 progeny from reciprocal crosses, the LC50 ranged from 0.28 to 0.64 µg a.i./cm2 and EC50 from 0.03 to 0.18 µg a.i./cm2, similar to the values verified in parental resistant strains and representing a maximum resistance ratio of 3.0 and 6.0-fold, respectively. We also determined that susceptibility of third instar larvae to XenTari decreased when compared to neonates, however the variation remained similar. For third instar larvae from resistant strains, LC50 of XenTari ranged from 10.79 to 39.85 µg a.i./cm2, while for the Sus strain, LC50 was 9.25 µg a.i./cm2 (resistance ratio inferior to 4.3-fold). At the same stage, in heterozygous strains the LC50 ranged from 14.75 to 58.47 µg a.i./cm2 (resistance ratio inferior to 6.3-fold). Our data demonstrate a lack of significant cross-resistance to Bt-based insecticide XenTari in fall armyworm strains with resistance to Bt maize varieties.
Collapse
Affiliation(s)
- Renato J Horikoshi
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua dias 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Oderlei Bernardi
- Department of Crop Protection, Federal University of Santa Maria (UFSM), Roraima Avenue 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Fernando S de A E Amaral
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua dias 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Leonardo L Miraldo
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua dias 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Mariana R Durigan
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua dias 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Daniel Bernardi
- Department of Plant Health, Federal University of Pelotas (UFPel), Capão do Leão, Rio Grande do Sul 96010-970, Brazil
| | - Sandy S Silva
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua dias 11, Piracicaba, São Paulo 13418-900, Brazil
| | - Celso Omoto
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua dias 11, Piracicaba, São Paulo 13418-900, Brazil.
| |
Collapse
|
13
|
Pavinato VAC, Michel AP, de Campos JB, Omoto C, Zucchi MI. Influence of historical land use and modern agricultural expansion on the spatial and ecological divergence of sugarcane borer, Diatraea saccharalis (Lepidoptera: Crambidae) in Brazil. Heredity (Edinb) 2017; 120:25-37. [PMID: 29234172 DOI: 10.1038/s41437-017-0018-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/02/2017] [Accepted: 09/29/2017] [Indexed: 01/06/2023] Open
Abstract
Human-mediated changes in landscapes can facilitate niche expansion and accelerate the adaptation of insect species. The interaction between the evolutionary history of the sugarcane borer, Diatraea saccharalis Fabricius, and historical and modern agricultural activity in Brazil shaped its spatial genetic structure, facilitating ecological divergence and incipient host shifting. Based on microsatellite data, STRUCTURE analyses identified two (K = 2) and three (K = 3) significant genetic clusters that corresponded to: (a) a strong signal of spatial genetic structure and, (b) a cryptic signal of host differentiation. We inferred that K = 2 reflects the footprint of agricultural activity, such as expansion of crop production (sugarcane and maize), unintentional dispersion of pests, and management practices. In contrast, K = 3 indicated incipient host differentiation between larvae collected from sugarcane or maize. Our estimates of population size changes indicated that a historical bottleneck was associated with a reduction of sugarcane production ≈200 years ago. However, a more recent population expansion was detected (>1950s), associated with agricultural expansion of large crop production into previously unfarmed land. Partial Mantel tests supported our hypothesis of incipient host adaptation, and identified isolation-by-environment (e.g., host plant) in São Paulo and Minas Gerais states, where sugarcane has been traditionally produced in Brazil. The impact of agricultural production on D. saccharalis may continue, as the current population structure may hinder the efficacy of refuge plants in delaying insect resistance evolution to Bt toxin.
Collapse
Affiliation(s)
- Vitor A C Pavinato
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Avenida Bertrand Russel, s/n, Cidade Universitária Zeferino Vaz, 6109, Campinas, SP, Brazil. .,Department of Entomology, Ohio Agricultural Research and Development Center, Thorne Hall, The Ohio State University, 1680, Madison Avenue, Wooster, OH, USA.
| | - Andrew P Michel
- Department of Entomology, Ohio Agricultural Research and Development Center, Thorne Hall, The Ohio State University, 1680, Madison Avenue, Wooster, OH, USA
| | - Jaqueline B de Campos
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Avenida Bertrand Russel, s/n, Cidade Universitária Zeferino Vaz, 6109, Campinas, SP, Brazil
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo, Avenida Pádua Dias 11, CP 9, Piracicaba, SP, Brazil
| | - Maria I Zucchi
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Avenida Bertrand Russel, s/n, Cidade Universitária Zeferino Vaz, 6109, Campinas, SP, Brazil.,Agribusiness Technological Development of São Paulo (APTA), Laboratory of Conservation Genetics and Genomics, Rodovia SP 127 km 30, CP 28, Piracicaba, SP, Brazil
| |
Collapse
|
14
|
Burtet LM, Bernardi O, Melo AA, Pes MP, Strahl TT, Guedes JV. Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. PEST MANAGEMENT SCIENCE 2017; 73:2569-2577. [PMID: 28695664 DOI: 10.1002/ps.4660] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Maize plants expressing insecticidal proteins of Bacillus thuringiensis are valuable options for managing fall armyworm (FAW), Spodoptera frugiperda, in Brazil. However, control failures were reported, and therefore insecticides have been used to control this species. Based on these, we evaluated the use of Bt maize and its integration with insecticides against FAW in southern Brazil. RESULTS Early-planted Agrisure TL, Herculex, Optimum Intrasect and non-Bt maize plants were severely damaged by FAW and required up to three insecticidal sprays. In contrast, YieldGard VT Pro, YieldGard VT Pro 3, PowerCore, Agrisure Viptera and Agrisure Viptera 3 showed little damage and did not require insecticides. Late-planted Bt maize plants showed significant damage by FAW and required up to four sprays, with the exceptions of Agrisure Viptera and Agrisure Viptera 3. Exalt (first and second sprays); Lannate + Premio (first spray) and Avatar (second spray); and Karate + Match (first spray) and Ampligo (second spray) were the most effective insecticides against FAW larvae in Bt and non-Bt maize. CONCLUSION Maize plants expressing Cry proteins exhibited FAW control failures in southern Brazil, necessitating insecticidal sprays. In contrast, Bt maize containing the Vip3Aa20 protein remained effective against FAW. However, regardless of the insecticide used against FAW surviving on Bt maize, grain yields were similar. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leonardo M Burtet
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Adriano A Melo
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Maiquel P Pes
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Thiago T Strahl
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Jerson Vc Guedes
- Department of Plant Protection, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Horikoshi RJ, Bernardi D, Bernardi O, Malaquias JB, Okuma DM, Miraldo LL, Amaral FSDAE, Omoto C. Effective dominance of resistance of Spodoptera frugiperda to Bt maize and cotton varieties: implications for resistance management. Sci Rep 2016; 6:34864. [PMID: 27721425 PMCID: PMC5056508 DOI: 10.1038/srep34864] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/20/2016] [Indexed: 01/04/2023] Open
Abstract
The resistance of fall armyworm (FAW), Spodoptera frugiperda, has been characterized to some Cry and Vip3A proteins of Bacillus thuringiensis (Bt) expressed in transgenic maize in Brazil. Here we evaluated the effective dominance of resistance based on the survival of neonates from selected Bt-resistant, heterozygous, and susceptible (Sus) strains of FAW on different Bt maize and cotton varieties. High survival of strains resistant to the Cry1F (HX-R), Cry1A.105/Cry2Ab (VT-R) and Cry1A.105/Cry2Ab/Cry1F (PW-R) proteins was detected on Herculex, YieldGard VT PRO and PowerCore maize. Our Vip3A-resistant strain (Vip-R) exhibited high survival on Herculex, Agrisure Viptera and Agrisure Viptera 3 maize. However, the heterozygous from HX-R × Sus, VT-R × Sus, PW-R × Sus and Vip-R × Sus had complete mortality on YieldGard VT PRO, PowerCore, Agrisure Viptera, and Agrisure Viptera 3, whereas the HX-R × Sus and Vip-R × Sus strains survived on Herculex maize. On Bt cotton, the HX-R, VT-R and PW-R strains exhibited high survival on Bollgard II. All resistant strains survived on WideStrike, but only PW-R and Vip-R × Sus survived on TwinLink. Our study provides useful data to aid in the understanding of the effectiveness of the refuge strategy for Insect Resistance Management of Bt plants.
Collapse
Affiliation(s)
- Renato J Horikoshi
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba 13418-900, São Paulo, Brazil
| | - Daniel Bernardi
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba 13418-900, São Paulo, Brazil
| | - Oderlei Bernardi
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba 13418-900, São Paulo, Brazil
| | - José B Malaquias
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba 13418-900, São Paulo, Brazil
| | - Daniela M Okuma
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba 13418-900, São Paulo, Brazil
| | - Leonardo L Miraldo
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba 13418-900, São Paulo, Brazil
| | - Fernando S de A E Amaral
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba 13418-900, São Paulo, Brazil
| | - Celso Omoto
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Av. Pádua Dias 11, Piracicaba 13418-900, São Paulo, Brazil
| |
Collapse
|
16
|
Bernardi O, Bernardi D, Horikoshi RJ, Okuma DM, Miraldo LL, Fatoretto J, Medeiros FC, Burd T, Omoto C. Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2016; 72:1794-1802. [PMID: 26733182 DOI: 10.1002/ps.4223] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/20/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Spodoptera frugiperda is one the main target pests of maize events expressing Vip3Aa20 protein from Bacillus thuringiensis (Bt) in Brazil. In this study, we selected a resistant strain of S. frugiperda on Bt maize expressing Vip3Aa20 protein and characterized the inheritance and fitness costs of the resistance. RESULTS The resistance ratio of the Vip3Aa20-resistant strain of S. frugiperda was >3200-fold. Neonates of the Vip3Aa20-resistant strain were able to survive and emerge as fertile adults on Vip3Aa20 maize, while larvae from susceptible and heterozygous strains did not survive. The inheritance of Vip3Aa20 resistance was autosomal recessive and monogenic. Life history studies to investigate fitness cost revealed an 11% reduction in the survival rate until adult stage and a ∼50% lower reproductive rate of the Vip3Aa20-resistant strain compared with susceptible and heterozygous strains. CONCLUSION This is the first characterization of S. frugiperda resistance to Vip3Aa protein. Our results provide useful information for resistance management programs designed to prevent or delay resistance evolution to Vip3Aa proteins in S. frugiperda. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Oderlei Bernardi
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Daniel Bernardi
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Renato J Horikoshi
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Daniela M Okuma
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Leonardo L Miraldo
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | | | | | - Tony Burd
- Syngenta Crop Protection, Greensboro, NC, USA
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
17
|
Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize. PLoS One 2016; 11:e0156608. [PMID: 27243977 PMCID: PMC4887033 DOI: 10.1371/journal.pone.0156608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/17/2016] [Indexed: 01/06/2023] Open
Abstract
Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50–70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations. Implications of these findings for resistance management of S. frugiperda in Bt crops are discussed.
Collapse
|