1
|
Liu X, Guo R, Li D, Wang Y, Ning J, Yang S, Yang J. Homotypic cell-in-cell structure as a novel prognostic predictor in non-small cell lung cancer and frequently localized at the invasive front. Sci Rep 2024; 14:18952. [PMID: 39147858 PMCID: PMC11327305 DOI: 10.1038/s41598-024-69833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Homotypic cell-in-cell structures (hoCICs) are associated with tumor proliferation, invasion, and metastasis and is considered a promising prognostic marker in various cancers. However, the role of hoCICs in non-small cell lung cancer (NSCLC) remains unclear. Tumor tissue sections were obtained from 411 NSCLC patients. We analyzed the relationship between clinicopathological variables and the number of hoCICs. LASSO and multivariate Cox regression analysis were employed to identify prognostic factors for NSCLC. The impact of hoCICs on overall survival (OS) and disease-free survival (DFS) was assessed using the Kaplan-Meier curves and log-rank test. Prognostic models for OS and DFS were developed and validated using the C-index, time-dependent area under the curve (AUC), net reclassification improvement (NRI), integrated discrimination improvement (IDI), calibration curves and decision curve analysis (DCA). Among the cohort, 56% of patients had hoCICs while 44% did not. Notably, hoCICs were primarily found at the tumor invasion front. Male gender, smoking, squamous cell carcinoma, low differentiation, tumor size ≥ 3 cm, advanced TNM stage, lymph node metastasis, pleural invasion, vascular invasion, necrosis, P53 mutation, and high expression of Ki-67 were identified as relative risk factors for hoCICs. Furthermore, hoCICs was found to be a significant prognostic factor for both OS and DFS, with higher frequencies of hoCICs correlating with poorer outcomes. We constructed nomograms for predicting 1-, 3-, and 5-year OS and DFS based on hoCICs, and the calibration curves showed good agreement between the predicted and actual outcomes. The results of the C-index, time-dependent AUC, NRI, IDI, and DCA analyses demonstrated that incorporating hoCICs into the prognostic model significantly enhanced its predictive power and clinical applicability. HoCICs indicated independent perdictive value for OS and DFS in patients with NSCLC. Furthermore, the frequent localization of hoCICs at the tumor invasion front suggested a strong association between hoCICs and tumor invasion as well as metastasis.
Collapse
Affiliation(s)
- Xiaona Liu
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Rui Guo
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Dongxuan Li
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Ya'nan Wang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Jingya Ning
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Shuanying Yang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China.
| | - Jun Yang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, ShaanXi, China.
| |
Collapse
|
2
|
Gaptulbarova KА, Tsydenova IA, Dolgasheva DS, Kravtsova EA, Ibragimova MK, Vtorushin SV, Litviakov NV. Mechanisms and significance of entosis for tumour growth and progression. Cell Death Discov 2024; 10:109. [PMID: 38429285 PMCID: PMC10907354 DOI: 10.1038/s41420-024-01877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
To date, numerous mechanisms have been identified in which one cell engulfs another, resulting in the creation of 'cell-in-cell' (CIC) structures, which subsequently cause cell death. One of the mechanisms of formation of these structures is entosis, which is presumably associated with possible carcinogenesis and tumour progression. The peculiarity of the process is that entotic cells themselves actively invade the host cell, and afterwards have several possible variants of fate. Entotic formations are structures where one cell is engulfed by another cell, creating a cell-in-cell structure. The nucleus of the outer cell has a crescent shape, while the inner cell is surrounded by a large entotic vacuole. These characteristics differentiate entosis from cell cannibalism. It's worth noting that entotic formations are not necessarily harmful and may even be beneficial in some cases. In this article we will consider the mechanism of entosis and variants of entotic cell death, and also put forward hypothesis about possible variants of participation of this process on the formation and progression of cancer. This article also presents our proposed classification of functional forms of entosis.
Collapse
Affiliation(s)
- Ksenia Аndreevna Gaptulbarova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia.
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia.
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia.
| | - Irina Alexandrovna Tsydenova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Daria Sergeevna Dolgasheva
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Ekaterina Andreevna Kravtsova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Marina Konstantinovna Ibragimova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Sergey Vladimirovich Vtorushin
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
| | - Nikolai Vasilievich Litviakov
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| |
Collapse
|
3
|
Liu X, Yang J. Cell-in-cell: a potential biomarker of prognosis and a novel mechanism of drug resistance in cancer. Front Oncol 2023; 13:1242725. [PMID: 37637068 PMCID: PMC10449025 DOI: 10.3389/fonc.2023.1242725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
The cell-in-cell (CIC) phenomenon has received increasing attention over recent years because of its wide existence in multiple cancer tissues. The mechanism of CIC formation is considerably complex as it involves interactions between two cells. Although the molecular mechanisms of CIC formation have been extensively investigated, the process of CIC formation remains ambiguous. Currently, CIC is classified into four subtypes based on different cell types and inducing factors, and the underlying mechanisms for each subtype are distinct. Here, we investigated the subtypes of CIC and their major mechanisms involved in cancer development. To determine the clinical significance of CIC, we reviewed several clinical studies on CIC and found that CIC could serve as a diagnostic and prognostic biomarker. The implications of CIC on the clinical management of cancers also remain largely unknown. To clarify this aspect, in the present review, we highlight the findings of recent investigations on the causal link between CIC and cancer treatment. We also indicate the existing issues that need to be resolved urgently to provide a potential direction for future research on CIC.
Collapse
Affiliation(s)
| | - Jun Yang
- Department of Pathology, The Second Affiliated Hospital, Xi’an Jiao Tong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Wang R, Zhong H, Wang C, Huang X, Huang A, Du N, Wang D, Sun Q, He M. Tumor malignancy by genetic transfer between cells forming cell-in-cell structures. Cell Death Dis 2023; 14:195. [PMID: 36914619 PMCID: PMC10011543 DOI: 10.1038/s41419-023-05707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/14/2023]
Abstract
Cell-in-cell structures (CICs) refer to a type of unique structure with one or more cells within another one, whose biological outcomes are poorly understood. The present study aims to investigate the effects of CICs formation on tumor progression. Using genetically marked hepatocellular cancer cell lines, we explored the possibility that tumor cells might acquire genetic information and malignant phenotypes from parental cells undergoing CICs formation. The present study showed that the derivatives, isolated from CICs formed between two subpopulations by flow cytometry sorting, were found to inherit aggressive features from the parental cells, manifested with increased abilities in both proliferation and invasiveness. Consistently, the CICs clones expressed a lower level of E-cadherin and a higher level of Vimentin, ZEB-1, Fibronectin, MMP9, MMP2 and Snail as compared with the parental cells, indicating epithelial-mesenchymal transition. Remarkably, the new derivatives exhibited significantly enhanced tumorigenicity in the xenograft mouse models. Moreover, whole exome sequencing analysis identified a group of potential genes which were involved in CIC-mediated genetic transfer. These results are consistent with a role of genetic transfer by CICs formation in genomic instability and malignancy of tumor cells, which suggest that the formation of CICs may promote genetic transfer and gain of malignancy during tumor progression.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.,Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Zhong
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - Xiaohui Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Anpei Huang
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Nannan Du
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China.,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China
| | - Dong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China. .,Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing, China.
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Wang R, Zhu Y, Zhong H, Gao X, Sun Q, He M. Homotypic cell-in-cell structures as an adverse prognostic predictor of hepatocellular carcinoma. Front Oncol 2022; 12:1007305. [PMID: 36419874 PMCID: PMC9676929 DOI: 10.3389/fonc.2022.1007305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/14/2022] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant liver tumors. A homotypic cell-in-cell structure (hoCIC) refers to one or more cells internalized into the same type as their neighbors, which predominantly occurs in multiple tumors. The objective of this study was to investigate the prognostic value of hoCICs in HCC and its relationship with other clinicopathological features. By immunostaining analysis of a panel of HCC tissues, we found that hoCICs were prevalent in tumor tissues (54/90) but not in para-tumor tissues (17/90). The presence of hoCICs in tumor tissues was closely associated with E-cadherin expression. The presence of CICs was identified as significantly associated with poor survival rates of patients with HCC, comparable to traditional clinicopathological parameters, such as histological grade [hazard ratio (HR) = 0.734, p = 0.320]. Multivariate Cox regression analysis further confirmed that CICs were an independent risk factor for poor survival (HR = 1.902, p = 0.047). In addition, hoCICs were the predominant contributor in a nomogram model constructed for survival prediction at 1, 3, and 5 years [the areas under the curve (AUCs) were 0.760, 0.733, and 0.794, respectively]. Stratification analysis indicated that hoCICs tend to selectively affect patients with high-grade disease (HR = 2.477, p = 0.009) and at the early TNM stage (HR = 2.351, p = 0.05). Thus, hoCICs predict poor survival of patients with HCC, particularly those with higher grades and at an early stage.
Collapse
Affiliation(s)
- Ruizhi Wang
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yichao Zhu
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Hao Zhong
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinyue Gao
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Qiang Sun
- Beijing Institute of Biotechnology; Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, Beijing, China
| | - Meifang He
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Cell-in-Cell: From Cell Biology to Translational Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7608521. [PMID: 36158876 PMCID: PMC9492417 DOI: 10.1155/2022/7608521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/21/2022] [Indexed: 11/18/2022]
Abstract
Cell-in-cell structures (CICs) refer to cytoplasmic internalization of a cell by another cell, which are found throughout various biological systems and have been a part of scientific dogma for a long time. However, neither the mechanisms underlying this phenomenon nor their possible roles in disease development have resulted in major breakthroughs until recent years. In view of the ubiquity of CICs in inflammatory tissue and tumors, it is tempting to think that these specific structures could be associated with clinical diagnosis and treatment and thus would become a new hotspot for translational medicine. Translational medicine is a new concept in the field of international biomedical research that appeared in the last 20 years, which transforms basic research into clinical application. With the growing interest in this field, this review addresses recent research on CICs and their potential clinical implications in cytomorphological diagnosis and the pathology of human diseases, while discussing as yet unanswered questions. We also put forward future directions to reduce the gap in our knowledge caused by our currently limited understanding of CICs.
Collapse
|
7
|
Tang M, Su Y, Zhao W, Niu Z, Ruan B, Li Q, Zheng Y, Wang C, Zhang B, Zhou F, Wang X, Huang H, Shi H, Sun Q. AIM-CICs: an automatic identification method for cell-in-cell structures based on convolutional neural network. J Mol Cell Biol 2022; 14:6649212. [PMID: 35869978 PMCID: PMC9701057 DOI: 10.1093/jmcb/mjac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Edited by Luonan Chen Whereas biochemical markers are available for most types of cell death, current studies on non-autonomous cell death by entosis rely strictly on the identification of cell-in-cell structures (CICs), a unique morphological readout that can only be quantified manually at present. Moreover, the manual CIC quantification is generally over-simplified as CIC counts, which represents a major hurdle against profound mechanistic investigations. In this study, we take advantage of artificial intelligence technology to develop an automatic identification method for CICs (AIM-CICs), which performs comprehensive CIC analysis in an automated and efficient way. The AIM-CICs, developed on the algorithm of convolutional neural network, can not only differentiate between CICs and non-CICs (the area under the receiver operating characteristic curve (AUC) > 0.99), but also accurately categorize CICs into five subclasses based on CIC stages and cell number involved (AUC > 0.97 for all subclasses). The application of AIM-CICs would systemically fuel research on CIC-mediated cell death, such as high-throughput screening.
Collapse
Affiliation(s)
| | | | | | | | - Banzhan Ruan
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Qinqin Li
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China
| | - You Zheng
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Chenxi Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Bo Zhang
- Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China,Laboratory of Cell Engineering, Institute of Biotechnology, Research Unit of Cell Death Mechanism, Chinese Academy of Medical Science, 2021RU008, Beijing 100071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Xiaoning Wang
- National Clinic Center of Geriatric & State Key Laboratory of Kidney, Chinese PLA General Hospital, Beijing 100853, China
| | | | | | - Qiang Sun
- Correspondence to: Qiang Sun, E-mail:
| |
Collapse
|
8
|
Zhu Y, Zhou W, Niu Z, Sun J, Zhang Z, Li Q, Zheng Y, Wang C, Gao L, Sun Q. Long-range enhancement of N501Y-endowed mouse infectivity of SARS-CoV-2 by the non-RBD mutations of Ins215KLRS and H655Y. Biol Direct 2022; 17:14. [PMID: 35658928 PMCID: PMC9167559 DOI: 10.1186/s13062-022-00325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
Background Rodents, such as mice, are vulnerable targets, and potential intermediate hosts, of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, and Omicron. N501Y in the receptor-binding domain (RBD) of Spike protein is the key mutation dictating the mouse infectivity, on which the neighboring mutations within RBD have profound impacts. However, the impacts of mutations outside RBD on N501Y-mediated mouse infectivity remain to be explored. Results Herein, we report that two non-RBD mutations derived from mouse-adapted strain, Ins215KLRS in the N-terminal domain (NTD) and H655Y in the subdomain linking S1 to S2, enhance mouse infectivity in the presence of N501Y mutation, either alone or together. This is associated with increased interaction of Spike with mouse ACE2 and mutations-induced local conformation changes in Spike protein. Mechanistically, the H655Y mutation disrupts interaction with N657, resulting in a less tight loop that wraps the furin-cleavage finger; and the insertion of 215KLRS in NTD increases its intramolecular interaction with a peptide chain that interfaced with the RBD-proximal region of the neighboring protomer, leading to a more flexible RBD that facilitates receptor binding. Moreover, the Omicron Spike that contains Ins214EPE and H655Y mutations confer mouse infectivity > 50 times over the N501Y mutant, which could be effectively suppressed by mutating them back to wild type. Conclusions Collectively, our study sheds light on the cooperation between distant Spike mutations in promoting virus infectivity, which may undermine the high infectiousness of Omicron variants towards mice. Supplementary information The online version contains supplementary material available at 10.1186/s13062-022-00325-x.
Collapse
|
9
|
Su Y, Huang H, Luo T, Zheng Y, Fan J, Ren H, Tang M, Niu Z, Wang C, Wang Y, Zhang Z, Liang J, Ruan B, Gao L, Chen Z, Melino G, Wang X, Sun Q. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov 2022; 8:35. [PMID: 35436988 PMCID: PMC9016064 DOI: 10.1038/s41421-022-00387-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Penetration of immune cells into tumor cells was believed to be immune-suppressive via cell-in-cell (CIC) mediated death of the internalized immune cells. We unexpectedly found that CIC formation largely led to the death of the host tumor cells, but not the internalized immune cells, manifesting typical features of death executed by NK cells; we named this "in-cell killing" which displays the efficacy superior to the canonical way of "kiss-killing" from outside. By profiling isogenic cells, CD44 on tumor cells was identified as a negative regulator of "in-cell killing" via inhibiting CIC formation. CD44 functions to antagonize NK cell internalization by reducing N-cadherin-mediated intercellular adhesion and by enhancing Rho GTPase-regulated cellular stiffness as well. Remarkably, antibody-mediated blockade of CD44 signaling potentiated the suppressive effects of NK cells on tumor growth associated with increased heterotypic CIC formation. Together, we identified CIC-mediated "in-cell killing" as a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Su
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - You Zheng
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jie Fan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - He Ren
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Meng Tang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Zubiao Niu
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Chenxi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Yuqi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhengrong Zhang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jianqing Liang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Banzhan Ruan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Lihua Gao
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhaolie Chen
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Gerry Melino
- Departments of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Xiaoning Wang
- National Research Center of Geriatrics Diseases, Chinese PLA General Hospital, Beijing, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China.
| |
Collapse
|
10
|
Ren H, Ma C, Peng H, Zhang B, Zhou L, Su Y, Gao X, Huang H. Micronucleus production, activation of DNA damage response and cGAS-STING signaling in syncytia induced by SARS-CoV-2 infection. Biol Direct 2021; 16:20. [PMID: 34674770 PMCID: PMC8530504 DOI: 10.1186/s13062-021-00305-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/02/2023] Open
Abstract
SARS-CoV-2 infection could cause severe acute respiratory syndrome, largely attributed to dysregulated immune activation and extensive lung tissue damage. However, the underlying mechanisms are not fully understood. Here, we reported that viral infection could induce syncytia formation within cells expressing ACE2 and the SARS-CoV-2 spike protein, leading to the production of micronuclei with an average rate of about 4 per syncytium (> 93%). Remarkably, these micronuclei were manifested with a high level of activation of both DNA damage response and cGAS-STING signaling, as indicated by micronucleus translocation of γH2Ax and cGAS, and upregulation of their respective downstream target genes. Since activation of these signaling pathways were known to be associated with cellular catastrophe and aberrant immune activation, these findings help explain the pathological effects of SARS-CoV-2 infection at cellular and molecular levels, and provide novel potential targets for COVID-19 therapy.
Collapse
Affiliation(s)
- He Ren
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Chaobing Ma
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Haoran Peng
- Department of Microbiology, Second Military Medical University, Shanghai, 200433, China
| | - Bo Zhang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Lulin Zhou
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yan Su
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230022, China
| | - Xiaoyan Gao
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, 10 TIEYI Road, Beijing, 100038, China.
| |
Collapse
|
11
|
SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination. Cell Death Differ 2021; 28:2765-2777. [PMID: 33879858 PMCID: PMC8056997 DOI: 10.1038/s41418-021-00782-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/01/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is highly contagious and causes lymphocytopenia, but the underlying mechanisms are poorly understood. We demonstrate here that heterotypic cell-in-cell structures with lymphocytes inside multinucleate syncytia are prevalent in the lung tissues of coronavirus disease 2019 (COVID-19) patients. These unique cellular structures are a direct result of SARS-CoV-2 infection, as the expression of the SARS-CoV-2 spike glycoprotein is sufficient to induce a rapid (~45.1 nm/s) membrane fusion to produce syncytium, which could readily internalize multiple lines of lymphocytes to form typical cell-in-cell structures, remarkably leading to the death of internalized cells. This membrane fusion is dictated by a bi-arginine motif within the polybasic S1/S2 cleavage site, which is frequently present in the surface glycoprotein of most highly contagious viruses. Moreover, candidate anti-viral drugs could efficiently inhibit spike glycoprotein processing, membrane fusion, and cell-in-cell formation. Together, we delineate a molecular and cellular rationale for SARS-CoV-2 pathogenesis and identify novel targets for COVID-19 therapy.
Collapse
|
12
|
Wang Y, Niu Z, Zhou L, Zhou Y, Ma Q, Zhu Y, Liu M, Shi Y, Tai Y, Shao Q, Ge J, Hua J, Gao L, Huang H, Jiang H, Sun Q. Subtype-Based Analysis of Cell-in-Cell Structures in Esophageal Squamous Cell Carcinoma. Front Oncol 2021; 11:670051. [PMID: 34178655 PMCID: PMC8231019 DOI: 10.3389/fonc.2021.670051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/19/2021] [Indexed: 11/29/2022] Open
Abstract
Cell-in-cell (CIC) structures are defined as the special structures with one or more cells enclosed inside another one. Increasing data indicated that CIC structures were functional surrogates of complicated cell behaviors and prognosis predictor in heterogeneous cancers. However, the CIC structure profiling and its prognostic value have not been reported in human esophageal squamous cell Carcinoma (ESCC). We conducted the analysis of subtyped CIC-based profiling in ESCC using "epithelium-macrophage-leukocyte" (EML) multiplex staining and examined the prognostic value of CIC structure profiling through Kaplan-Meier plotting and Cox regression model. Totally, five CIC structure subtypes were identified in ESCC tissue and the majority of them was homotypic CIC (hoCIC) with tumor cells inside tumor cells (TiT). By univariate and multivariate analyses, TiT was shown to be an independent prognostic factor for resectable ESCC, and patients with higher density of TiT tended to have longer post-operational survival time. Furthermore, in subpopulation analysis stratified by TNM stage, high TiT density was associated with longer overall survival (OS) in patients of TNM stages III and IV as compared with patients with low TiT density (mean OS: 51 vs 15 months, P = 0.04) and T3 stage (mean OS: 57 vs 17 months, P=0.024). Together, we reported the first CIC structure profiling in ESCC and explored the prognostic value of subtyped CIC structures, which supported the notion that functional pathology with CIC structure profiling is an emerging prognostic factor for human cancers, such as ESCC.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
- Research Unit of Cell Death Mechanism, Institute of Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Zubiao Niu
- Research Unit of Cell Death Mechanism, Institute of Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Lulin Zhou
- Research Unit of Cell Death Mechanism, Institute of Biotechnology, Chinese Academy of Medical Science, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yongan Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Qunfeng Ma
- Department of Thoracic Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yichao Zhu
- Research Unit of Cell Death Mechanism, Institute of Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Mengzhe Liu
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Yinan Shi
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanhong Tai
- Department of Pathology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiuju Shao
- Department of Radiotherapy, The Second Affiliated Hospital of Air Force Military Medical University, Xi’an, China
| | - Jianlin Ge
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Jilei Hua
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Lihua Gao
- Research Unit of Cell Death Mechanism, Institute of Biotechnology, Chinese Academy of Medical Science, Beijing, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Hong Jiang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Qiang Sun
- Research Unit of Cell Death Mechanism, Institute of Biotechnology, Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|