1
|
Ghosh C, Soumya M, Kumar N, Kumar R C, Joshi SG, Kumar S, Subramani S, Swain S. Aeroplane wing, a new recessive autosomal phenotypic marker in the malaria vector, Anopheles stephensi Liston. Heliyon 2024; 10:e23693. [PMID: 38187285 PMCID: PMC10770597 DOI: 10.1016/j.heliyon.2023.e23693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
A novel and distinct mutant with a phenotype, aeroplane wing (ae) is reported for the first time in the urban malaria vector Anopheles stephensi. The main aim of this study was to establish the mode of inheritance of the ae gene performing genetic crossings between the mutants and wild types. These mutants show extended open wings that are visible to naked eyes in both the sexes. Mutants were first noticed in a nutritionally stressed isofemale colony. Strategic genetic crosses revealed that the ae gene is a recessive, autosomal, and monogenic trait having full penetrance with uniform expression in its adult stage. Egg morphometric analysis confirmed that these mutants were intermediate variant. No significant differences were observed in the wing venation and size of ae mutants compared to their control parental lines. Further cytogenetic analysis on the ovarian polytene chromosome of ae mutant showed an inversion (3Li) on the 3L arm like its parental line. This ae mutant would be a prominent marker and could be useful to study the functions of related specific genes within its genome.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - M. Soumya
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Naveen Kumar
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Chethan Kumar R
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Soumya Gopal Joshi
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sampath Kumar
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | - Sunita Swain
- Tata Institute for Genetics and Society, Centre at inStem – GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
2
|
Srinivasan S, Ghosh C, Das S, Thakare A, Singh S, Ganesh A, Mahawar H, Jaisimha A, Krishna M, Chattopadhyay A, Borah R, Singh V, M S, Kumar N, Kumar S, Swain S, Subramani S. Identification of a TNF-TNFR-like system in malaria vectors (Anopheles stephensi) likely to influence Plasmodium resistance. Sci Rep 2022; 12:19079. [PMID: 36351999 PMCID: PMC9646898 DOI: 10.1038/s41598-022-23780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Identification of Plasmodium-resistance genes in malaria vectors remains an elusive goal despite the recent availability of high-quality genomes of several mosquito vectors. Anopheles stephensi, with its three distinctly-identifiable forms at the egg stage, correlating with varying vector competence, offers an ideal species to discover functional mosquito genes implicated in Plasmodium resistance. Recently, the genomes of several strains of An. stephensi of the type-form, known to display high vectorial capacity, were reported. Here, we report a chromosomal-level assembly of an intermediate-form of An. stephensi strain (IndInt), shown to have reduced vectorial capacity relative to a strain of type-form (IndCh). The contig level assembly with a L50 of 4 was scaffolded into chromosomes by using the genome of IndCh as the reference. The final assembly shows a heterozygous paracentric inversion, 3Li, involving 8 Mbp, which is syntenic to the extensively-studied 2La inversion implicated in Plasmodium resistance in An. gambiae involving 21 Mbp. Deep annotation of genes within the 3Li region in the IndInt assembly using the state-of-the-art protein-fold prediction and other annotation tools reveals the presence of a tumor necrosis factor-alpha (TNF-alpha) like gene, which is the homolog of the Eiger gene in Drosophila. Subsequent chromosome-wide searches revealed homologs of Wengen (Wgn) and Grindelwald (Grnd) genes, which are known to be the receptors for Eiger in Drosophila. We have identified all the genes in IndInt required for Eiger-mediated signaling by analogy to the TNF-alpha system, suggesting the presence of a functionally-active Eiger signaling pathway in IndInt. Comparative genomics of the three type-forms with that of IndInt, reveals structurally disruptive mutations in Eiger gene in all three strains of the type-form, suggesting compromised innate immunity in the type-form as the likely cause of high vectorial capacity in these strains. This is the first report of the presence of a homolog of Eiger in malaria vectors, known to be involved in cell death in Drosophila, within an inversion region in IndInt syntenic to an inversion associated with Plasmodium resistance in An. gambiae.
Collapse
Affiliation(s)
- Subhashini Srinivasan
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Chaitali Ghosh
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Shrestha Das
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aditi Thakare
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Siddharth Singh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Apoorva Ganesh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Harsh Mahawar
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aadhya Jaisimha
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Mohanapriya Krishna
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Aritra Chattopadhyay
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Rishima Borah
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Vikrant Singh
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bengaluru, 560100 India
| | - Soumya M
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Naveen Kumar
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Sampath Kumar
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Sunita Swain
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society (TIGS), Center at inStem, Bellary Road, GKVK Campus, Bengaluru, 560065 India
| | - Suresh Subramani
- grid.266100.30000 0001 2107 4242TIGS, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
3
|
Lukyanchikova V, Nuriddinov M, Belokopytova P, Taskina A, Liang J, Reijnders MJMF, Ruzzante L, Feron R, Waterhouse RM, Wu Y, Mao C, Tu Z, Sharakhov IV, Fishman V. Anopheles mosquitoes reveal new principles of 3D genome organization in insects. Nat Commun 2022; 13:1960. [PMID: 35413948 PMCID: PMC9005712 DOI: 10.1038/s41467-022-29599-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
Chromosomes are hierarchically folded within cell nuclei into territories, domains and subdomains, but the functional importance and evolutionary dynamics of these hierarchies are poorly defined. Here, we comprehensively profile genome organizations of five Anopheles mosquito species and show how different levels of chromatin architecture influence each other. Patterns observed on Hi-C maps are associated with known cytological structures, epigenetic profiles, and gene expression levels. Evolutionary analysis reveals conservation of chromatin architecture within synteny blocks for tens of millions of years and enrichment of synteny breakpoints in regions with increased genomic insulation. However, in-depth analysis shows a confounding effect of gene density on both insulation and distribution of synteny breakpoints, suggesting limited causal relationship between breakpoints and regions with increased genomic insulation. At the level of individual loci, we identify specific, extremely long-ranged looping interactions, conserved for ~100 million years. We demonstrate that the mechanisms underlying these looping contacts differ from previously described Polycomb-dependent interactions and clustering of active chromatin.
Collapse
Affiliation(s)
- Varvara Lukyanchikova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Miroslav Nuriddinov
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Alena Taskina
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Jiangtao Liang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Yang Wu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Chunhong Mao
- Biocomplexity Institute & Initiative, University of Virginia, Charlottesville, VA, 22911, USA
| | - Zhijian Tu
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
- Department of Genetics and Cell Biology, Tomsk State University, Tomsk, Russia.
| | - Veniamin Fishman
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
- AIRI, Moscow, Russia.
| |
Collapse
|
4
|
The genome trilogy of Anopheles stephensi, an urban malaria vector, reveals structure of a locus associated with adaptation to environmental heterogeneity. Sci Rep 2022; 12:3610. [PMID: 35246568 PMCID: PMC8897464 DOI: 10.1038/s41598-022-07462-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
Anopheles stephensi is the most menacing malaria vector to watch for in newly urbanising parts of the world. Its fitness is reported to be a direct consequence of the vector adapting to laying eggs in over-head water tanks with street-side water puddles polluted by oil and sewage. Large frequent inversions in the genome of malaria vectors are implicated in adaptation. We report the genome assembly of a strain of An. stephensi of the type-form, collected from a construction site from Chennai (IndCh) in 2016. The genome reported here with a L50 of 4, completes the trilogy of high-resolution genomes of strains with respect to a 16.5 Mbp 2Rb genotype in An. stephensi known to be associated with adaptation to environmental heterogeneity. Unlike the reported genomes of two other strains, STE2 (2R+b/2Rb) and UCI (2Rb/2Rb), IndCh is found to be homozygous for the standard form (2R+b/2R+b). Comparative genome analysis revealed base-level details of the breakpoints and allowed extraction of 22,650 segregating SNPs for typing this inversion in populations. Whole genome sequencing of 82 individual mosquitoes from diverse geographical locations reveal that one third of both wild and laboratory populations maintain the heterozygous genotype of 2Rb. The large number of SNPs can be tailored to 1740 exonic SNPs enabling genotyping directly from transcriptome sequencing. The genome trilogy approach accelerated the study of fine structure and typing of an important inversion in An. stephensi, putting the genome resources for this understudied species on par with the extensively studied malaria vector, Anopheles gambiae. We argue that the IndCh genome is relevant for field translation work compared to those reported earlier by showing that individuals from diverse geographical locations cluster with IndCh, pointing to significant convergence resulting from travel and commerce between cities, perhaps, contributing to the survival of the fittest strain.
Collapse
|
5
|
Chiu M, Trigg B, Taracena M, Wells M. Diverse cellular morphologies during lumen maturation in Anopheles gambiae larval salivary glands. INSECT MOLECULAR BIOLOGY 2021; 30:210-230. [PMID: 33305876 PMCID: PMC8142555 DOI: 10.1111/imb.12689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/29/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Mosquitoes are the greatest animal threat to human health, causing hundreds of millions of infections and around 1 million deaths each year. All mosquito-borne pathogens must traverse the salivary glands (SGs) to be transmitted to the next host, making this organ an ideal target for interventions. The adult SG develops from precursor cells located in the larval SG duct bud. Characterization of the larval SG has been limited. We sought to better understand larval SG architecture, secretion and gene expression. We developed an optimized method for larval SG staining and surveyed hundreds of larval stage 4 (L4) SGs using fluorescence confocal microscopy. Remarkable variation in SG cell and chromatin organization differed among individuals and across the L4 stage. Lumen formation occurred during L4 stage through secretion likely involving a coincident cellular apical lipid enrichment and extracellular vesicle-like structures. Meta-analysis of microarray data showed that larval SG gene expression is divergent from adult SGs, more similar to larval gastric cecae, but different from other larval gut compartments. This work highlights the variable cell architecture of larval Anopheles gambiae SGs and provides candidate targets for genetic strategies aiming to disrupt SGs and transmission of mosquito-borne pathogens.
Collapse
Affiliation(s)
- M Chiu
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - B Trigg
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Taracena
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - M Wells
- Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Johns Hopkins Malaria Research Institute, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Biomedical Sciences, Idaho College of Osteopathic Medicine (ICOM), Meridian, Idaho, USA
| |
Collapse
|
6
|
Ernetti JR, Gazolla CB, Recco-Pimentel SM, Luca EM, Bruschi DP. Non-random distribution of microsatellite motifs and (TTAGGG)n repeats in the monkey frog Pithecopus rusticus (Anura, Phyllomedusidae) karyotype. Genet Mol Biol 2020; 42:e20190151. [PMID: 31968045 PMCID: PMC7198017 DOI: 10.1590/1678-4685-gmb-2019-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023] Open
Abstract
The monkey frog, Pithecopus rusticus (Anura, Phyllomedusidae) is endemic to the grasslands of the Araucarias Plateau, southern Brazil. This species is known only from a small population found at the type locality. Here, we analyzed for the first time the chromosomal organization of the repetitive sequences, including seven microsatellite repeats and telomeric sequences (TTAGGG)n in the karyotype of the species by Fluorescence in situ Hybridization. The dinucleotide motifs had a pattern of distribution clearly distinct from those of the tri- and tetranucleotides. The dinucleotide motifs are abundant and widely distributed in the chromosomes, located primarily in the subterminal regions. The tri- and tetranucleotides, by contrast, tend to be clustered, with signals being observed together in the secondary constriction of the homologs of pair 9, which are associated with the nucleolus organizer region. As expected, the (TTAGGG)n probe was hybridized in all the telomeres, with hybridization signals being detected in the interstitial regions of some chromosome pairs. We demonstrated the variation in the abundance and distribution of the different microsatellite motifs and revealed their non-random distribution in the karyotype of P. rusticus. These data contribute to understand the role of repetitive sequences in the karyotype diversification and evolution of this taxon.
Collapse
Affiliation(s)
- Julia R Ernetti
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Exatas e Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
| | - Camilla B Gazolla
- Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Shirlei M Recco-Pimentel
- Departamento de Biologia Estrutural e Funcional, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Elaine M Luca
- Programa de Pós-graduação em Ciências Ambientais, Área de Ciências Exatas e Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, SC, Brazil
- Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria, Campus de Palmeira das Missões, Palmeira das Missões, RS, Brazil
| | - Daniel P Bruschi
- Programa de Pós-graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
7
|
Artemov GN, Velichevskaya AI, Bondarenko SM, Karagyan GH, Aghayan SA, Arakelyan MS, Stegniy VN, Sharakhov IV, Sharakhova MV. A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi. Malar J 2018; 17:276. [PMID: 30060747 PMCID: PMC6065146 DOI: 10.1186/s12936-018-2428-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 08/10/2023] Open
Abstract
Background Anopheles sacharovi is a dominant malaria vector species in South Europe and the Middle East which has a highly plastic behaviour at both adult and larval stages. Such plasticity has prevented this species from eradication by several anti-vector campaigns. The development of new genome-based strategies for vector control will benefit from genome sequencing and physical chromosome mapping of this mosquito. Although a cytogenetic photomap for chromosomes from salivary glands of An. sacharovi has been developed, no cytogenetic map suitable for physical genome mapping is available. Methods Mosquitoes for this study were collected at adult stage in animal shelters in Armenia. Polytene chromosome preparations were prepared from ovarian nurse cells. Fluorescent in situ hybridization (FISH) was performed using PCR amplified probes. Results This study constructed a high-quality standard photomap for polytene chromosomes from ovarian nurse cells of An. sacharovi. Following the previous nomenclature, chromosomes were sub-divided into 39 numbered and 119 lettered sub-divisions. Chromosomal landmarks for the chromosome recognition were described. Using FISH, 4 PCR-amplified genic probes were mapped to the chromosomes. The positions of the probes demonstrated gene order reshuffling between An. sacharovi and Anopheles atroparvus which has not been seen cytologically. In addition, this study described specific chromosomal landmarks that can be used for the cytotaxonomic diagnostics of An. sacharovi based on the banding pattern of its polytene chromosomes. Conclusions This study constructed a high-quality standard photomap for ovarian nurse cell chromosomes of An. sacharovi and validated its utility for physical genome mapping. Based on the map, cytotaxonomic features for identification of An. sacharovi have been described. The cytogenetic map constructed in this study will assist in creating a chromosome-based genome assembly for this mosquito and in developing cytotaxonomic tools for identification of other species from the Maculipennis group.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Alena I Velichevskaya
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Semen M Bondarenko
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Gayane H Karagyan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Sargis A Aghayan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia.,Chair of Zoology, Yerevan State University, Yerevan, Armenia
| | | | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
8
|
GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution? Genetica 2016; 144:99-106. [PMID: 26767379 DOI: 10.1007/s10709-016-9881-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/09/2016] [Indexed: 10/22/2022]
Abstract
Anopheles darlingi is the main malaria vector in humans in South America. In the Amazon basin, it lives along the banks of rivers and lakes, which responds to the annual hydrological cycle (dry season and rainy season). In these breeding sites, the larvae of this mosquito feed on decomposing organic and microorganisms, which can be pathogenic and trigger the activation of innate immune system pathways, such as proteins Gram-negative binding protein (GNBP). Such environmental changes affect the occurrence of polymorphic inversions especially at the heterozygote frequency, which confer adaptative advantage compared to homozygous inversions. We mapped the GNBP probe to the An. darlingi 2Rd inversion by fluorescent in situ hybridization (FISH), which was a good indicator of the GNBP immune response related to the chromosomal polymorphic inversions and adaptative evolution. To better understand the evolutionary relations and time of divergence of the GNBP of An. darlingi, we compared it with nine other mosquito GNBPs. The results of the phylogenetic analysis of the GNBP sequence between the species of mosquitoes demonstrated three clades. Clade I and II included the GNBPB5 sequence, and clade III the sequence of GNBPB1. Most of these sequences of GNBP analyzed were homologous with that of subfamily B, including that of An. gambiae (87 %), therefore suggesting that GNBP of An. darling belongs to subfamily B. This work helps us understand the role of inversion polymorphism in evolution of An. darlingi.
Collapse
|
9
|
Schneider CH, Gross MC, Terencio ML, de Tavares ÉSGM, Martins C, Feldberg E. Chromosomal distribution of microsatellite repeats in Amazon cichlids genome (Pisces, Cichlidae). COMPARATIVE CYTOGENETICS 2015; 9:595-605. [PMID: 26753076 PMCID: PMC4698573 DOI: 10.3897/compcytogen.v9i4.5582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2014] [Indexed: 05/10/2023]
Abstract
Fish of the family Cichlidae are recognized as an excellent model for evolutionary studies because of their morphological and behavioral adaptations to a wide diversity of explored ecological niches. In addition, the family has a dynamic genome with variable structure, composition and karyotype organization. Microsatellites represent the most dynamic genomic component and a better understanding of their organization may help clarify the role of repetitive DNA elements in the mechanisms of chromosomal evolution. Thus, in this study, microsatellite sequences were mapped in the chromosomes of Cichla monoculus Agassiz, 1831, Pterophyllum scalare Schultze, 1823, and Symphysodon discus Heckel, 1840. Four microsatellites demonstrated positive results in the genome of Cichla monoculus and Symphysodon discus, and five demonstrated positive results in the genome of Pterophyllum scalare. In most cases, the microsatellite was dispersed in the chromosome with conspicuous markings in the centromeric or telomeric regions, which suggests that sequences contribute to chromosome structure and may have played a role in the evolution of this fish family. The comparative genome mapping data presented here provide novel information on the structure and organization of the repetitive DNA region of the cichlid genome and contribute to a better understanding of this fish family's genome.
Collapse
Affiliation(s)
- Carlos Henrique Schneider
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Maria Claudia Gross
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Maria Leandra Terencio
- Universidade Federal da Integração Latino Americana, Laboratório de Genética, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, Zip code 85857-190, Foz do Iguaçu, PR, Brazil
| | - Édika Sabrina Girão Mitozo de Tavares
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Cesar Martins
- Universidade Estadual Paulista Júlio de Mesquita Filho – UNESP, Instituto de Biociências, Departamento de Morfologia, Laboratório Genômica Integrativa, Rubião Junior, Zip code 18618-000 Botucatu, SP, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Genética Animal, Av. André Araújo, 2936 Zip Code 69077-000, Manaus, AM, Brazil
| |
Collapse
|
10
|
Kamali M, Marek PE, Peery A, Antonio-Nkondjio C, Ndo C, Tu Z, Simard F, Sharakhov IV. Multigene phylogenetics reveals temporal diversification of major African malaria vectors. PLoS One 2014; 9:e93580. [PMID: 24705448 PMCID: PMC3976319 DOI: 10.1371/journal.pone.0093580] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/05/2014] [Indexed: 12/21/2022] Open
Abstract
The major vectors of malaria in sub-Saharan Africa belong to subgenus Cellia. Yet, phylogenetic relationships and temporal diversification among African mosquito species have not been unambiguously determined. Knowledge about vector evolutionary history is crucial for correct interpretation of genetic changes identified through comparative genomics analyses. In this study, we estimated a molecular phylogeny using 49 gene sequences for the African malaria vectors An. gambiae, An. funestus, An. nili, the Asian malaria mosquito An. stephensi, and the outgroup species Culex quinquefasciatus and Aedes aegypti. To infer the phylogeny, we identified orthologous sequences uniformly distributed approximately every 5 Mb in the five chromosomal arms. The sequences were aligned and the phylogenetic trees were inferred using maximum likelihood and neighbor-joining methods. Bayesian molecular dating using a relaxed log normal model was used to infer divergence times. Trees from individual genes agreed with each other, placing An. nili as a basal clade that diversified from the studied malaria mosquito species 47.6 million years ago (mya). Other African malaria vectors originated more recently, and independently acquired traits related to vectorial capacity. The lineage leading to An. gambiae diverged 30.4 mya, while the African vector An. funestus and the Asian vector An. stephensi were the most closely related sister taxa that split 20.8 mya. These results were supported by consistently high bootstrap values in concatenated phylogenetic trees generated individually for each chromosomal arm. Genome-wide multigene phylogenetic analysis is a useful approach for discerning historic relationships among malaria vectors, providing a framework for the correct interpretation of genomic changes across species, and comprehending the evolutionary origins of this ubiquitous and deadly insect-borne disease.
Collapse
Affiliation(s)
- Maryam Kamali
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Paul E Marek
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ashley Peery
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | | | - Cyrille Ndo
- Malaria Research Laboratory, OCEAC, Yaounde, Cameroon; MIVEGEC (UMR IRD224-CNRS5290-UM1-UM2), Institut de Recherche pour le Développement (IRD), Montpellier, France; Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Zhijian Tu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Frederic Simard
- MIVEGEC (UMR IRD224-CNRS5290-UM1-UM2), Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
11
|
Improving the population genetics toolbox for the study of the African malaria vector Anopheles nili: microsatellite mapping to chromosomes. Parasit Vectors 2011; 4:202. [PMID: 22011455 PMCID: PMC3222614 DOI: 10.1186/1756-3305-4-202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/19/2011] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Anopheles nili is a major vector of malaria in the humid savannas and forested areas of sub-Saharan Africa. Understanding the population genetic structure and evolutionary dynamics of this species is important for the development of an adequate and targeted malaria control strategy in Africa. Chromosomal inversions and microsatellite markers are commonly used for studying the population structure of malaria mosquitoes. Physical mapping of these markers onto the chromosomes further improves the toolbox, and allows inference on the demographic and evolutionary history of the target species. RESULTS Availability of polytene chromosomes allowed us to develop a map of microsatellite markers and to study polymorphism of chromosomal inversions. Nine microsatellite markers were mapped to unique locations on all five chromosomal arms of An. nili using fluorescent in situ hybridization (FISH). Probes were obtained from 300-483 bp-long inserts of plasmid clones and from 506-559 bp-long fragments amplified with primers designed using the An. nili genome assembly generated on an Illumina platform. Two additional loci were assigned to specific chromosome arms of An. nili based on in silico sequence similarity and chromosome synteny with Anopheles gambiae. Three microsatellites were mapped inside or in the vicinity of the polymorphic chromosomal inversions 2Rb and 2Rc. A statistically significant departure from Hardy-Weinberg equilibrium, due to a deficit in heterozygotes at the 2Rb inversion, and highly significant linkage disequilibrium between the two inversions, were detected in natural An. nili populations collected from Burkina Faso. CONCLUSIONS Our study demonstrated that next-generation sequencing can be used to improve FISH for microsatellite mapping in species with no reference genome sequence. Physical mapping of microsatellite markers in An. nili showed that their cytological locations spanned the entire five-arm complement, allowing genome-wide inferences. The knowledge about polymorphic inversions and chromosomal locations of microsatellite markers has been useful for explaining differences in genetic variability across loci and significant differentiation observed among natural populations of An. nili.
Collapse
|