1
|
Parmar B, Bhatia D. Small Molecular Approaches for Cellular Reprogramming and Tissue Engineering: Functions as Mediators of the Cell Signaling Pathway. Biochemistry 2024; 63:2542-2556. [PMID: 39312802 DOI: 10.1021/acs.biochem.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Utilizing induced pluripotent stem cells (iPSCs) in drug screening and cell replacement therapy has emerged as a method with revolutionary applications. With the advent of patient-specific iPSCs and the subsequent development of cells that exhibit disease phenotypes, the focus of medication research will now shift toward the pathology of human diseases. Regular iPSCs can also be utilized to generate cells that assess the negative impacts of medications. These cells provide a much more precise and cost-efficient approach compared to many animal models. In this review, we explore the utilization of small-molecule drugs to enhance the growth of iPSCs and gain insights into the process of reprogramming. We mainly focus on the functions of small molecules in modulating different signaling pathways, thereby modulating cell fate. Understanding the way small molecule drugs interact with iPSC technology has the potential to significantly enhance the understanding of physiological pathways in stem cells and practical applications of iPSC-based therapy and screening systems, revolutionizing the treatment of diseases.
Collapse
Affiliation(s)
- Bhagyesh Parmar
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| |
Collapse
|
2
|
Kulus M, Farzaneh M, Bryja A, Zehtabi M, Azizidoost S, Abouali Gale Dari M, Golcar-Narenji A, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, Dzięgiel P, Zabel M, Mozdziak P, Bukowska D, Kempisty B, Antosik P. Phenotypic Transitions the Processes Involved in Regulation of Growth and Proangiogenic Properties of Stem Cells, Cancer Stem Cells and Circulating Tumor Cells. Stem Cell Rev Rep 2024; 20:967-979. [PMID: 38372877 PMCID: PMC11087301 DOI: 10.1007/s12015-024-10691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Mojtaba Zehtabi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Golcar-Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
| | - Hanna Ziemak
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mikołaj Chwarzyński
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, USA
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, USA.
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
3
|
Ten A, Kumeiko V, Farniev V, Gao H, Shevtsov M. Tumor Microenvironment Modulation by Cancer-Derived Extracellular Vesicles. Cells 2024; 13:682. [PMID: 38667297 PMCID: PMC11049026 DOI: 10.3390/cells13080682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The tumor microenvironment (TME) plays an important role in the process of tumorigenesis, regulating the growth, metabolism, proliferation, and invasion of cancer cells, as well as contributing to tumor resistance to the conventional chemoradiotherapies. Several types of cells with relatively stable phenotypes have been identified within the TME, including cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), neutrophils, and natural killer (NK) cells, which have been shown to modulate cancer cell proliferation, metastasis, and interaction with the immune system, thus promoting tumor heterogeneity. Growing evidence suggests that tumor-cell-derived extracellular vesicles (EVs), via the transfer of various molecules (e.g., RNA, proteins, peptides, and lipids), play a pivotal role in the transformation of normal cells in the TME into their tumor-associated protumorigenic counterparts. This review article focuses on the functions of EVs in the modulation of the TME with a view to how exosomes contribute to the transformation of normal cells, as well as their importance for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Artem Ten
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Vladislav Farniev
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, China;
| | - Maxim Shevtsov
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.T.); (V.K.); (V.F.)
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave., 4, 194064 St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str., 2, 197341 St. Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum Rechts der Isar, Ismaninger Str., 22, 81675 Munich, Germany
| |
Collapse
|
4
|
Mukerjee N, Nag S, Bhattacharya B, Alexiou A, Mirgh D, Mukherjee D, Adhikari MD, Anand K, Muthusamy R, Gorai S, Thorat N. Clinical impact of epithelial–mesenchymal transition for cancer therapy. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.260] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe epithelial–mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non‐coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life‐threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT‐inducing elements; it critically assesses the current state of EMT‐focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Department of Microbiology West Bengal State University, Barasat Kolkata India
| | - Sagnik Nag
- Department of Bio‐Sciences School of Biosciences & Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology School of Biosciences and Technology Vellore Institute of Technology Vellore Tamil Nadu India
| | - Athanasios Alexiou
- Department of Science and Engineering Novel Global Community Educational Foundation Hebersham New South Wales Australia
| | - Divya Mirgh
- Vaccine and Immunotherapy Canter Massachusetts General Hospital Boston Massachusetts USA
| | | | - Manab Deb Adhikari
- Department of Biotechnology University of North Bengal Darjeeling West Bengal India
| | - Krishnan Anand
- Department of Chemical Pathology School of Pathology Faculty of Health Sciences University of the Free State Bloemfontein South Africa
| | - Raman Muthusamy
- Center for Global Health Research Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences Chennai Tamil Nadu India
| | | | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics Bernal Institute University of Limerick, Castletroy Limerick Ireland
| |
Collapse
|
5
|
Bekas N, Samiotaki M, Papathanasiou M, Mokos P, Pseftogas A, Xanthopoulos K, Thanos D, Mosialos G, Dafou D. Inactivation of Tumor Suppressor CYLD Inhibits Fibroblast Reprogramming to Pluripotency. Cancers (Basel) 2023; 15:4997. [PMID: 37894364 PMCID: PMC10605754 DOI: 10.3390/cancers15204997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
CYLD is a tumor suppressor gene coding for a deubiquitinating enzyme that has a critical regulatory function in a variety of signaling pathways and biological processes involved in cancer development and progression, many of which are also key modulators of somatic cell reprogramming. Nevertheless, the potential role of CYLD in this process has not been studied. With the dual aim of investigating the involvement of CYLD in reprogramming and developing a better understanding of the intricate regulatory system governing this process, we reprogrammed control (CYLDWT/WT) and CYLD DUB-deficient (CYLDΔ9/Δ9) mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) through ectopic overexpression of the Yamanaka factors (Oct3/4, Sox2, Klf4, c-myc). CYLD DUB deficiency led to significantly reduced reprogramming efficiency and slower early reprogramming kinetics. The introduction of WT CYLD to CYLDΔ9/Δ9 MEFs rescued the phenotype. Nevertheless, CYLD DUB-deficient cells were capable of establishing induced pluripotent colonies with full spontaneous differentiation potential of the three germ layers. Whole proteome analysis (Data are available via ProteomeXchange with identifier PXD044220) revealed that the mesenchymal-to-epithelial transition (MET) during the early reprogramming stages was disrupted in CYLDΔ9/Δ9 MEFs. Interestingly, differentially enriched pathways revealed that the primary processes affected by CYLD DUB deficiency were associated with the organization of the extracellular matrix and several metabolic pathways. Our findings not only establish for the first time CYLD's significance as a regulatory component of early reprogramming but also highlight its role as an extracellular matrix regulator, which has profound implications in cancer research.
Collapse
Affiliation(s)
- Nikolaos Bekas
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
| | - Maria Papathanasiou
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - Panagiotis Mokos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Athanasios Pseftogas
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Thanos
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Dimitra Dafou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| |
Collapse
|
6
|
Saadeldin IM, Bang S, Maigoro AY, Yun SH, Kim SI, Lee S, Cho J. Proteomic Analysis and Reprogramming Potential of the Porcine Intra-Ooplasmic Nanovesicles. Cell Reprogram 2023; 25:238-250. [PMID: 37725012 DOI: 10.1089/cell.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
Oocytes contain reprogramming machinery that can transform somatic cells into totipotent cells. In this study, we aimed to isolate and characterize nanovesicles from mature porcine oocytes and described them for the first time as "intra-ooplasmic vesicles (IOVs)". Isolated IOVs had an average diameter of 186.3 ± 10.8 nm. Proteomic analysis revealed 467 peptide reads, with the top 20 proteins related to reprogramming, antioxidative defense, cytoskeleton, heat shock proteins, and metabolism. Protein-protein interaction and gene ontology analysis indicated that these proteins were involved in various biological pathways, including protein folding, metabolism, and cellular responses to stress. Supplementing cultured fibroblasts with IOVs resulted in the expression of the pluripotency marker OCT4 and the early trophoblastic marker CDX2 and increased expression of the corresponding mRNAs together with increasing KLF4 and SALL4 expression. IOV treatment of fibroblasts for 14 consecutive days resulted in changes in cell morphology, with increased expression of ZEB2 and YBX3 as markers for epithelial-to-mesenchymal transition (EMT). These results provide a rationale for further characterization of IOVs, investigation of potential reprogramming capabilities for EMT, and the generation of induced pluripotent or oligopotent stem cells.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Abdulkadir Y Maigoro
- Department of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang, Republic of Korea
| | - Seung Ii Kim
- Korea Basic Science Institute (KBSI), Ochang, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Rhodes ADY, Duran-Mota JA, Oliva N. Current progress in bionanomaterials to modulate the epigenome. Biomater Sci 2022; 10:5081-5091. [PMID: 35880652 DOI: 10.1039/d2bm01027e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances in genomics during the 1990s have made it possible to study and identify genetic and epigenetic responses of cells and tissues to various drugs and environmental factors. This has accelerated the number of targets available to treat a range of diseases from cancer to wound healing disorders. Equally interesting is the understanding of how bio- and nanomaterials alter gene expression through epigenetic mechanisms, and whether they have the potential to elicit a positive therapeutic response without requiring additional biomolecule delivery. In fact, from a cell's perspective, a biomaterial is nothing more than an environmental factor, and so it has the power to epigenetically modulate gene expression of cells in contact with it. Understanding these epigenetic interactions between biomaterials and cells will open new avenues in the development of technologies that can not only provide biological signals (i.e. drugs, growth factors) necessary for therapy and regeneration, but also intimately interact with cells to promote the expression of genes of interest. This review article aims to summarise the current state-of-the-art and progress on the development of bio- and nanomaterials to modulate the epigenome.
Collapse
Affiliation(s)
- Anna D Y Rhodes
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| | - Jose Antonio Duran-Mota
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK. .,Materials Engineering Group (GEMAT), IQS Barcelona, Barcelona 08017, Spain
| | - Nuria Oliva
- Department of Bioengineering, Imperial College London, London W12 0BZ, UK.
| |
Collapse
|
8
|
Shash LS, Ibrahim RA, Elgohary SA. E-cadherin and N-cadherin Immunohistochemical Expression in Proliferating Urothelial Lesions: Potential Novel Cancer Predictive EMT Profiles. Appl Immunohistochem Mol Morphol 2021; 29:657-666. [PMID: 33979097 DOI: 10.1097/pai.0000000000000940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/08/2021] [Indexed: 11/26/2022]
Abstract
Cadherin switch (CS) outlined by downregulation of E-cadherin and upregulation of N-cadherin is an established epithelial-mesenchymal transition (EMT) hallmark, being a common signature in wound healing and carcinogenesis. It is intriguing to explore the EMT-associated CS pattern in precancerous phases as well as variably aggressive bladder cancer categories. In this study, we tested CS signified by a reduction in urothelial cells E-cadherin expression and/or aberrant N-cadherin expression in proliferative epithelial changes (PEC) associating inflammation, non-muscle-invasive bladder cancer (NMIBC), and muscle-invasive bladder cancer (MIBC). Immunohistochemical study of both E-cadherin and N-cadherin was performed for 60 cases: 15 PEC, 8 NMIBC, and 37 MIBC. CS patterns were analyzed: abnormal CS patterns were expressed as deviated, hybrid, co-negative, and full CS patterns. E-cadherin expression was significantly preserved in PEC (86.7%) followed by NMIBC (62.5%) and then MIBC (37.8%) (P=0.004), whereas N-cadherin showed obvious aberrant expression in MIBC (51.4%) as compared with PEC (33.3%) and NMIBC (25%). In the MIBC group, abnormal cadherin patterns were the highest (70.3%) and was associated with adverse prognostic indicators. In the context of NMIBC progression to MIBC, combined E and N-cadherin evaluation showed highest sensitivity (70.3%) and NPV (31.3%), whereas aberrant expression of N-cadherin presented highest specificity (75%) and positive predictive value (90.5%). For cancer prediction, combined E-cadherin and N-cadherin evaluation showed the highest sensitivity (64.4%); abnormal E-cadherin offered highest specificity (86.7%), positive predictive value (92.9%), and negative predictive value (40.6%). In posttherapy follow-up setting, a metastable EMT signature in the form of partial CS was noted and might reflect resistant dormant populations.
Collapse
Affiliation(s)
- Lobna S Shash
- Surgical Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | |
Collapse
|
9
|
Arnouk H, Yum G, Shah D. Cripto-1 as a Key Factor in Tumor Progression, Epithelial to Mesenchymal Transition and Cancer Stem Cells. Int J Mol Sci 2021; 22:ijms22179280. [PMID: 34502188 PMCID: PMC8430685 DOI: 10.3390/ijms22179280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cripto-1 is an essential protein for human development that plays a key role in the early phase of gastrulation in the differentiation of an embryo as well as assists with wound healing processes. Importantly, Cripto-1 induces epithelial to mesenchymal transition to turn fixed epithelial cells into a more mobile mesenchymal phenotype through the downregulation of epithelial adhesion molecules such as E-cadherin, occludins, and claudins, and the upregulation of mesenchymal, mobile proteins, such as N-cadherin, Snail, and Slug. Consequently, Cripto-1’s role in inducing EMT to promote cell motility is beneficial in embryogenesis, but detrimental in the formation, progression and metastasis of malignant tumors. Indeed, Cripto-1 is found to be upregulated in most cancers, such as breast, lung, gastrointestinal, hepatic, renal, cervical, ovarian, prostate, and skin cancers. Through its role in EMT, Cripto-1 can remodel cancer cells to enable them to travel through the extracellular matrix as well as blood and lymphatic vessels to metastasize to different organs. Additionally, Cripto-1 promotes the survival of cancer stem cells, which can lead to relapse in cancer patients.
Collapse
Affiliation(s)
- Hilal Arnouk
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Chicago College of Optometry, Midwestern University, Downers Grove, IL 60515, USA;
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
- College of Dental Medicine-Illinois, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence:
| | - Gloria Yum
- Chicago College of Optometry, Midwestern University, Downers Grove, IL 60515, USA;
| | - Dean Shah
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
- Master of Public Health Program, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
10
|
Yang Q, Shi H, Quan Y, Chen Q, Li W, Wang L, Wang Y, Ji Z, Yin SK, Shi HB, Xu H, Gao WQ. Stepwise Induction of Inner Ear Hair Cells From Mouse Embryonic Fibroblasts via Mesenchymal- to-Epithelial Transition and Formation of Otic Epithelial Cells. Front Cell Dev Biol 2021; 9:672406. [PMID: 34222247 PMCID: PMC8248816 DOI: 10.3389/fcell.2021.672406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Although embryonic stem cells or induced pluripotent stem cells are able to differentiate into inner ear hair cells (HCs), they have drawbacks limiting their clinical application, including a potential risk of tumourigenicity. Direct reprogramming of fibroblasts to inner ear HCs could offer an alternative solution to this problem. Here, we present a stepwise guidance protocol to induce mouse embryonic fibroblasts to differentiate into inner ear HC-like cells (HCLs) via mesenchymal-to-epithelial transition and then acquisition of otic sensory epithelial cell traits by overexpression of three key transcription factors. These induced HCLs express multiple HC-specific proteins, display protrusions reminiscent of ciliary bundle structures, respond to voltage stimulation, form functional mechanotransduction channels, and exhibit a transcriptional profile of HC signature. Together, our work provides a new method to produce functional HCLs in vitro, which may have important implications for studies of HC development, drug discovery, and cell replacement therapy for hearing loss.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haosong Shi
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhou Quan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Chen
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Kyriakopoulou K, Riti E, Piperigkou Z, Koutroumanou Sarri K, Bassiony H, Franchi M, Karamanos NK. ΕGFR/ERβ-Mediated Cell Morphology and Invasion Capacity Are Associated with Matrix Culture Substrates in Breast Cancer. Cells 2020; 9:E2256. [PMID: 33050027 PMCID: PMC7601637 DOI: 10.3390/cells9102256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023] Open
Abstract
Breast cancer accounts for almost one in four cancer diagnoses in women. Studies in breast cancer patients have identified several molecular markers, indicators of aggressiveness, which help toward more individual therapeutic approaches. In triple-negative breast cancer (TNBC), epidermal growth factor receptor (EGFR) overexpression is associated with increased metastatic potential and worst survival rates. Specifically, abnormal EGFR activation leads to altered matrix metalloproteinases' (MMPs) expression and, hence, extracellular matrix (ECM) degradation, resulting in induced migration and invasion. The use of matrix substrates for cell culture gives the opportunity to mimic the natural growth conditions of the cells and their microenvironment, as well as cell-cell and cell-matrix interactions. The aim of this study was to evaluate the impact of EGFR inhibition, estrogen receptor beta (ERβ) and different matrix substrates [type I collagen and fibronectin (FN)] on the functional properties, expression of MMPs and cell morphology of ERβ-positive TNBC cells and shERβ ones. Our results highlight EGFR as a crucial regulator of the expression and activity levels of MMPs, while ERβ emerges as a mediator of MMP7 and MT1-MMP expression. In addition, the EGFR/ERβ axis impacts the adhesion and invasion potential of breast cancer cells on collagen type I. Images obtained by scanning electron microscope (SEM) from cultures on the different matrix substrates revealed novel observations regarding various structures of breast cancer cells (filopodia, extravesicles, tunneling nanotubes, etc.). Moreover, the significant contribution of EGFR and ERβ in the morphological characteristics of these cells is also demonstrated, hence highlighting the possibility of dual pharmacological targeting.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Eirini Riti
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Konstantina Koutroumanou Sarri
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| | - Heba Bassiony
- Department of Zoology, Faculty of Science, Cairo University, Cairo 11865, Egypt;
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, 47921 Rimini, Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (E.R.); (Z.P.); (K.K.S.)
| |
Collapse
|
12
|
Protein Kinases and Their Inhibitors in Pluripotent Stem Cell Fate Regulation. Stem Cells Int 2019; 2019:1569740. [PMID: 31428157 PMCID: PMC6681599 DOI: 10.1155/2019/1569740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022] Open
Abstract
Protein kinases modulate the reversible postmodifications of substrate proteins to their phosphorylated forms as an essential process in regulating intracellular signaling transduction cascades. Moreover, phosphorylation has recently been shown to tightly control the regulatory network of kinases responsible for the induction and maintenance of pluripotency, defined as the particular ability to differentiate pluripotent stem cells (PSCs) into every cell type in the adult body. In particular, emerging evidence indicates that the balance between the self-renewal and differentiation of PSCs is regulated by the small molecules that modulate kinase signaling pathways. Furthermore, new reprogramming technologies have been developed using kinase modulators, which have provided novel insight of the mechanisms underlying the kinase regulatory networks involved in the generation of induced pluripotent stem cells (iPSCs). In this review, we highlight the recent progress made in defining the roles of protein kinase signaling pathways and their small molecule modulators in regulating the pluripotent states, self-renewal, reprogramming process, and lineage differentiation of PSCs.
Collapse
|
13
|
Zhang Y, Sun L, Gao X, Guo A, Diao Y, Zhao Y. RNF43 ubiquitinates and degrades phosphorylated E-cadherin by c-Src to facilitate epithelial-mesenchymal transition in lung adenocarcinoma. BMC Cancer 2019; 19:670. [PMID: 31286874 PMCID: PMC6613270 DOI: 10.1186/s12885-019-5880-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/25/2019] [Indexed: 12/20/2022] Open
Abstract
Background In epithelial cells, tyrosine kinases induce tyrosine phosphorylation and ubiquitination of the E-cadherin complex, which is responsible for the epithelial-mesenchymal transition (EMT). However, the precise mechanisms remain unclear. Methods Protein antibody microarray analysis and E3 ligase profiling were performed to detect the unique E3 ligase underlying E-cadherin downregulation in lung adenocarcinoma tissues. Gene knockdown was performed using viral shRNA. Immunoblotting, immunofluorescence, immunoprecipitation, and xenograft models in vivo were integratively applied to explore RNF43-induced EMT in lung adenocarcinoma cell lines. Results Protein antibody microarray analysis and E3 ligase profiling revealed that the RING finger protein 43 (RNF43) was linked to E-cadherin downregulation within the context of c-Src activation in lung adenocarcinoma tissues. In addition, the c-Src-Caspase-8 interaction markedly increased c-Src activity. Activated c-Src phosphorylated E-cadherin at the tyrosine 797 site to initiate RNF43-mediated E-cadherin ubiquitination at lysine 816 and subsequent degradation, thus allowing the nuclear translocation of β-catenin and upregulation of Vimentin and RNF43 expression in lung adenocarcinoma cells. Decreased E-cadherin expression and increased Vimentin expression induced the EMT phenotype and promoted tumor metastasis. The Frizzled 8 (Frz8)-RNF43-induced ubiquitination of phosphorylated E-cadherin was blocked by a monoclonal antibody against the cysteine-rich domain (CRD) of Frz8 but not by antibodies against the protease domain (PA) of RNF43. Conclusions Our data suggest that RNF43 participates in the regulation of EMT in the metastasis of lung adenocarcinoma through the ubiquitination and degradation of phosphorylated E-cadherin by activated c-Src. Electronic supplementary material The online version of this article (10.1186/s12885-019-5880-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Second Thoracic Department, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China, 710004
| | - Liangzhang Sun
- Thoracic Department, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China, 710004
| | - Xiao Gao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China, 710004
| | - Aining Guo
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China, 710004
| | - Yan Diao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China, 710004
| | - Yang Zhao
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China, 710004.
| |
Collapse
|
14
|
Hiew MSY, Cheng HP, Huang CJ, Chong KY, Cheong SK, Choo KB, Kamarul T. Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype. J Biomed Sci 2018; 25:57. [PMID: 30025541 PMCID: PMC6052640 DOI: 10.1186/s12929-018-0461-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
Background Induced pluripotency in cancer cells by ectopic expression of pluripotency-regulating factors may be used for disease modeling of cancers. MicroRNAs (miRNAs) are negative regulators of gene expression that play important role in reprogramming somatic cells. However, studies on the miRNA expression profile and the expression patterns of the mesenchymal-epithelial transition (MET)/epithelial-mesenchymal transition (EMT) genes in induced pluripotent cancer (iPC) cells are lacking. Methods iPC clones were generated from two colorectal cancer (CRC) cell lines by retroviral transduction of the Yamanaka factors. The iPC clones obtained were characterized by morphology, expression of pluripotency markers and the ability to undergo in vitro tri-lineage differentiation. Genome-wide miRNA profiles of the iPC cells were obtained by microarray analysis and bioinformatics interrogation. Gene expression was done by real-time RT-PCR and immuno-staining; MET/EMT protein levels were determined by western blot analysis. Results The CRC-iPC cells showed embryonic stem cell-like features and tri-lineage differentiation abilities. The spontaneously-differentiated post-iPC cells obtained were highly similar to the parental CRC cells. However, down-regulated pluripotency gene expression and failure to form teratoma indicated that the CRC-iPC cells had only attained partial pluripotency. The CRC-iPC cells shared similarities in the genome-wide miRNA expression profiles of both cancer and pluripotent embryonic stem cells. One hundred and two differentially-expressed miRNAs were identified in the CRC-iPC cells, which were predicted by bioinformatics analysis be closely involved in regulating cellular pluripotency and the expression of the MET/EMT genes, possibly via the phosphatidylinositol-3 kinases-protein kinase B (PI3K-Akt) and transforming growth factor beta (TGF-β) signaling pathways. Irregular and inconsistent expression patterns of the EMT vimentin and Snai1 and MET E-cadherin and occludin proteins were observed in the four CRC-iPC clones analyzed, which suggested an epithelial/mesenchymal hybrid phenotype in the partially reprogrammed CRC cells. MET/EMT gene expression was also generally reversed on re-differentiation, also suggesting epigenetic regulation. Conclusions Our data support the elite model for cancer cell-reprogramming in which only a selected subset of cancer may be fully reprogrammed; partial cancer cell reprogramming may also elicit an epithelial-mesenchymal mixed phenotype, and highlight opportunities and challenges in cancer cell-reprogramming. Electronic supplementary material The online version of this article (10.1186/s12929-018-0461-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michele Sook Yuin Hiew
- Centre for Stem Cell Research & Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long campus, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.,Postgraduate Program, Universiti Tunku Abdul Rahman, Sg. Long, Selangor, Malaysia.,Present address: Graduate Institute of Biomedical Sciences, Division of Biotechnology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Han Ping Cheng
- Centre for Stem Cell Research & Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long campus, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.,Postgraduate Program, Universiti Tunku Abdul Rahman, Sg. Long, Selangor, Malaysia
| | - Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Taiwan
| | - Kowit Yu Chong
- Graduate Institute of Biomedical Sciences, Department of Medical Biotechnology and Laboratory Science & Molecular Medicine Research Center, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Soon Keng Cheong
- Centre for Stem Cell Research & Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long campus, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.,Dean's Office, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sg. Long, Selangor, Malaysia
| | - Kong Bung Choo
- Centre for Stem Cell Research & Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long campus, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia. .,Postgraduate Program, Universiti Tunku Abdul Rahman, Sg. Long, Selangor, Malaysia.
| | - Tunku Kamarul
- National Orthopaedic Centre of Excellence for Research and Learning & Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Gershkovitz M, Fainsod-Levi T, Khawaled S, Shaul ME, Sionov RV, Cohen-Daniel L, Aqeilan RI, Shaul YD, Fridlender ZG, Granot Z. Microenvironmental Cues Determine Tumor Cell Susceptibility to Neutrophil Cytotoxicity. Cancer Res 2018; 78:5050-5059. [PMID: 29967257 DOI: 10.1158/0008-5472.can-18-0540] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/17/2018] [Accepted: 06/26/2018] [Indexed: 11/16/2022]
Abstract
We have recently shown that neutrophil antitumor cytotoxicity is Ca2+ dependent and is mediated by TRPM2, an H2O2-dependent Ca2+ channel. However, neutrophil antitumor activity is dependent on context and is manifested in the premetastatic niche, but not at the primary site. We therefore hypothesized that expression of TRPM2 and the consequent susceptibility to neutrophil cytotoxicity may be associated with the epithelial/mesenchymal cellular state. We found that TRPM2 expression was upregulated during epithelial-to-mesenchymal transition (EMT), and mesenchymal cells were more susceptible to neutrophil cytotoxicity. Conversely, cells undergoing mesenchymal-to-epithelial transition (MET) expressed reduced levels of TRPM2, rendering them resistant to neutrophil cytotoxicity. Cells expressing reduced levels of TRPM2 were protected from neutrophil cytotoxicity and seeded more efficiently in the premetastatic lung. These data identify TRPM2 as the link between environmental cues at the primary tumor site, tumor cell susceptibility to neutrophil cytotoxicity, and disease progression. Furthermore, these data identify EMT as a process enhancing tumor-cell immune susceptibility and, by contrast, MET as a novel mode of immune evasion.Significance: EMT is required for metastatic spread and concomitantly enhances tumor cell susceptibility to neutrophil cytotoxicity. Cancer Res; 78(17); 5050-9. ©2018 AACR.
Collapse
Affiliation(s)
- Maya Gershkovitz
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Tanya Fainsod-Levi
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Saleh Khawaled
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Merav E Shaul
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronit V Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Leonor Cohen-Daniel
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Rami I Aqeilan
- The Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Yoav D Shaul
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Zvi G Fridlender
- Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
16
|
Papatsenko D, Waghray A, Lemischka IR. Feedback control of pluripotency in embryonic stem cells: Signaling, transcription and epigenetics. Stem Cell Res 2018; 29:180-188. [DOI: 10.1016/j.scr.2018.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/06/2018] [Accepted: 02/16/2018] [Indexed: 12/19/2022] Open
|
17
|
Zhang J, Cao H, Xie J, Fan C, Xie Y, He X, Liao M, Zhang S, Wang H. The oncogene Etv5 promotes MET in somatic reprogramming and orchestrates epiblast/primitive endoderm specification during mESCs differentiation. Cell Death Dis 2018; 9:224. [PMID: 29445086 PMCID: PMC5833841 DOI: 10.1038/s41419-018-0335-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/10/2023]
Abstract
Unipotent spermatogonial stem cells (SSCs) can be efficiently reprogrammed into pluripotent stem cells only by manipulating the culture condition, without introducing exogenous reprogramming factors. This phenotype raises the hypothesis that the endogenous transcription factors (TFs) in SSCs may facilitate reprogramming to acquire pluripotency. In this study, we screened a pool of SSCs TFs (Bcl6b, Lhx1, Foxo1, Plzf, Id4, Taf4b, and Etv5), and found that oncogene Etv5 could dramatically increase the efficiency of induced pluripotent stem cells (iPSCs) generation when combined with Yamanaka factors. We also demonstrated that Etv5 could promote mesenchymal-epithelial transition (MET) at the early stage of reprogramming by regulating Tet2-miR200s-Zeb1 axis. In addition, Etv5 knockdown in mouse embryonic stem cells (mESCs) could decrease the genomic 5hmC level by downregulating Tet2. Furthermore, the embryoid body assay revealed that Etv5 could positively regulate primitive endoderm specification through regulating Gata6 and negatively regulate epiblast specification by inhibiting Fgf5 expression. In summary, our findings provide insights into understanding the regulation mechanisms of Etv5 under the context of somatic reprogramming, mESCs maintenance, and differentiation.
Collapse
Affiliation(s)
- Jinglong Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongxia Cao
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Xie
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Fan
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Youlong Xie
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin He
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingzhi Liao
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Huayan Wang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
18
|
Balzano F, Cruciani S, Basoli V, Santaniello S, Facchin F, Ventura C, Maioli M. MiR200 and miR302: Two Big Families Influencing Stem Cell Behavior. Molecules 2018; 23:282. [PMID: 29385685 PMCID: PMC6017081 DOI: 10.3390/molecules23020282] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/25/2018] [Accepted: 01/27/2018] [Indexed: 02/08/2023] Open
Abstract
In this review, we described different factors that modulate pluripotency in stem cells, in particular we aimed at following the steps of two large families of miRNAs: the miR-200 family and the miR-302 family. We analyzed some factors tuning stem cells behavior as TGF-β, which plays a pivotal role in pluripotency inhibition together with specific miRNAs, reactive oxygen species (ROS), but also hypoxia, and physical stimuli, such as ad hoc conveyed electromagnetic fields. TGF-β plays a crucial role in the suppression of pluripotency thus influencing the achievement of a specific phenotype. ROS concentration can modulate TGF-β activation that in turns down regulates miR-200 and miR-302. These two miRNAs are usually requested to maintain pluripotency, while they are down-regulated during the acquirement of a specific cellular phenotype. Moreover, also physical stimuli, such as extremely-low frequency electromagnetic fields or high-frequency electromagnetic fields conveyed with a radioelectric asymmetric conveyer (REAC), and hypoxia can deeply influence stem cell behavior by inducing the appearance of specific phenotypes, as well as a direct reprogramming of somatic cells. Unraveling the molecular mechanisms underlying the complex interplay between externally applied stimuli and epigenetic events could disclose novel target molecules to commit stem cell fate.
Collapse
Affiliation(s)
- Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Valentina Basoli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Sara Santaniello
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Federica Facchin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy.
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- GUNA ATTRE (Advanced Therapies and Tissue REgeneration), Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy.
- Istituto di RicercaGenetica e Biomedica, Consiglio Nazionaledelle Ricerche (CNR), Monserrato, 09042 Cagliari, Italy.
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy.
| |
Collapse
|
19
|
Rao A, Herr DR. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1318-1327. [PMID: 28476646 DOI: 10.1016/j.bbamcr.2017.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/04/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Dysregulation of G protein-coupled receptors (GPCRs) is known to be involved in the pathogenesis of a variety of diseases, including cancer initiation and progression. Within this family, approximately 140 GPCRs have no known endogenous ligands and these "orphan" GPCRs remain poorly characterized. The orphan GPCR GPR19 was identified and cloned 2 decades ago, but relatively little is known about its physio-pathological relevance. We observed its expression to be elevated in breast cancers and therefore sought to investigate its potential role in breast cancer pathology. In this work, we show that overexpression of GPR19 drives mesenchymal-like breast cancer cells to adopt an epithelial-like phenotype, as demonstrated by the upregulation in E-cadherin expression and changes in functional behavior. We confirm a previous report that a peptide, adropin, is an endogenous ligand for GPR19. We further show that adropin-mediated activation of GPR19 activates the MAPK/ERK1/2 pathway, which is essential for the observed upregulation in E-cadherin and accompanying phenotypic changes. The recapitulation of epithelial characteristics at the secondary tumor sites is now understood to be an essential step in the colonization process. Taken together our work shows for the first time that GPR19 plays a potential role in metastasis by promoting the mesenchymal-epithelial transition (MET) through the ERK/MAPK pathway, thus facilitating colonization of metastatic breast tumor cells.
Collapse
Affiliation(s)
- Angad Rao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
20
|
Verusingam ND, Yeap SK, Ky H, Paterson IC, Khoo SP, Cheong SK, Ong AHK, Kamarul T. Susceptibility of Human Oral Squamous Cell Carcinoma (OSCC) H103 and H376 cell lines to Retroviral OSKM mediated reprogramming. PeerJ 2017; 5:e3174. [PMID: 28417059 PMCID: PMC5392249 DOI: 10.7717/peerj.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
Abstract
Although numbers of cancer cell lines have been shown to be successfully reprogrammed into induced pluripotent stem cells (iPSCs), reprogramming Oral Squamous Cell Carcinoma (OSCC) to pluripotency in relation to its cancer cell type and the expression pattern of pluripotent genes under later passage remain unexplored. In our study, we reprogrammed and characterised H103 and H376 oral squamous carcinoma cells using retroviral OSKM mediated method. Reprogrammed cells were characterized for their embryonic stem cells (ESCs) like morphology, pluripotent gene expression via quantitative real-time polymerase chain reaction (RT-qPCR), immunofluorescence staining, embryoid bodies (EB) formation and directed differentiation capacity. Reprogrammed H103 (Rep-H103) exhibited similar ESCs morphologies with flatten cells and clear borders on feeder layer. Reprogrammed H376 (Rep-H376) did not show ESCs morphologies but grow with a disorganized morphology. Critical pluripotency genes Oct4, Sox2 and Nanog were expressed higher in Rep-H103 against the parental counterpart from passage 5 to passage 10. As for Rep-H376, Nanog expression against its parental counterpart showed a significant decrease at passage 5 and although increased in passage 10, the level of expression was similar to the parental cells. Rep-H103 exhibited pluripotent signals (Oct4, Sox2, Nanog and Tra-1-60) and could form EB with the presence of three germ layers markers. Rep-H103 displayed differentiation capacity into adipocytes and osteocytes. The OSCC cell line H103 which was able to be reprogrammed into an iPSC like state showed high expression of Oct4, Sox2 and Nanog at late passage and may provide a potential iPSC model to study multi-stage oncogenesis in OSCC.
Collapse
Affiliation(s)
- Nalini Devi Verusingam
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia.,Current affiliation: China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Selangor, Malaysia
| | - Huynh Ky
- College of Agriculture and Applied Science, Cantho University, Vietnam
| | - Ian C Paterson
- Department of Oral Biology & Biomedical Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Suan Phaik Khoo
- School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia.,Majlis Kanser Nasional (MAKNA) Cancer Research Institute, Kuala Lumpur, Malaysia
| | - Alan H K Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Piperigkou Z, Bouris P, Onisto M, Franchi M, Kletsas D, Theocharis AD, Karamanos NK. Estrogen receptor beta modulates breast cancer cells functional properties, signaling and expression of matrix molecules. Matrix Biol 2016; 56:4-23. [DOI: 10.1016/j.matbio.2016.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 02/07/2023]
|
22
|
Ta CH, Nie Q, Hong T. Controlling Stochasticity in Epithelial-Mesenchymal Transition Through Multiple Intermediate Cellular States. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES B 2016; 21:2275-2291. [PMID: 29497351 PMCID: PMC5828240 DOI: 10.3934/dcdsb.2016047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an instance of cellular plasticity that plays critical roles in development, regeneration and cancer progression. Recent studies indicate that the transition between epithelial and mesenchymal states is a multi-step and reversible process in which several intermediate phenotypes might coexist. These intermediate states correspond to various forms of stem-like cells in the EMT system, but the function of the multi-step transition or the multiple stem cell phenotypes is unclear. Here, we use mathematical models to show that multiple intermediate phenotypes in the EMT system help to attenuate the overall fluctuations of the cell population in terms of phenotypic compositions, thereby stabilizing a heterogeneous cell population in the EMT spectrum. We found that the ability of the system to attenuate noise on the intermediate states depends on the number of intermediate states, indicating the stem-cell population is more stable when it has more sub-states. Our study reveals a novel advantage of multiple intermediate EMT phenotypes in terms of systems design, and it sheds light on the general design principle of heterogeneous stem cell population.
Collapse
Affiliation(s)
- Catherine Ha Ta
- Department of Mathematics, Univ. of California Irvine Irvine, CA 92697-3875, USA
| | - Qing Nie
- Department of Mathematics, Univ. of California Irvine Irvine, CA 92697-3875, USA
| | - Tian Hong
- Department of Mathematics, Univ. of California Irvine Irvine, CA 92697-3875, USA
| |
Collapse
|
23
|
Liu K, Yu C, Xie M, Li K, Ding S. Chemical Modulation of Cell Fate in Stem Cell Therapeutics and Regenerative Medicine. Cell Chem Biol 2016; 23:893-916. [PMID: 27524294 DOI: 10.1016/j.chembiol.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/29/2016] [Accepted: 07/04/2016] [Indexed: 12/19/2022]
Abstract
Regenerative medicine aims to repair and regenerate injured tissues and restore their impaired functions. Recent developments in stem cell biology have attracted significant interest in their applications in regenerative medicine. Chemical approaches using small molecules have yielded exciting results in induction and differentiation of pluripotent stem cells, lineage conversion of somatic cells, and ex vivo as well as in vivo modulation of adult stem cells. In this review, we discuss recent progress, new insights, and future challenges of the chemical approaches in stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Kai Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Chen Yu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Min Xie
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ke Li
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Abstract
During development, cells transition from a pluripotent to a differentiated state, generating all the different types of cells in the body. Development is generally considered an irreversible process, meaning that a differentiated cell is thought to be unable to return to the pluripotent state. However, it is now possible to reprogram mature cells to pluripotency. It is generally thought that reprogramming is accomplished by reversing the natural developmental differentiation process, suggesting that the two mechanisms are closely related. Therefore, a detailed study of cell reprogramming has the potential to shed light on unexplained developmental mechanisms and, conversely, a better understanding of developmental differentiation can help improve cell reprogramming. However, fundamental differences between reprogramming processes and multi-lineage specification during early embryonic development have also been uncovered. In addition, there are multiple routes by which differentiated cells can re-enter the pluripotent state. In this Review, we discuss the connections and disparities between differentiation and reprogramming, and assess the degree to which reprogramming can be considered as a simple reversal of development.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells. J Genet Genomics 2015; 42:661-70. [PMID: 26743984 DOI: 10.1016/j.jgg.2015.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 12/30/2022]
Abstract
Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprogramming, pluripotency, and differentiation capacity. Here, we review the epigenetic changes with a focus on histone modification (methylation and acetylation) and DNA modification (methylation) during iPSC induction. We look at changes in specific epigenetic signatures, aberrations and epigenetic memory during reprogramming and small molecules influencing the epigenetic reprogramming of somatic cells. Finally, we discuss how to improve iPSC generation and pluripotency through epigenetic manipulations.
Collapse
|
26
|
PARK DONGHO, JEON HYOSUNG, LEE SOOYOUNG, CHOI YIYOUNG, LEE HAEWOO, YOON SEONGKYU, LEE JAECHEL, YOON YOOSANG, KIM DAESUNG, NA MOONJUN, KWON SUNJUNG, KIM DONGSUN, KANG JAEKU, PARK JAEYONG, SON JIWOONG. MicroRNA-146a inhibits epithelial mesenchymal transition in non-small cell lung cancer by targeting insulin receptor substrate 2. Int J Oncol 2015; 47:1545-53. [DOI: 10.3892/ijo.2015.3111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
|
27
|
Li LC, Gao J, Li J. Emerging role of HMGB1 in fibrotic diseases. J Cell Mol Med 2014; 18:2331-9. [PMID: 25284457 PMCID: PMC4302638 DOI: 10.1111/jcmm.12419] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is originally identified as a DNA-binding protein that functions as a structural co-factor critical for proper transcriptional regulation in somatic cells. Recent studies indicate that HMGB1 can be passively released from necrotic cells or actively secreted into the extracellular milieu under appropriate signal stimulation. Extracellular HMGB1 is a multifunctional cytokine that contributes to the process of infection, injury, inflammation, apoptosis, and immune responses by binding to specific cell-surface receptors. Recently, emerging studies indicate that HMGB1 is closely involved in fibrotic disorders including cystic fibrosis, liver fibrosis and pulmonary fibrosis, while HMGB1 signal inhibitions protect against the experimental models of fibrotic diseases. From a clinical perspective, HMGB1 represents a current challenge that can be exploited orchestrate reparative responses. This review focuses on the crucial role of HMGB1 in the pathogenesis of fibrotic diseases and inhibition of which may represent a promising clinical approach for treating tissue fibrosis.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China; Third-Grade Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine (TCM-2009-202), Pharmaceutical Preparation Section, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | | |
Collapse
|
28
|
Abstract
Accumulating evidence indicates that the mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT) are basic mechanisms for cell fate conversion and may help us understand both physiologic and pathologic processes such as development and carcinogenesis. Here, we further suggest that mammalian cells fall into two grand divisions, mesenchymal or epithelial; interconversions between these two grand divisions through EMT/MET resonate with some ancient Chinese philosophic ideas.
Collapse
|
29
|
Aparicio LA, Castosa R, Haz-Conde M, Rodríguez M, Blanco M, Valladares M, Figueroa A. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells. BMC Cancer 2014; 14:507. [PMID: 25012153 PMCID: PMC4107965 DOI: 10.1186/1471-2407-14-507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/28/2014] [Indexed: 11/18/2022] Open
Abstract
Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Angélica Figueroa
- Translational Cancer Research Group, Instituto de Investigación Biomédica A Coruña (INIBIC), Complejo Hospitalario Universitario A Coruña (CHUAC), Sergas, As Xubias, 15006 A Coruña, España.
| |
Collapse
|
30
|
Yoo J, Kim J, Baek S, Park Y, Im H, Kim J. Cell reprogramming into the pluripotent state using graphene based substrates. Biomaterials 2014; 35:8321-9. [PMID: 24996757 DOI: 10.1016/j.biomaterials.2014.05.096] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022]
Abstract
Graphene has been attracting considerable interest in the field of biomedical engineering because graphene and its derivatives are considered to be ideal platforms for supporting cell growth and differentiation. Here we report that graphene promotes the reprogramming of mouse somatic fibroblasts into induced pluripotent stem cells (iPSCs). We constructed a layer of graphene film on a glass substrate and characterized it as a monolayer using Raman spectroscopy. We found that the graphene substrate significantly improved cellular reprogramming efficiency by inducing mesenchymal-to-epithelial-transition (MET) which is known to affect H3K4me3 levels. Thus, our results reveal that a graphene substrate directly regulates dynamic epigenetic changes associated with reprogramming, providing an efficient tool for epigenetic pluripotent reprogramming.
Collapse
Affiliation(s)
- Junsang Yoo
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea
| | - Jongmin Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715, Republic of Korea
| | - Soonbong Baek
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea
| | - Youngsin Park
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells and Cell Reprogramming, Department of Biomedical Engineering, Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
31
|
Feltes BC, Bonatto D. Combining small molecules for cell reprogramming through an interatomic analysis. MOLECULAR BIOSYSTEMS 2014; 9:2741-63. [PMID: 24056910 DOI: 10.1039/c3mb70159j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The knowledge available about the application and generation of induced pluripotent stem cells (iPSC) has grown since their discovery, and new techniques to enhance the reprogramming process have been described. Among the new approaches to induce iPSC that have gained great attention is the use of small molecules for reprogramming. The application of small molecules, unlike genetic manipulation, provides for control of the reprogramming process through the shifting of concentrations and the combination of different molecules. However, different researchers have reported the use of "reprogramming cocktails" with variable results and drug combinations. Thus, the proper combination of small molecules for successful and enhanced reprogramming is a matter for discussion. However, testing all potential drug combinations in different cell lineages is very costly and time-consuming. Therefore, in this article, we discuss the use of already employed molecules for iPSC generation, followed by the application of systems chemo-biology tools to create different data sets of protein-protein (PPI) and chemical-protein (CPI) interaction networks based on the knowledge of already used and new reprogramming cocktail combinations. We further analyzed the biological processes associated with PPI-CPI networks and provided new potential protein targets to be inhibited or expressed for stem cell reprogramming. In addition, we applied a new interference analysis to prospective targets that could negatively affect the classical pluripotency-associated factors (SOX2, NANOG, KLF4 and OCT4) and thus potentially improve reprogramming protocols.
Collapse
Affiliation(s)
- Bruno César Feltes
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500 - Prédio 43421 - Sala 219, Porto Alegre, Caixa Postal 15005, RS - Brazil.
| | | |
Collapse
|
32
|
Lorenz KJ, Kraft K, Graf F, Pröpper C, Steinestel K. Role of reflux-induced epithelial-mesenchymal transition in periprosthetic leakage after prosthetic voice rehabilitation. Head Neck 2014; 37:530-6. [PMID: 24532155 DOI: 10.1002/hed.23622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/10/2014] [Accepted: 02/10/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastroesophageal reflux (GER) contributes to periprosthetic leakage after prosthetic voice rehabilitation. However, underlying mechanisms are unclear, and markers predicting anti-reflux therapy response are missing. METHODS We assessed epithelial-mesenchymal transition in 148 consecutive biopsies from 44 patients with/without fistula enlargement under dual-probe pH monitoring before and after proton-pump inhibitor (PPI) therapy applying immunohistochemistry. Results were correlated with reflux intensity and clinical and histologic findings. RESULTS Epithelial-mesenchymal transition correlated with GER in all samples, and patients with fistula enlargement showed higher epithelial-mesenchymal transition scores. Contrary to patients without enlargement, epithelial-mesenchymal transition scores did not regress during therapy in this group. Furthermore, pretherapeutic epithelial-mesenchymal transition scores were lower in therapy responders than in nonresponders without reaching significance (p = .07). CONCLUSION We demonstrate that epithelial-mesenchymal transition correlates with severity of GER and presence of periprosthetic fistula enlargement in patients who underwent prosthetic voice rehabilitation, but epithelial-mesenchymal transition seems to be reversible upon PPI treatment in early stages only.
Collapse
Affiliation(s)
- Kai J Lorenz
- Department of Otorhinolaryngology - Head and Neck Surgery, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | | | | | | | | |
Collapse
|
33
|
Yun SJ, Kim WJ. Role of the epithelial-mesenchymal transition in bladder cancer: from prognosis to therapeutic target. Korean J Urol 2013; 54:645-50. [PMID: 24175036 PMCID: PMC3806986 DOI: 10.4111/kju.2013.54.10.645] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 01/22/2023] Open
Abstract
Bladder cancer (BC) is the second most common malignancy of urological organs. However, patients with non-muscle-invasive BC are at high risk of recurrence and progression into muscle-invasive BC, and the prognosis of patients with muscle-invasive BC is limited by the high rate of metastasis. The epithelial-mesenchymal transition (EMT) is characterized by loss of cell-to-cell adhesion and cell polarity and is closely associated with the invasion and metastasis of several cancers. Given the multifocality and high rates of relapse, progression, and metastasis of BC, the EMT is likely to participate in BC as well. Numerous factors associate with the EMT, and the key regulators of the EMT are E-cadherin, N-cadherin, Twist, Snail, Slug, Zeb-1, Zeb-2, vimentin, and microRNAs. This review focuses on the current concepts regarding the EMT in cancer and the evidence for involvement of the EMT in BC. Several potential EMT targets that may be useful in the treatment of BC are also described.
Collapse
Affiliation(s)
- Seok Joong Yun
- Department of Urology, Chungbuk National University College of Medicine, Cheongju, Korea
| | | |
Collapse
|
34
|
|
35
|
Li P, Lin Y, Zhang Y, Zhu Z, Huo K. SSX2IP promotes metastasis and chemotherapeutic resistance of hepatocellular carcinoma. J Transl Med 2013; 11:52. [PMID: 23452395 PMCID: PMC3599991 DOI: 10.1186/1479-5876-11-52] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/14/2012] [Indexed: 12/31/2022] Open
Abstract
Background Synovial sarcoma, X breakpoint 2 interacting protein (SSX2IP), which has been identified as an acute myeloid leukemia associated antigen, is a potential target for leukemia immunotherapy. In rodents, its homologous gene, ADIP, plays an important role in the regulation of cell adhesion and migration, underlying its potential role in promoting metastasis of other cancers. Methods To investigate the correlation between the expression level of SSX2IP and the clinicopathologic factors of hepatocellular carcinoma (HCC), 53 cases were studied by qPCR and statisted. To directly testing SSX2IP’s contribution to HCC in animal models, 45 nude mice were enrolled in peritoneal spreading and liver metastasis models. For the migration and invasion assays, cell culture experiments were performed using QCMTM 24-Well Colorimetric Migration Assay Kit and Cell Invasion Assay Kit (Millipore). Moreover we examined the influence of SSX2IP overexpression on the chemosensitivity of hepatocellular carcinoma cells to two most common chemotherapy drugs (5-Fu and CDDP) using Cell counting kit-8 (CCK-8). The chemotherapeutic drugs sensitivity was evaluated by IC50 parameter. Results Statistical analysis of clinical cases revealed that the SSX2IP high expression group had inclinations towards larger tumor size, more tumor thrombus and shorter survival period, implying a strong correlation between the expression level of SSX2IP and HCC tumorigenesis. Consistently in abdominal cavity metastasis and liver metastasis models of immune-deficient mice, SSX2IP was able to promote the metastasis of hepatoma cells. At the cytological level, SSX2IP stimulates the wound healing, metastasis and invasion of hepatoma cells, and reduces the sensitivity of hepatoma cells to 5-Fu and CDDP. Conclusions Our results showed that SSX2IP promotes the development and metastasis of hepatocellular carcinoma and contributes to the drug resistance of hepatoma cells, suggesting that SSX2IP is expected to become a new diagnostic and prognostic marker and a new target of the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pu Li
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Huang HY, Chen SZ, Zhang WT, Wang SS, Liu Y, Li X, Sun X, Li YM, Wen B, Lei QY, Tang QQ. Induction of EMT-like response by BMP4 via up-regulation of lysyl oxidase is required for adipocyte lineage commitment. Stem Cell Res 2013; 10:278-87. [PMID: 23395997 DOI: 10.1016/j.scr.2012.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 12/25/2012] [Accepted: 12/26/2012] [Indexed: 01/10/2023] Open
Abstract
The developmental pathway that gives rise to mature adipocytes involves commitment and terminal differentiation. Our previous findings indicate that BMP4 (bone morphogenetic protein 4) induces nearly complete commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage and knockdown of lysyl oxidase (Lox) disrupts this commitment process. Here, we found that an epithelial-mesenchymal transition (EMT)-like response is required for adipocyte lineage commitment and that Lox is indispensable for this process. When C3H10T1/2 cells were treated with BMP4, Vim and Cdh2 showed up-regulated expression while Cdh1 and Ocln were down-regulated along with enhanced cell migration, which are EMT-like responses. Silencing of Lox in BMP4-treated C3H10T1/2 cells induced a mesenchymal-epithelial transition (MET)-like response associated with the repression of mesenchymal markers, induction of epithelial markers and decreased cell migration. Importantly, blocking the EMT-like response by knocking down Cdh2 or over-expression of Cdh1 impairs adipocyte lineage commitment. EMT is regulated by distinct transcription factors such as Snai1, Snai2 and Twist. In this study, we also found that only Twist was down-regulated after Lox silencing in C3H10T1/2 cells treated with BMP4. This study provides new insights into adipocyte lineage commitment.
Collapse
Affiliation(s)
- Hai-Yan Huang
- Key Laboratory of Molecular Medicine, Ministry of Education; Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai 200032, PR China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Rangel MC, Karasawa H, Castro NP, Nagaoka T, Salomon DS, Bianco C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2188-200. [PMID: 22542493 DOI: 10.1016/j.ajpath.2012.02.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/13/2012] [Accepted: 02/21/2012] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical multistep process that converts epithelial cells to more motile and invasive mesenchymal cells, contributing to body patterning and morphogenesis during embryonic development. In addition, both epithelial plasticity and increased motility and invasiveness are essential for the branching morphogenesis that occurs during development of the mammary gland and during tumor formation, allowing cancer cells to escape from the primary tumor. Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF/CFC) gene family, together with the transforming growth factor (TGF)-β family ligand Nodal, regulates both cell movement and EMT during embryonic development. During postnatal development, Cripto-1 regulates the branching morphogenesis of the mouse mammary gland and enhances both the invasive and migratory properties of mammary epithelial cells in vitro. Furthermore, transgenic mouse models have shown that Cripto-1 promotes the formation of mammary tumors that display properties of EMT, including the down-regulation of the cell surface adherens junctional protein E-cadherin and the up-regulation of mesenchymal markers, such as vimentin, N-cadherin, and Snail. Interestingly, Cripto-1 is enriched in a subpopulation of embryonal, melanoma, prostate, and pancreatic cancer cells that possess stem-like characteristics. Therefore, Cripto-1 may play a role during developmental EMT, and it may also be involved in the reprogramming of differentiated tumor cells into cancer stem cells through the induction of an EMT program.
Collapse
Affiliation(s)
- Maria C Rangel
- Tumor Growth Factor Section, Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|