1
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
2
|
Peirson M, Ibrahim A, Ovinge LP, Hoover SE, Guarna MM, Melathopoulos A, Pernal SF. The effects of protein supplementation, fumagillin treatment, and colony management on the productivity and long-term survival of honey bee (Apis mellifera) colonies. PLoS One 2024; 19:e0288953. [PMID: 38489327 PMCID: PMC10942092 DOI: 10.1371/journal.pone.0288953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/24/2023] [Indexed: 03/17/2024] Open
Abstract
In this study, we intensively measured the longitudinal productivity and survival of 362 commercially managed honey bee colonies in Canada, over a two-year period. A full factorial experimental design was used, whereby two treatments were repeated across apiaries situated in three distinct geographic regions: Northern Alberta, Southern Alberta and Prince Edward Island, each having unique bee management strategies. In the protein supplemented treatment, colonies were continuously provided a commercial protein supplement containing 25% w/w pollen, in addition to any feed normally provided by beekeepers in that region. In the fumagillin treatment, colonies were treated with the label dose of Fumagilin-B® each year during the fall. Neither treatment provided consistent benefits across all sites and dates. Fumagillin was associated with a large increase in honey production only at the Northern Alberta site, while protein supplementation produced an early season increase in brood production only at the Southern Alberta site. The protein supplement provided no long-lasting benefit at any site and was also associated with an increased risk of death and decreased colony size later in the study. Differences in colony survival and productivity among regions, and among colonies within beekeeping operations, were far larger than the effects of either treatment, suggesting that returns from extra feed supplements and fumagillin were highly contextually dependent. We conclude that use of fumagillin is safe and sometimes beneficial, but that beekeepers should only consider excess protein supplementation when natural forage is limiting.
Collapse
Affiliation(s)
- Michael Peirson
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Abdullah Ibrahim
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Lynae P. Ovinge
- Alberta Agriculture and Forestry, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - Shelley E. Hoover
- Alberta Agriculture and Forestry, Lethbridge Research Centre, Lethbridge, Alberta, Canada
| | - M. Marta Guarna
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| | - Andony Melathopoulos
- School for Resource and Environmental Studies, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stephen F. Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, Alberta, Canada
| |
Collapse
|
3
|
Açık MN, Karagülle B, Yakut S, Öztürk Y, Kutlu MA, Kalın R, Çetinkaya B. Production, characterization and therapeutic efficacy of egg yolk antibodies specific to Nosema ceranae. PLoS One 2024; 19:e0297864. [PMID: 38335158 PMCID: PMC10857605 DOI: 10.1371/journal.pone.0297864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/12/2024] Open
Abstract
Nosema disease, caused by Nosema ceranae, one of the single-celled fungal microsporidian parasites, is one of the most important and common diseases of adult honey bees. Since fumagillin, which has been used for decades in the control of Nosema disease in honey bees (Apis mellifera), poses a toxic threat and its efficacy against N. ceranae is uncertain, there is an urgent need to develop alternative prophylactic and curative strategies for the treatment of this disease. The main aim of this study was to investigate the therapeutic potential of specific egg yolk immunoglobulins (IgY) on Nosema disease. For this purpose, the presence of N. ceranae was determined by microscopic and PCR methods in honey bees collected from Nosema suspicious colonies by conducting a field survey. Layered Ataks chickens, divided into four groups each containing 20 animals, were vaccinated with live and inactivated vaccines prepared from field isolates of N. ceranae. Eggs were collected weekly for 10 weeks following the last vaccination. IgY extraction was performed using the PEG precipitation method from egg yolks collected from each group, and the purity of the antibodies was determined by SDS-PAGE and Western Blot. The presence of N. ceranae-specific IgYs was investigated by Western Blot and indirect ELISA methods. It was determined that specific IgYs showed high therapeutic efficacy on Nosema disease in naturally infected bee colonies. In addition, honey bees collected from infected colonies were brought to the laboratory and placed in cages with 30 bees each, and the effectiveness of IgYs was investigated under controlled conditions. It was detected that specific IgY reduced the Nosema spore load and the number of infected bees significantly in both the field and experimental study groups treated for seven days. It was concluded that chicken IgYs, an innovative and eco-friendly method, had a significant potential for use as an alternative to antifungal drugs.
Collapse
Affiliation(s)
- Mehmet Nuri Açık
- Department of Microbiology, Faculty of Veterinary Medicine, University of Bingol, Bingol, Turkiye
| | - Burcu Karagülle
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkiye
| | - Seda Yakut
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Bingol, Bingol, Turkiye
| | - Yasin Öztürk
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Necmettin Erbakan, Konya, Turkiye
| | - Mehmet Ali Kutlu
- Department of Plant and Animal Production, Vocational School of Food, Agriculture and Livestock, University of Bingol, Bingol, Turkiye
| | - Recep Kalın
- Department of Microbiology, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkiye
| | - Burhan Çetinkaya
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkiye
| |
Collapse
|
4
|
Peirson M, Pernal SF. A Systematic Review of Fumagillin Field Trials for the Treatment of Nosema Disease in Honeybee Colonies. INSECTS 2024; 15:29. [PMID: 38249035 PMCID: PMC10816105 DOI: 10.3390/insects15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
This article systematically reviews controlled field trials of fumagillin dicyclohexylamine in honeybee colonies to determine whether fumagillin effectively controls nosema and whether it is beneficial to colonies. Fifty publications were found that described controlled field trials of fumagillin in honeybee colonies between 1952 and 2023. Fumagillin consistently reduced the prevalence and severity of nosema infections. Doses applied in recent studies were similar to or below those recommended historically. Furthermore, our study showed no negative effects on colony health. Improvements in colony survival, size, and honey production have been demonstrated frequently, though not consistently, in both historic and recent studies. Nevertheless, some practices are not optimal. Treatment decision thresholds based on the number of spores per bee are not well supported by evidence and may be no better than calendar-based prophylactic treatments. In addition, reasonable recommendations to employ quarantine and disinfection procedures together with fumagillin treatment do not appear to have been widely adopted. When used as stand-alone treatments, both the fall- and spring-label doses provide benefits but may be too low and short-term to ensure full control of the disease.
Collapse
Affiliation(s)
- Michael Peirson
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| | - Stephen F. Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB T0H 0C0, Canada
| |
Collapse
|
5
|
MacInnis CI, Luong LT, Pernal SF. A tale of two parasites: Responses of honey bees infected with Nosema ceranae and Lotmaria passim. Sci Rep 2023; 13:22515. [PMID: 38110440 PMCID: PMC10728187 DOI: 10.1038/s41598-023-49189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
Nosema ceranae and Lotmaria passim are two commonly encountered digestive tract parasites of the honey bee that have been associated with colony losses in Canada, the United States, and Europe. Though honey bees can be co-infected with these parasites, we still lack basic information regarding how they impact bee health at the individual and colony level. Using locally-isolated parasite strains, we investigated the effect of single and co-infections of these parasites on individual honey bee survival, and their responsiveness to sucrose. Results showed that a single N. ceranae infection is more virulent than both single L. passim infections and co-infections. Honey bees singly infected with N. ceranae reached < 50% survival eight days earlier than those inoculated with L. passim alone, and four days earlier than those inoculated with both parasites. Honey bees infected with either one, or both, parasites had increased responsiveness to sucrose compared to uninfected bees, which could correspond to higher levels of hunger and increased energetic stress. Together, these findings suggest that N. ceranae and L. passim pose threats to bee health, and that the beekeeping industry should monitor for both parasites in an effort correlate pathogen status with changes in colony-level productivity and survival.
Collapse
Affiliation(s)
- Courtney I MacInnis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB, T0H 0C0, Canada.
| | - Lien T Luong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, AB, T0H 0C0, Canada.
| |
Collapse
|
6
|
Almeida EL, Ribiere C, Frei W, Kenny D, Coffey MF, O'Toole PW. Geographical and Seasonal Analysis of the Honeybee Microbiome. MICROBIAL ECOLOGY 2023; 85:765-778. [PMID: 35284961 PMCID: PMC9957864 DOI: 10.1007/s00248-022-01986-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/24/2022] [Indexed: 05/07/2023]
Abstract
We previously showed that colonies of thriving and non-thriving honeybees co-located in a single geographically isolated apiary harboured strikingly different microbiomes when sampled at a single time point in the honey season. Here, we profiled the microbiome in returning forager bees from 10 to 12 hives in each of 6 apiaries across the southern half of Ireland, at early, middle, and late time points in the 2019 honey production season. Despite the wide range of geographical locations and forage available, apiary site was not the strongest determinant of the honeybee microbiome. However, there was clear clustering of the honeybee microbiome by time point across all apiaries, independent of which apiary was sampled. The clustering of microbiome by time was weaker although still significant in three of the apiaries, which may be connected to their geographic location and other external factors. The potential forage effect was strongest at the second timepoint (June-July) when the apiaries also displayed greatest difference in microbiome diversity. We identified bacteria in the forager bee microbiome that correlated with hive health as measured by counts of larvae, bees, and honey production. These findings support the hypothesis that the global honeybee microbiome and its constituent species support thriving hives.
Collapse
Affiliation(s)
- Eduardo L Almeida
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| | - Celine Ribiere
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| | - Werner Frei
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland
| | - Denis Kenny
- Keeling's Farm, Food Central, St. Margaret's, Co. Dublin, K67 YC83, Ireland
| | - Mary F Coffey
- Department of Agriculture Food & the Marine, Backweston Campus, Celbridge, Co. Kildare, W23 X3PH, Ireland
| | - Paul W O'Toole
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, T12 K8AF, Ireland.
| |
Collapse
|
7
|
Heterologous expression of scFv fragment against Vairimorpha (Nosema) ceranae hexokinase in Sf9 cell culture inhibits microsporidia intracellular growth. J Invertebr Pathol 2022; 191:107755. [DOI: 10.1016/j.jip.2022.107755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022]
|
8
|
Honey bee pathogenesis posing threat to its global population: a short review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00062-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Snow JW. Nosema apis and N. ceranae Infection in Honey bees: A Model for Host-Pathogen Interactions in Insects. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:153-177. [PMID: 35544003 DOI: 10.1007/978-3-030-93306-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There has been increased focus on the role of microbial attack as a potential cause of recent declines in the health of the western honey bee, Apis mellifera. The Nosema species, N. apis and N. ceranae, are microsporidian parasites that are pathogenic to honey bees, and infection by these species has been implicated as a key factor in honey bee losses. Honey bees infected with both Nosema spp. display significant changes in their biology at the cellular, tissue, and organismal levels impacting host metabolism, immune function, physiology, and behavior. Infected individuals lead to colony dysfunction and can contribute to colony disease in some circumstances. The means through which parasite growth and tissue pathology in the midgut lead to the dramatic physiological and behavioral changes at the organismal level are only partially understood. In addition, we possess only a limited appreciation of the elements of the host environment that impact pathogen growth and development. Critical for answering these questions is a mechanistic understanding of the host and pathogen machinery responsible for host-pathogen interactions. A number of approaches are already being used to elucidate these mechanisms, and promising new tools may allow for gain- and loss-of-function experiments to accelerate future progress.
Collapse
|
10
|
MacInnis CI, Keddie BA, Pernal SF. Honey bees with a drinking problem: potential routes of Nosema ceranae spore transmission. Parasitology 2021; 149:1-8. [PMID: 35241188 PMCID: PMC10090605 DOI: 10.1017/s0031182021001827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/16/2021] [Accepted: 10/17/2021] [Indexed: 11/06/2022]
Abstract
Nosema apis and N. ceranae are the two causative agents of Nosema disease in adult honey bees (Apis mellifera L.). Nosema apis has been a recognized parasite for over a century and its epizootiology is well known. In contrast, N. ceranae is an emerging parasite of honey bees, which is now globally prevalent and the dominant Nosema spp. in many parts of the world. Despite this, many gaps in our knowledge exist regarding this species. For example, we do not fully understand all of the routes of transmission of N. ceranae among bees, or how long this parasite is capable of surviving in honey bee colonies. Here we investigated the viability and infectivity of N. ceranae spores in water and 2 M sucrose over time after storage at 33, 20, −12 and −20°C. Spores in both 2 M sucrose and water maintained high viability, except in water at −20°C over the course of the 6-week experiment. Infectivity was variable for spores after storage at all four temperatures, but all were infective at the last time point. The results provide evidence for cold tolerance and suggest that both water and 2 M sucrose (fall bee feed) could act as routes of transmission for N. ceranae. This work also contains information that may help influence management recommendations for the parasite.
Collapse
Affiliation(s)
- Courtney I. MacInnis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, Alberta, CanadaT0H 0C0
| | - B. Andrew Keddie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, CanadaT6G 2E9
| | - Stephen F. Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, P.O. Box 29, Beaverlodge, Alberta, CanadaT0H 0C0
| |
Collapse
|
11
|
Huntsman EM, Cho RM, Kogan HV, McNamara-Bordewick NK, Tomko RJ, Snow JW. Proteasome Inhibition Is an Effective Treatment Strategy for Microsporidia Infection in Honey Bees. Biomolecules 2021; 11:1600. [PMID: 34827599 PMCID: PMC8615682 DOI: 10.3390/biom11111600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
The microsporidia Nosema ceranae is an obligate intracellular parasite that causes honey bee mortality and contributes to colony collapse. Fumagillin is presently the only pharmacological control for N. ceranae infections in honey bees. Resistance is already emerging, and alternative controls are critically needed. Nosema spp. exhibit increased sensitivity to heat shock, a common proteotoxic stress. Thus, we hypothesized that targeting the Nosema proteasome, the major protease removing misfolded proteins, might be effective against N. ceranae infections in honey bees. Nosema genome analysis and molecular modeling revealed an unexpectedly compact proteasome apparently lacking multiple canonical subunits, but with highly conserved proteolytic active sites expected to be receptive to FDA-approved proteasome inhibitors. Indeed, N. ceranae were strikingly sensitive to pharmacological disruption of proteasome function at doses that were well tolerated by honey bees. Thus, proteasome inhibition is a novel candidate treatment strategy for microsporidia infection in honey bees.
Collapse
Affiliation(s)
- Emily M. Huntsman
- Biology Department, Barnard College, New York, NY 10027, USA; (E.M.H.); (R.M.C.); (H.V.K.); (N.K.M.-B.)
| | - Rachel M. Cho
- Biology Department, Barnard College, New York, NY 10027, USA; (E.M.H.); (R.M.C.); (H.V.K.); (N.K.M.-B.)
| | - Helen V. Kogan
- Biology Department, Barnard College, New York, NY 10027, USA; (E.M.H.); (R.M.C.); (H.V.K.); (N.K.M.-B.)
| | | | - Robert J. Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA;
| | - Jonathan W. Snow
- Biology Department, Barnard College, New York, NY 10027, USA; (E.M.H.); (R.M.C.); (H.V.K.); (N.K.M.-B.)
| |
Collapse
|
12
|
Rodríguez-García C, Heerman MC, Cook SC, Evans JD, DeGrandi-Hoffman G, Banmeke O, Zhang Y, Huang S, Hamilton M, Chen YP. Transferrin-mediated iron sequestration suggests a novel therapeutic strategy for controlling Nosema disease in the honey bee, Apis mellifera. PLoS Pathog 2021; 17:e1009270. [PMID: 33600478 PMCID: PMC7891791 DOI: 10.1371/journal.ppat.1009270] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 01/02/2023] Open
Abstract
Nosemosis C, a Nosema disease caused by microsporidia parasite Nosema ceranae, is a significant disease burden of the European honey bee Apis mellifera which is one of the most economically important insect pollinators. Nevertheless, there is no effective treatment currently available for Nosema disease and the disease mechanisms underlying the pathological effects of N. ceranae infection in honey bees are poorly understood. Iron is an essential nutrient for growth and survival of hosts and pathogens alike. The iron tug-of-war between host and pathogen is a central battlefield at the host-pathogen interface which determines the outcome of an infection, however, has not been explored in honey bees. To fill the gap, we conducted a study to investigate the impact of N. ceranae infection on iron homeostasis in honey bees. The expression of transferrin, an iron binding and transporting protein that is one of the key players of iron homeostasis, in response to N. ceranae infection was analysed. Furthermore, the functional roles of transferrin in iron homeostasis and honey bee host immunity were characterized using an RNA interference (RNAi)-based method. The results showed that N. ceranae infection causes iron deficiency and upregulation of the A. mellifera transferrin (AmTsf) mRNA in honey bees, implying that higher expression of AmTsf allows N. ceranae to scavenge more iron from the host for its proliferation and survival. The suppressed expression levels of AmTsf via RNAi could lead to reduced N. ceranae transcription activity, alleviated iron loss, enhanced immunity, and improved survival of the infected bees. The intriguing multifunctionality of transferrin illustrated in this study is a significant contribution to the existing body of literature concerning iron homeostasis in insects. The uncovered functional role of transferrin on iron homeostasis, pathogen growth and honey bee's ability to mount immune responses may hold the key for the development of novel strategies to treat or prevent diseases in honey bees.
Collapse
Affiliation(s)
| | - Matthew C. Heerman
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Steven C. Cook
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | | | - Olubukola Banmeke
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Yi Zhang
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- Guangdong Institute of Applied Biological Resources, Guangzhou, Guangdong Province, China
| | - Shaokang Huang
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
- College of Animal Sciences (Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
13
|
Kunat M, Wagner GK, Staniec B, Jaszek M, Matuszewska A, Stefaniuk D, Ptaszyńska AA. Aqueous extracts of jet-black ant Lasius fuliginosus nests for controlling nosemosis, a disease of honeybees caused by fungi of the genus Nosema. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1845405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M. Kunat
- Department of Immunobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - G. K. Wagner
- Department of Zoology and Environmental Conservation, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - B. Staniec
- Department of Zoology and Environmental Conservation, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - M. Jaszek
- Chair of Biochemistry and Biotechnology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - A. Matuszewska
- Chair of Biochemistry and Biotechnology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - D. Stefaniuk
- Chair of Biochemistry and Biotechnology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - A. A. Ptaszyńska
- Department of Immunobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
14
|
Seasonality of Nosema ceranae Infections and Their Relationship with Honey Bee Populations, Food Stores, and Survivorship in a North American Region. Vet Sci 2020; 7:vetsci7030131. [PMID: 32911814 PMCID: PMC7558054 DOI: 10.3390/vetsci7030131] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 01/26/2023] Open
Abstract
Nosema ceranae is an emerging pathogen of the western honey bee (Apis mellifera L.), and thus its seasonality and impact on bee colonies is not sufficiently documented for North America. This study was conducted to determine the infection intensity, prevalence, and viability of N. ceranae in >200 honey bee colonies during spring, summer, and fall, in a North American region. We also determined the relationship of N. ceranae infections with colony populations, food stores, bee survivorship, and overwinter colony mortality. The highest rates of N. ceranae infection, prevalence, and spore viability were found in the spring and summer, while the lowest were recorded in the fall. N. ceranae spore viability was significantly correlated with its prevalence and infection intensity in bees. Threshold to high levels of N. ceranae infections (>1,000,000 spores/bee) were significantly associated with reduced bee populations and food stores in colonies. Furthermore, worker bee survivorship was significantly reduced by N. ceranae infections, although no association between N. ceranae and winter colony mortality was found. It is concluded that N. ceranae infections are highest in spring and summer and may be detrimental to honey bee populations and colony productivity. Our results support the notion that treatment is justified when infections of N. ceranae exceed 1,000,000 spores/bee.
Collapse
|
15
|
Döke MA, McGrady CM, Otieno M, Grozinger CM, Frazier M. Colony Size, Rather Than Geographic Origin of Stocks, Predicts Overwintering Success in Honey Bees (Hymenoptera: Apidae) in the Northeastern United States. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:525-533. [PMID: 30566679 DOI: 10.1093/jee/toy377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Indexed: 06/09/2023]
Abstract
Honey bees (Apis mellifera L.) are key pollinators of agricultural crops. However, approximately 30% of managed colonies die each winter in the United States. There has been great interest in breeding for 'locally adapted stocks' which survive winter conditions in a particular region. Here, we evaluate the impact of geographic origin of stock on colony weight, population size, and overwintering survival. Comparing four different U.S. honey bee stocks (two bred in southern and two bred in northern regions) under standard beekeeping practices in three different apiary locations in central Pennsylvania, we examined possible adaptation of these stocks to temperate conditions. We confirmed the genotypic difference among the stocks from different geographic origins via microsatellite analysis. We found that stock or region of origin was not correlated with weight, population size, or overwintering success. However, overwintering success was influenced by the weight and population size the colonies reached prior to winter where higher colony weight is a strong predictor of overwintering survival. Although the number of locations used in this study was limited, the difference in average colony sizes from different locations may be attributable to the abundance and diversity of floral resources near the honey bee colonies. Our results suggest that 1) honey bees may use similar strategies to cope with environmental conditions in both southern and northern regions, 2) colonies must reach a population size threshold to survive adverse conditions (an example of the Allee effect), and 3) landscape nutrition is a key component to colony survival.
Collapse
Affiliation(s)
- Mehmet Ali Döke
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, PA
| | - Carley M McGrady
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, PA
| | - Mark Otieno
- Agricultural Resource Management, Embu University College, Nairobi, Embu, Kenya
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, PA
| | - Maryann Frazier
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, PA
| |
Collapse
|
16
|
Snow JW, Ceylan Koydemir H, Karinca DK, Liang K, Tseng D, Ozcan A. Rapid imaging, detection, and quantification of Nosema ceranae spores in honey bees using mobile phone-based fluorescence microscopy. LAB ON A CHIP 2019; 19:789-797. [PMID: 30719512 DOI: 10.1039/c8lc01342j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent declines in honey bee colonies in the United States have put increased strain on agricultural pollination. Nosema ceranae and Nosema apis, are microsporidian parasites that are highly pathogenic to honey bees and have been implicated as a factor in honey bee losses. While traditional methods for quantifying Nosema infection have high sensitivity and specificity, there is no field-portable device for field measurements by beekeepers. Here we present a field-portable and cost-effective smartphone-based platform for detection and quantification of chitin-positive Nosema spores in honey bees. The handheld platform, weighing only 374 g, consists of a smartphone-based fluorescence microscope, a custom-developed smartphone application, and an easy to perform sample preparation protocol. We tested the performance of the platform using samples at different parasite concentrations and compared the method with manual microscopic counts and qPCR quantification. We demonstrated that this device provides results that are comparable with other methods, having a limit of detection of 0.5 × 106 spores per bee. Thus, the assay can easily identify infected colonies and provide accurate quantification of infection levels requiring treatment of infection, suggesting that this method is potentially adaptable for diagnosis of Nosema infection in the field by beekeepers. Coupled with treatment recommendations, this protocol and smartphone-based optical platform could improve the diagnosis and treatment of nosemosis in bees and provide a powerful proof-of-principle for the use of such mobile diagnostics as useful analytical tools for beekeepers in resource-limited settings.
Collapse
Affiliation(s)
- Jonathan W Snow
- Department of Biology, Barnard College, New York, NY 10027, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Rodríguez-García C, Evans JD, Li W, Branchiccela B, Li JH, Heerman MC, Banmeke O, Zhao Y, Hamilton M, Higes M, Martín-Hernández R, Chen YP. Nosemosis control in European honey bees, Apis mellifera, by silencing the gene encoding Nosema ceranae polar tube protein 3. ACTA ACUST UNITED AC 2018; 221:jeb.184606. [PMID: 30135088 DOI: 10.1242/jeb.184606] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/10/2018] [Indexed: 01/03/2023]
Abstract
RNA interference (RNAi) is a post-transcriptional gene silencing mechanism triggered by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene and is conserved in a wide range of eukaryotic organisms. The RNAi mechanism has provided unique opportunities for combating honey bee diseases caused by various parasites and pathogens. Nosema ceranae is a microsporidian parasite of European honey bees, Apis mellifera, and has been associated with honey bee colony losses in some regions of the world. Here we explored the possibility of silencing the expression of a N. ceranae putative virulence factor encoding polar tube protein 3 (ptp3) which is involved in host cell invasion as a therapeutic strategy for controlling Nosema parasites in honey bees. Our studies showed that the oral ingestion of a dsRNA corresponding to the sequences of N. ceranae ptp3 could effectively suppress the expression of the ptp3 gene in N. ceranae-infected bees and reduce Nosema load. In addition to the knockdown of ptp3 gene expression, ingestion of ptp3-dsRNA also led to improved innate immunity in bees infected with N. ceranae along with an improvement in physiological performance and lifespan compared with untreated control bees. These results strongly suggest that RNAi-based therapeutics hold real promise for the effective treatment of honey bee diseases in the future, and warrant further investigation.
Collapse
Affiliation(s)
- Cristina Rodríguez-García
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA.,Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Wenfeng Li
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Belén Branchiccela
- Instituto de Investigaciones Biológicas Clemente Estable, Department of Microbiology, Avda Italia 3318, 11600 Montevideo, Uruguay
| | - Jiang Hong Li
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Matthew C Heerman
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Olubukola Banmeke
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Yazhou Zhao
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Michele Hamilton
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| | - Mariano Higes
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain
| | - Raquel Martín-Hernández
- Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental, IRIAF, Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, 19180, Marchamalo, Spain.,Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Albacete, 02006 Albacete, Spain
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Bldg 306, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
18
|
Donahue KL, Broadley HJ, Elkinton JS, Burand JP, Huang W, Andersen JC. Using the
SSU
,
ITS
, and Ribosomal
DNA
Operon Arrangement to Characterize Two Microsporidia Infecting Bruce Spanworm,
Operophtera bruceata
(Lepidoptera: Geometridae). J Eukaryot Microbiol 2018; 66:424-434. [DOI: 10.1111/jeu.12685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Katelyn L. Donahue
- Biology Department University of Massachusetts Amherst Massachusetts 01003 USA
- Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth Lebanon New Hampshire 03756 USA
| | - Hannah J. Broadley
- Graduate Program in Organismic and Evolutionary Biology University of Massachusetts Amherst Massachusetts 01003 USA
| | - Joseph S. Elkinton
- Graduate Program in Organismic and Evolutionary Biology University of Massachusetts Amherst Massachusetts 01003 USA
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts 01003 USA
| | - John P. Burand
- Microbiology Department University of Massachusetts Amherst Massachusetts 01003 USA
| | - Wei‐Fone Huang
- College of Bee Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Jeremy C. Andersen
- Department of Environmental Conservation University of Massachusetts Amherst Massachusetts 01003 USA
| |
Collapse
|
19
|
Holt HL, Villar G, Cheng W, Song J, Grozinger CM. Molecular, physiological and behavioral responses of honey bee (Apis mellifera) drones to infection with microsporidian parasites. J Invertebr Pathol 2018; 155:14-24. [PMID: 29705058 DOI: 10.1016/j.jip.2018.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 04/02/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Susceptibility to pathogens and parasites often varies between sexes due to differences in life history traits and selective pressures. Nosema apis and Nosema ceranae are damaging intestinal pathogens of European honey bees (Apis mellifera). Nosema pathology has primarily been characterized in female workers where infection is energetically costly and accelerates worker behavioral maturation. Few studies, however, have examined infection costs in male honey bees (drones) to determine if Nosema similarly affects male energetic status and sexual maturation. We infected newly emerged adult drones with Nosema spores and conducted a series of molecular, physiological, and behavioral assays to characterize Nosema etiology in drones. We found that infected drones starved faster than controls and exhibited altered patterns of flight activity in the field, consistent with energetic distress or altered rates of sexual maturation. Moreover, expression of candidate genes with metabolic and/or hormonal functions, including members of the insulin signaling pathway, differed by infection status. Of note, while drone molecular responses generally tracked predictions based on worker studies, several aspects of infected drone flight behavior contrasted with previous observations of infected workers. While Nosema infection clearly imposed energetic costs in males, infection had no impact on drone sperm numbers and had only limited effects on antennal responsiveness to a major queen sex pheromone component (9-ODA). We compare Nosema pathology in drones with previous studies describing symptoms in workers and discuss ramifications for drone and colony fitness.
Collapse
Affiliation(s)
- Holly L Holt
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA.
| | - Gabriel Villar
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Weiyi Cheng
- Department of Educational Psychology, Counseling and Special Education, Pennsylvania State University, University Park, USA
| | - Jun Song
- Department of Mathematics and Statistics, University of North Carolina, Charlotte, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| |
Collapse
|
20
|
Porrini MP, Porrini LP, Garrido PM, de Melo E Silva Neto C, Porrini DP, Muller F, Nuñez LA, Alvarez L, Iriarte PF, Eguaras MJ. Nosema ceranae in South American Native Stingless Bees and Social Wasp. MICROBIAL ECOLOGY 2017; 74:761-764. [PMID: 28389730 DOI: 10.1007/s00248-017-0975-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
Besides the incipient research effort, the role of parasites as drivers of the reduction affecting pollinator populations is mostly unknown. Given the worldwide extension of the beekeeping practice and the diversity of pathogens affecting Apis mellifera populations, honey bee colonies are a certain source of parasite dispersion to other species. Here, we communicate the detection of the microsporidium Nosema ceranae, a relatively new parasite of honey bees, in stingless bees (Meliponini) and the social wasp Polybia scutellaris (Vespidae) samples from Argentina and Brazil by means of duplex PCR. Beyond the geographic location of the nests, N. ceranae was detected in seven from the eight Meliponini species analyzed, while Nosema apis, another common parasite of A. mellifera, was absent in all samples tested. Further research is necessary to determine if the presence of the parasite is also associated with established infection in host tissues. The obtained information enriches the current knowledge about pathologies that can infect or, at least, be vectored by native wild pollinators from South America.
Collapse
Affiliation(s)
- Martín Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina.
| | - Leonardo Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| | - Carlos de Melo E Silva Neto
- Instituto Federal de Educação, Ciência e Tecnólogia de Goiás, Quartel do XX, Praça Brasil Ramos Caiado, 76600.000, Goiás, Brazil
| | - Darío Pablo Porrini
- GENEBSO, INBIOTEC, UNMdP, CONICET, Funes 3350, 7600, Mar del Plata, Argentina
| | - Fernando Muller
- Centro de Cría y mejoramiento de abejas "Erich Karl Faltus", N° 111009, Calle J. M. Estrada N°210, N3233, Capioví, Argentina
| | - Laura Alejandra Nuñez
- Laboratorio de Industrias Alimenticias, Universidad Nacional del Chaco Austral, Cdte. Fernandez 755, 3700, Pres. R. Sáenz Peña, Argentina
| | - Leopoldo Alvarez
- División Entomología, Museo de La Plata, CONICET, Universidad Nacional de La Plata, Edificio Anexo Museo, Unidades de Investigación FCN yM, 122 y 60, 1900FWA, La Plata, Argentina
| | - Pedro Fernandez Iriarte
- Laboratorio de Genética, Dto. de Biología, CONICET, UNMdP, Funes 3350, 7600, Mar del Plata, Argentina
| | - Martín Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Facultad de Ciencias Exactas y Naturales, CONICET, Universidad Nacional de Mar del Plata, Funes 3350, 7600, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
21
|
Mendoza Y, Diaz-Cetti S, Ramallo G, Santos E, Porrini M, Invernizzi C. Nosema ceranae Winter Control: Study of the Effectiveness of Different Fumagillin Treatments and Consequences on the Strength of Honey Bee (Hymenoptera: Apidae) Colonies. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1-5. [PMID: 28025388 DOI: 10.1093/jee/tow228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OVERVIEW In Uruguay, colonies of honey bees moving to Eucalyptus grandis plantation in autumn habitually become infected with the microsporidian Nosema ceranae , a parasite that attacks the digestive system of bees. Beekeepers attributed to N. ceranae depopulation of the colonies that often occurs at the end of the blooming period, and many use the antibiotic fumagillin to reduce the level of infection. The aim of this study was to compare the effectiveness of four different fumagillin treatments and determine how this antibiotic affects the strength of the colonies during the winter season. The colonies treated with fumagillin in July showed less spore load at the end of applications, being the most effective the following treatments: the four applications sprayed over bees of 30 mg of fumagillin in 100 ml of sugar syrup 1:1, and four applications of 90 mg of fumagillin in 250 ml of sugar syrup 1:1 using a feeder. However, 2 month after the treatment applications, the colonies treated with fumagillin were the same size as the untreated colonies. In September, the colonies treated and not treated with fumagillin did not differ in colony strength (adult bee population and brood area) or spores abundance. Our study demonstrates that fumagillin treatment temporarily decreased the spore load of N. ceranae , but this was not reflected in either the size of the colonies or the probability of surviving the winter regardless of the dose or the administration strategy applied. Given the results obtained, we suggest to not perform the pharmacological treatment under the conditions described in the experiment. RESUMEN En Uruguay las colonias de abejas melíferas que se trasladan a las forestaciones de Eucalyptus grandis en otoño indefectiblemente se infectan con el microsporido Nosema ceranae , parásito que ataca el sistema digestivo de las abejas. Los apicultores atribuyen a N. ceranae el despoblamiento de las colonias que ocurre con frecuencia al terminar el periodo de floración y muchos emplean el antibiótico fumagilina para reducir el nivel de infección. El objetivo de este estudio fue comparar la eficacia de cuatro tratamientos diferentes con fumagilina y determinar cómo incide en la fortaleza de las colonias durante la invernada. Las colonias tratadas con fumagilina en julio presentaron una menor carga de esporas al terminar las aplicaciones, siendo los tratamientos más eficaces el de 4 aplicaciones mediante asperjado sobre las abejas de 30 mg de fumagilina en 100 ml de jarabe de azúcar 1:1, y el de 4 aplicaciones de 90 mg de fumagilina en 250 ml de jarabe de azúcar 1:1 utilizando un alimentador. Sin embargo, durante el período de experimentación, las colonias tratadas con antibiótico presentaron igual tamaño que las colonias no tratadas. En setiembre, las colonias tratadas y no tratadas con fumagilina no se diferenciaron en la intensidad de infección ni en su tamaño. En las condiciones en que se realizó el estudio, la aplicación de fumagilina disminuyó temporalmente la carga de esporas de N. ceranae pero esto no se reflejó en el tamaño de las colonias ni en la probabilidad de sobrevivir el invierno.
Collapse
Affiliation(s)
- Y Mendoza
- Instituto Nacional de Investigación Agropecuaria, Apicultura, Uruguay
| | - S Diaz-Cetti
- Instituto Nacional de Investigación Agropecuaria, Apicultura, Uruguay
| | - G Ramallo
- Instituto Nacional de Investigación Agropecuaria, Apicultura, Uruguay
| | - E Santos
- Sección Etología, Facultad de Ciencias, Universidad de la República, Uruguay
| | - M Porrini
- Departamento de Biología, Centro de Investigación en Abejas Sociales, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - C Invernizzi
- Sección Etología, Facultad de Ciencias, Universidad de la República, Uruguay
| |
Collapse
|
22
|
Trapp J, McAfee A, Foster LJ. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees. Mol Ecol 2017; 26:718-739. [DOI: 10.1111/mec.13986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Judith Trapp
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Alison McAfee
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology; Michael Smith Laboratories; University of British Columbia; 2125 East Mall Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
23
|
Silencing the Honey Bee (Apis mellifera) Naked Cuticle Gene (nkd) Improves Host Immune Function and Reduces Nosema ceranae Infections. Appl Environ Microbiol 2016; 82:6779-6787. [PMID: 27613683 DOI: 10.1128/aem.02105-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/06/2016] [Indexed: 11/20/2022] Open
Abstract
Nosema ceranae is a new and emerging microsporidian parasite of European honey bees, Apis mellifera, that has been implicated in colony losses worldwide. RNA interference (RNAi), a posttranscriptional gene silencing mechanism, has emerged as a potent and specific strategy for controlling infections of parasites and pathogens in honey bees. While previous studies have focused on the silencing of parasite/pathogen virulence factors, we explore here the possibility of silencing a host factor as a mechanism for reducing parasite load. Specifically, we used an RNAi strategy to reduce the expression of a honey bee gene, naked cuticle (nkd), which is a negative regulator of host immune function. Our studies found that nkd mRNA levels in adult bees were upregulated by N. ceranae infection (and thus, the parasite may use this mechanism to suppress host immune function) and that ingestion of double-stranded RNA (dsRNA) specific to nkd efficiently silenced its expression. Furthermore, we found that RNAi-mediated knockdown of nkd transcripts in Nosema-infected bees resulted in upregulation of the expression of several immune genes (Abaecin, Apidaecin, Defensin-1, and PGRP-S2), reduction of Nosema spore loads, and extension of honey bee life span. The results of our studies clearly indicate that silencing the host nkd gene can activate honey bee immune responses, suppress the reproduction of N. ceranae, and improve the overall health of honey bees. This study represents a novel host-derived therapeutic for honey bee disease treatment that merits further exploration. IMPORTANCE Given the critical role of honey bees in the pollination of agricultural crops, it is urgent to develop strategies to prevent the colony decline induced by the infection of parasites/pathogens. Targeting parasites and pathogens directly by RNAi has been proven to be useful for controlling infections in honey bees, but little is known about the disease impacts of RNAi silencing of host factors. Here, we demonstrate that knocking down the honey bee immune repressor-encoding nkd gene can suppress the reproduction of N. ceranae and improve the overall health of honey bees, which highlights the potential role of host-derived and RNAi-based therapeutics in controlling the infections in honey bees. The information obtained from this study will have positive implications for honey bee disease management practices.
Collapse
|