1
|
Shi W, Jin E, Fang L, Sun Y, Fan Z, Zhu J, Liang C, Zhang YP, Zhang YQ, Wang GD, Zhao W. VDGE: a data repository of variation database for gene-edited animals across multiple species. Nucleic Acids Res 2025; 53:D1250-D1260. [PMID: 39470732 PMCID: PMC11701559 DOI: 10.1093/nar/gkae956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024] Open
Abstract
Gene-edited animals are crucial for addressing fundamental questions in biology and medicine and hold promise for practical applications. In light of the rapid advancement of gene editing technologies over the past decade, a dramatically increased number of gene-edited animals have been generated. Genome editing at off-target sites can, however, introduce genomic variations, potentially leading to unintended functional consequences in these animals. So, there is an urgent need to systematically collect and collate these variations in gene-edited animals to aid data mining and integrative in-depth analyses. However, existing databases are currently insufficient to meet this need. Here, we present the Variation Database of Gene-Edited animals (VDGE, https://ngdc.cncb.ac.cn/vdge), the first open-access repository to present genomic variations and annotations in gene-edited animals, with a particular focus on larger animals such as monkeys. At present, VDGE houses 151 on-target mutations from 210 samples, and 115,710 variations identified from 107 gene-edited and wild-type animal trios through unified and standardized analysis and concurrently provides comprehensive annotation details for each variation, thus facilitating the assessment of their functional consequences and promoting mechanistic studies and practical applications for gene-edited animals.
Collapse
Affiliation(s)
- Wenwen Shi
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Enhui Jin
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Lu Fang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Yanling Sun
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Cambridge Street, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Cambridge Street, Houston, TX 77030, USA
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Junwei Zhu
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Chengzhi Liang
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Panlong District, Kunming 650201, China
| | - Yong Q Zhang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- School of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan 430062, China
| | - Guo-Dong Wang
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Panlong District, Kunming 650201, China
| | - Wenming Zhao
- National Genomics Data Center, China National Center for Bioinformation, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| |
Collapse
|
2
|
Lee DH, Yoon SB, Jo YJ, Mo JW, Kwon J, Lee SI, Kwon J, Kim JS. Comparative analysis of superovulated versus uterine-embryo synchronized recipients for embryo transfer in cynomolgus monkeys ( Macaca fascicularis). Front Vet Sci 2024; 11:1452631. [PMID: 39346953 PMCID: PMC11427438 DOI: 10.3389/fvets.2024.1452631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Assisted reproductive technologies (ARTs), such as intracytoplasmic sperm injection and embryo transfer, are essential for generating genetically edited monkeys. Despite their importance, ARTs face challenges in recipient selection in terms of time and the number of animals required. The potential of superovulated monkeys, commonly used as oocyte donors, to serve as surrogate mothers, remains underexplored. The study aimed to compare the efficacy of superovulated and uterine-embryo synchronized recipients of embryo transfer in cynomolgus monkeys (Macaca fascicularis). Methods This study involved 23 cynomolgus monkeys divided into two groups-12 superovulated recipients and 11 synchronized recipients. The evaluation criteria included measuring endometrial thickness on the day of embryo transfer and calculating pregnancy and implantation rates to compare outcomes between groups. Results The study found no statistically significant differences in endometrial thickness (superovulated: 4.48 ± 1.36 mm, synchronized: 5.15 ± 1.58 mm), pregnancy rates (superovulated: 30.8%, synchronized: 41.7%), and implantation rates (superovulated: 14.3%, synchronized: 21.9%) between the groups (p > 0.05). Conclusion The observations indicate that superovulated recipients are as effective as synchronized recipients for embryo transfer in cynomolgus monkeys. This suggests that superovulated recipients can serve as viable options, offering an efficient and practical approach to facilitate the generation of gene-edited models in this species.
Collapse
Affiliation(s)
- Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jun Won Mo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Sang Il Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
3
|
Badea AR, Feeney O. Genome Editing Dilemma: Navigating Dual-Use Potential and Charting the Path Forward. JOURNAL OF BIOETHICAL INQUIRY 2024:10.1007/s11673-024-10358-8. [PMID: 39046699 DOI: 10.1007/s11673-024-10358-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/16/2024] [Indexed: 07/25/2024]
Abstract
Contemporary genome editing techniques have made genomic intervention-from microorganism to human-more accessible, easier to use, and more accurate than previous methods. We argue that, notwithstanding its merits in treating and preventing disease in humans, genome editing represents a potential threat for domestic and international security, requiring an integrated approach in regulating, detecting, preventing, and mitigating the risk of its use for malicious purposes. Despite the global regulatory ambitions of the 2021 WHO framework, we see insufficient attention given to the future prospect of dual-use genomic technology. Drawing parallels with the nuclear field, we suggest tentative practical steps for a way forward in dealing with genome editing technologies, such as: 1) adapting national (bio)security and defence strategies to include genome editing as a possible threat (with conceivable WMD potential); 2) enhancing the international dialogue on genome editing and raising the issue at the highest level; 3) working towards a global, legally binding verification mechanism; 4) tracking genome editing technologies.
Collapse
Affiliation(s)
- Ana Ruxandra Badea
- University of Bucharest, Faculty of Philosophy, Splaiul Independentei 204, 060024, Bucharest, Romania.
| | - Oliver Feeney
- University of Tübingen, Ethics of Genome Editing Research Unit, Institute of Ethics and History of Medicine, Gartenstr. 47, 72074, Tübingen, Germany
| |
Collapse
|
4
|
Buckley RM, Ostrander EA. Large-scale genomic analysis of the domestic dog informs biological discovery. Genome Res 2024; 34:811-821. [PMID: 38955465 PMCID: PMC11293549 DOI: 10.1101/gr.278569.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Recent advances in genomics, coupled with a unique population structure and remarkable levels of variation, have propelled the domestic dog to new levels as a system for understanding fundamental principles in mammalian biology. Central to this advance are more than 350 recognized breeds, each a closed population that has undergone selection for unique features. Genetic variation in the domestic dog is particularly well characterized compared with other domestic mammals, with almost 3000 high-coverage genomes publicly available. Importantly, as the number of sequenced genomes increases, new avenues for analysis are becoming available. Herein, we discuss recent discoveries in canine genomics regarding behavior, morphology, and disease susceptibility. We explore the limitations of current data sets for variant interpretation, tradeoffs between sequencing strategies, and the burgeoning role of long-read genomes for capturing structural variants. In addition, we consider how large-scale collections of whole-genome sequence data drive rare variant discovery and assess the geographic distribution of canine diversity, which identifies Asia as a major source of missing variation. Finally, we review recent comparative genomic analyses that will facilitate annotation of the noncoding genome in dogs.
Collapse
Affiliation(s)
- Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
5
|
Yang L, Chen L, Zheng Y, Deng L, Bai R, Zhang T, Wang Z, Li S. Discovery and characterization of sgRNA-sequence-independent DNA cleavage from CRISPR/Cas9 in mouse embryos. Genomics 2024; 116:110836. [PMID: 38537809 DOI: 10.1016/j.ygeno.2024.110836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The CRISPR/Cas9 system can induce off-target effects in programmed gene editing, but there have been few reports on cleavage detection and their affection in embryo development. To study these events, sgRNAs with different off-target rates were designed and compared after micro-injected into mouse zygotes, and γH2AX was used for DNA cleavage sites analysis by immunostaining and CUT&Tag. Although the low off-target sgRNA were usually selected for production gene editing animals, γH2AX immunofluorescence indicated that there was a relative DSB peak at 15 h after Cas9 system injection, and the number of γH2AX foci at the peak was significantly higher in the low off-target sgRNA-injected group than in the control group. Further, the result of CUT&Tag sequencing analysis showed more double-strand breaks (DSBs) related sequences were detected in low off-target sgRNA-injected group than control and the distribution of DSB related sequences had no chromosome specificity. Gene Ontology (GO) annotation analysis of the DSB related sequences showed that these sequences were mainly concentrated at genes associated with some important biological processes, molecular functions, and cell components. In a conclusion, there are many sgRNA-sequence-independent DSBs in early mouse embryos when the Cas9 system is used for gene editing and the DSB related sequence could be detected and characterized in the genome. These results and method should also be considered in using or optimizing the Cas9 system.
Collapse
Affiliation(s)
- Liyun Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lijiao Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Deng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Raoxian Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Ting Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
6
|
Petersen-Jones SM, Komáromy AM. Canine and Feline Models of Inherited Retinal Diseases. Cold Spring Harb Perspect Med 2024; 14:a041286. [PMID: 37217283 PMCID: PMC10835616 DOI: 10.1101/cshperspect.a041286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Naturally occurring inherited retinal diseases (IRDs) in cats and dogs provide a rich source of potential models for human IRDs. In many cases, the phenotypes between the species with mutations of the homologous genes are very similar. Both cats and dogs have a high-acuity retinal region, the area centralis, an equivalent to the human macula, with tightly packed photoreceptors and higher cone density. This and the similarity in globe size to that of humans means these large animal models provide information not obtainable from rodent models. The established cat and dog models include those for Leber congenital amaurosis, retinitis pigmentosa (including recessive, dominant, and X-linked forms), achromatopsia, Best disease, congenital stationary night blindness and other synaptic dysfunctions, RDH5-associated retinopathy, and Stargardt disease. Several of these models have proven to be important in the development of translational therapies such as gene-augmentation therapies. Advances have been made in editing the canine genome, which necessitated overcoming challenges presented by the specifics of canine reproduction. Feline genome editing presents fewer challenges. We can anticipate the generation of specific cat and dog IRD models by genome editing in the future.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| | - András M Komáromy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
7
|
Hai C, Bai C, Yang L, Wei Z, Wang H, Ma H, Ma H, Zhao Y, Su G, Li G. Effects of Different Generations and Sex on Physiological, Biochemical, and Growth Parameters of Crossbred Beef Cattle by Myostatin Gene-Edited Luxi Bulls and Simmental Cows. Animals (Basel) 2023; 13:3216. [PMID: 37893940 PMCID: PMC10603717 DOI: 10.3390/ani13203216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Myostatin (MSTN) is a protein that regulates skeletal muscle development and plays a crucial role in maintaining animal body composition and muscle structure. The loss-of-function mutation of MSTN gene can induce the muscle hypertrophic phenotype. (2) Methods: Growth indexes and blood parameters of the cattle of different months were analyzed via multiple linear regression. (3) Results: Compared with the control group, the body shape parameters of F2 cattle were improved, especially the body weight, cross height, and hip height, representing significant development of hindquarters, and the coat color of the F2 generation returned to the yellow of Luxi cattle. As adults, MSTN gene-edited bulls have a tall, wide acromion and a deep, wide chest. Both the forequarters and hindquarters are double-muscled with clear muscle masses. The multiple linear regression demonstrates that MSTN gene-edited hybrid beef cattle gained weight due to the higher height of the hindquarters. Significant differences in blood glucose, calcium, and low-density lipoprotein. Serum insulin levels decreased significantly at 24 months of age. MSTN gene editing improves the adaptability of cattle. (4) Conclusions: Our findings suggest that breeding with MSTN gene-edited Luxi bulls can improve the growth and performance of hybrid cattle, with potential benefits for both farmers and consumers.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Zhuying Wei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Hong Wang
- Sheng-Quan Ecological Animal Husbandry Company, Chifeng 024500, China;
| | - Haoran Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Haibing Ma
- Inner Mongolia Aokesi Animal Husbandry Co., Ltd., Hesge Ula Ranch, Ulagai Management Area, Xilingol League 026321, China;
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China; (C.H.); (C.B.); (L.Y.); (Z.W.); (Y.Z.)
| |
Collapse
|
8
|
Gu M, Wang S, Di A, Wu D, Hai C, Liu X, Bai C, Su G, Yang L, Li G. Combined Transcriptome and Metabolome Analysis of Smooth Muscle of Myostatin Knockout Cattle. Int J Mol Sci 2023; 24:ijms24098120. [PMID: 37175828 PMCID: PMC10178895 DOI: 10.3390/ijms24098120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Myostatin (MSTN), a growth and differentiation factor, plays an important role in regulating skeletal muscle growth and development. MSTN knockout (MSTN-KO) leads to skeletal muscle hypertrophy and regulates metabolic homeostasis. Moreover, MSTN is also detected in smooth muscle. However, the effect of MSTN-KO on smooth muscle has not yet been reported. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in esophageal smooth muscles of MSTN-KO Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 608.5 ± 17.62 kg) and wild-type (WT) Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 528.25 ± 11.03 kg). The transcriptome was sequenced using the Illumina Novaseq™ 6000 sequence platform. In total, 337 significantly up- and 129 significantly down-regulated genes were detected in the MSTN-KO cattle compared with the WT Chinese Luxi Yellow cattle. Functional enrichment analysis indicated that the DEGs were mainly enriched in 67 signaling pathways, including cell adhesion molecules, tight junction, and the cGMP-PKG signaling pathway. Metabolomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 130 differential metabolites between the groups, with 56 up-regulated and 74 down-regulated in MSTN knockout cattle compared with WT cattle. Differential metabolites were significantly enriched in 31 pathways, including glycerophospholipid metabolism, histidine metabolism, glutathione metabolism, and purine metabolism. Transcriptome and metabolome were combined to analyze the significant enrichment pathways, and there were three metabolically related pathways, including histidine metabolism, purine metabolism, and arginine and proline metabolism. These results provide important references for in-depth research on the effect of MSTN knockout on smooth muscle.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Song Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Di
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Di Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
9
|
Yang SP, Zhu XX, Qu ZX, Chen CY, Wu YB, Wu Y, Luo ZD, Wang XY, He CY, Fang JW, Wang LQ, Hong GL, Zheng ST, Zeng JM, Yan AF, Feng J, Liu L, Zhang XL, Zhang LG, Miao K, Tang DS. Production of MSTN knockout porcine cells using adenine base-editing-mediated exon skipping. In Vitro Cell Dev Biol Anim 2023:10.1007/s11626-023-00763-5. [PMID: 37099179 DOI: 10.1007/s11626-023-00763-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.
Collapse
Affiliation(s)
- Shuai-Peng Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China
| | - Xiang-Xing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| | - Zi-Xiao Qu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China
| | - Cai-Yue Chen
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Yao-Bing Wu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Yue Wu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Zi-Dan Luo
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Xin-Yi Wang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Chu-Yu He
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Jia-Wen Fang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Ling-Qi Wang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Guang-Long Hong
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Shu-Tao Zheng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Jie-Mei Zeng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Ai-Fen Yan
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Juan Feng
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Lian Liu
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Xiao-Li Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Li-Gang Zhang
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China
| | - Kai Miao
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Dong-Sheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, 528225, China.
- Gene Editing Technology Center of Guangdong Province, School of Medicine, Foshan University, Foshan, 528225, China.
| |
Collapse
|
10
|
Parker J. How has CRISPR transformed therapeutic drug discovery? Biotechniques 2023; 74:119-121. [PMID: 37083429 DOI: 10.2144/btn-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The genome is the blueprint for life, and over the past decade, CRISPR has become a very powerful method for editing our genetic makeup. In this article, we will explore the importance of CRISPR in developing breakthrough therapies for monogenic conditions and neurodegenerative diseases, and for enhancing the effectiveness of immuno-oncology.
Collapse
|
11
|
Li Y, Lian D, Wang J, Zhao Y, Li Y, Liu G, Wu S, Deng S, Du X, Lian Z. MDM2 antagonists promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:309-323. [PMID: 36726409 PMCID: PMC9883270 DOI: 10.1016/j.omtn.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
CRISPR-Cas9-mediated genome editing in sheep is of great use in both agricultural and biomedical applications. While targeted gene knockout by CRISPR-Cas9 through non-homologous end joining (NHEJ) has worked efficiently, the knockin efficiency via homology-directed repair (HDR) remains lower, which severely hampers the application of precise genome editing in sheep. Here, in sheep fetal fibroblasts (SFFs), we optimized several key parameters that affect HDR, including homology arm (HA) length and the amount of double-stranded DNA (dsDNA) repair template; we also observed synchronization of SFFs in G2/M phase could increase HDR efficiency. Besides, we identified three potent small molecules, RITA, Nutlin3, and CTX1, inhibitors of p53-MDM2 interaction, that caused activation of the p53 pathway, resulting in distinct G2/M cell-cycle arrest in response to DNA damage and improved CRISPR-Cas9-mediated HDR efficiency by 1.43- to 4.28-fold in SFFs. Furthermore, we demonstrated that genetic knockout of p53 could inhibit HDR in SFFs by suppressing the expression of several key factors involved in the HDR pathway, such as BRCA1 and RAD51. Overall, this study offers an optimized strategy for the usage of dsDNA repair template, more importantly, the application of MDM2 antagonists provides a simple and efficient strategy to promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells.
Collapse
Affiliation(s)
- Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China,These authors contributed equally
| | - Di Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,These authors contributed equally
| | - Jiahao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,These authors contributed equally
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China,Corresponding author: Shoulong Deng, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, 5 Panjiayuannanli, Chaoyang District, Beijing 100021, China.
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Corresponding author: Xuguang Du, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,Corresponding author: Zhengxing Lian, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2 Mingyuanxilu, Haidian District, Beijing 100193, China. .
| |
Collapse
|
12
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
13
|
Christapher PV, Ganeson T, Chinni SV, Parasuraman S. Transgenic Rodent Models in Toxicological and Environmental Research: Future Perspectives. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221135691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The coexistence of humans and animals has existed for centuries. Over the past decade, animal research has played a critical role in drug development and discovery. More and more diverse animals, including transgenic animals, are used in basic research than in applied research. Transgenic animals are generated using molecular genetic techniques to add functional genes, alter gene products, delete genes, insert reporter genes into regulatory sequences, replace or repair genes, and make changes in gene expression. These genetically engineered animals are unique tools for studying a wide range of biomedical issues, allowing the exhibition of specific genetic alterations in various biological systems. Over the past two decades, transgenic animal models have played a critical role in improving our understanding of gene regulation and function in biological systems and human disease. This review article aims to highlight the role of transgenic animals in pharmacological, toxicological, and environmental research. The review accounts for various types of transgenic animals and their appropriateness in multiple types of studies.
Collapse
Affiliation(s)
- Parayil Varghese Christapher
- Department of Pharmacology, Al Shifa College of Pharmacy, Poothavanam post, Kizhattur, Perinthalmanna, Malappuram District, Kerala, India
| | - Thanapakiam Ganeson
- Department of Pharmaceutical Technology, Faculty of Pharmacy, AIMST University, Bedong, Malaysia
| | - Suresh V. Chinni
- Department of Biochemistry, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Selangor, Malaysia
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | | |
Collapse
|
14
|
Du C, Zhou X, Zhang K, Huang S, Wang X, Zhou S, Chen Y. Inactivation of the MSTN gene expression changes the composition and function of the gut microbiome in sheep. BMC Microbiol 2022; 22:273. [DOI: 10.1186/s12866-022-02687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Myostatin (MSTN) negatively regulates the muscle growth in animals and MSTN deficient sheep have been widely reported previously. The goal of this study was to explore how MSTN inactivation influences their gut microbiota composition and potential functions.
Results
We compared the slaughter parameters and meat quality of 3 MSTN-edited male sheep and 3 wild-type male sheep, and analyzed the gut microbiome of the MSTN-edited sheep (8 female and 8 male sheep) and wild-type sheep (8 female and 8 male sheep) through metagenomic sequencing. The results showed that the body weight, carcass weight and eye muscle area of MSTN-edited sheep were significantly higher, but there were no significant differences in the meat quality indexes. At the microbial level, the alpha diversity was significantly higher in the MSTN-edited sheep (P < 0.05), and the microbial composition was significantly different by PCoA analysis in the MSTN-edited and wild-type sheep. The abundance of Firmicutes significantly increased and Bacteroidota significantly decreased in the MSTN-edited sheep. At genus level, the abundance of Flavonifractor, Subdoligranulum, Ruthenibacterium, Agathobaculum, Anaerotignum, Oribacterium and Lactobacillus were significantly increased in the MSTN-edited sheep (P < 0.05). Further analysis of functional differences was found that the carotenoid biosynthesis was significantly increased and the peroxisome, apoptosis, ferroptosis, N-glycan biosynthesis, thermogenesis, and adipocytokines pathways were decreased in the MSTN-edited sheep (P < 0.05). Moreover, carbohydrate-active enzymes (CAZymes) results certified the abundance of the GH13_39, GH4, GH137, GH71 and PL17 were upregulated, and the GT41 and CBM20 were downregulated in the MSTN-edited sheep (P < 0.05).
Conclusions
Our study suggested that MSTN inactivation remarkably influenced the composition and potential function of hindgut microbial communities of the sheep, and significantly promoted growth performance without affecting meat quality.
Collapse
|
15
|
Myostatin Knockout Affects Mitochondrial Function by Inhibiting the AMPK/SIRT1/PGC1α Pathway in Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232213703. [PMID: 36430183 PMCID: PMC9694677 DOI: 10.3390/ijms232213703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Myostatin (Mstn) is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes. The deletion of the Mstn gene in mice leads to reduced mitochondrial functions. However, the underlying regulatory mechanisms remain unclear. In this study, we used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear microinjection. Mstn-KO mice exhibited significantly larger skeletal muscles. Meanwhile, Mstn knockout regulated the organ weights of mice. Moreover, we found that Mstn knockout reduced the basal metabolic rate, muscle adenosine triphosphate (ATP) synthesis, activities of mitochondrial respiration chain complexes, tricarboxylic acid cycle (TCA) cycle, and thermogenesis. Mechanistically, expressions of silent information regulator 1 (SIRT1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) were down-regulated, while peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) acetylation modification increased in the Mstn-KO mice. Skeletal muscle cells from Mstn-KO and WT were treated with AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR), and the AMPK inhibitor Compound C, respectively. Compared with the wild-type (WT) group, Compound C treatment further down-regulated the expression or activity of pAMPK, SIRT1, citrate synthase (CS), isocitrate dehydrogenase (ICDHm), and α-ketoglutarate acid dehydrogenase (α-KGDH) in Mstn-KO mice, while Mstn knockout inhibited the AICAR activation effect. Therefore, Mstn knockout affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α signaling pathway. The present study reveals a new mechanism for Mstn knockout in regulating energy homeostasis.
Collapse
|
16
|
Qin Y, Feng S, Zheng M, Liu X, Zhao J, Zhao Q, Ye J, Mi J, Zhong Y. Progesterone Promotes In Vitro Maturation of Domestic Dog Oocytes Leading to Successful Live Births. Life (Basel) 2022; 12:life12111778. [PMID: 36362933 PMCID: PMC9698205 DOI: 10.3390/life12111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Gene-edited dogs are promising models for biomedical research because they have hundreds of genetic diseases that are similar to humans. A common method for producing gene-edited dogs is assisted reproductive technology (ART) using in vivo oocytes or embryos, but it is much more inefficient and has a higher cost. ART for dogs has lagged mostly because of the lack of an efficient in vitro maturation system. Because early maturation of canine oocytes occurs in follicles with extremely high concentrations of progesterone (P4), we hypothesize that P4 has an important role during maturation. In this study, we obtained ovaries of female dogs and collected cumulus−oocyte complexes, which were cultured in vitro in microdrops containing different P4 concentrations (0, 10, 40, 100 or 200 µg/mL). We found that 40 µg/mL P4 produced the highest oocyte maturation rate (29.7% ± 7.1%, p < 0.05). We also evaluated the quality of in vitro matured oocytes by in vitro fertilization and single-cell RNA sequencing, and both indicated an improvement in oocyte developmental potential. In conclusion, we successfully obtained the first live dogs using in vitro matured oocytes by adding P4 to optimize the in vitro maturation system of canine oocytes, and established a new and low-cost method to produce dogs via in vitro maturation and in vitro fertilization.
Collapse
Affiliation(s)
- Yumin Qin
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shenjiong Feng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Min Zheng
- Beijing SINOGENE Biotechnology Co., Ltd., Beijing 102200, China
| | - Xiaojuan Liu
- Beijing SINOGENE Biotechnology Co., Ltd., Beijing 102200, China
| | - Jianping Zhao
- Beijing SINOGENE Biotechnology Co., Ltd., Beijing 102200, China
| | - Qintao Zhao
- Nanchang Police-dog Base of the Ministry of Public Security of PRC, Nanchang 330100, China
| | - Junhua Ye
- Nanchang Police-dog Base of the Ministry of Public Security of PRC, Nanchang 330100, China
- Correspondence: (J.Y.); (J.M.); (Y.Z.)
| | - Jidong Mi
- Beijing SINOGENE Biotechnology Co., Ltd., Beijing 102200, China
- Correspondence: (J.Y.); (J.M.); (Y.Z.)
| | - Yougang Zhong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (J.Y.); (J.M.); (Y.Z.)
| |
Collapse
|
17
|
Dog models of human atherosclerotic cardiovascular diseases. Mamm Genome 2022:10.1007/s00335-022-09965-w. [PMID: 36243810 DOI: 10.1007/s00335-022-09965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/06/2022] [Indexed: 10/17/2022]
Abstract
Cardiovascular diseases (CVD) are one of the leading causes of death worldwide. Eighty-five percent of CVD-associated deaths are due to heart attacks and stroke. Atherosclerosis leads to heart attack and stroke through a slow progression of lesion formation and luminal narrowing of arteries. Dogs are similar to humans in terms of their cardiovascular physiology, size, and anatomy. Dog models have been developed to recapitulate the complex phenotype of human patients and understand the underlying mechanism of CVD. Different methods, including high-fat, high-cholesterol diet and genetic modification, have been used to generate dog models of human CVD. Remarkably, the location and severity of atherosclerotic lesions in the coronary arteries and branches of the carotid arteries of dog models closely resemble those of human CVD patients. Overt clinical manifestations such as stroke caused by plaque rupture and thrombosis were observed in dog models. Thus, dog models can help define the pathophysiological mechanisms of atherosclerosis and develop potential strategy for preventing and treating CVD. In this review, we summarize the progress in generating and characterizing canine models to investigate CVD and discuss the advantages and limitations of canine CVD models.
Collapse
|
18
|
CRISPR/Cas9 system: a reliable and facile genome editing tool in modern biology. Mol Biol Rep 2022; 49:12133-12150. [PMID: 36030476 PMCID: PMC9420241 DOI: 10.1007/s11033-022-07880-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Genome engineering has always been a versatile technique in biological research and medicine, with several applications. In the last several years, the discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 technology has swept the scientific community and revolutionised the speed of modern biology, heralding a new era of disease detection and rapid biotechnology discoveries. It enables successful gene editing by producing targeted double-strand breaks in virtually any organism or cell type. So, this review presents a comprehensive knowledge about the mechanism and structure of Cas9-mediated RNA-guided DNA targeting and cleavage. In addition, genome editing via CRISPR-Cas9 technology in various animals which are being used as models in scientific research including Non-Human Primates Pigs, Dogs, Zebra, fish and Drosophila has been discussed in this review. This review also aims to understand the applications, serious concerns and future perspective of CRISPR/Cas9-mediated genome editing.
Collapse
|
19
|
Chen XZ, Guo R, Zhao C, Xu J, Song H, Yu H, Pilarsky C, Nainu F, Li JQ, Zhou XK, Zhang JY. A Novel Anti-Cancer Therapy: CRISPR/Cas9 Gene Editing. Front Pharmacol 2022; 13:939090. [PMID: 35935840 PMCID: PMC9353945 DOI: 10.3389/fphar.2022.939090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Cancer becomes one of the main causes of human deaths in the world due to the high incidence and mortality rate and produces serious economic burdens. With more and more attention is paid on cancer, its therapies are getting more of a concern. Previous research has shown that the occurrence, progression, and treatment prognosis of malignant tumors are closely related to genetic and gene mutation. CRISPR/Cas9 has emerged as a powerful method for making changes to the genome, which has extensively been applied in various cell lines. Establishing the cell and animal models by CRISPR/Cas9 laid the foundation for the clinical trials which possibly treated the tumor. CRISPR-Cas9-mediated genome editing technology brings a great promise for inhibiting migration, invasion, and even treatment of tumor. However, the potential off-target effect limits its clinical application, and the effective ethical review is necessary. The article reviews the molecular mechanisms of CRISPR/Cas9 and discusses the research and the limitation related to cancer clinical trials.
Collapse
Affiliation(s)
- Xin-Zhu Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Rong Guo
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Cong Zhao
- Department of Cellular and Molecular Biology, Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Beijing, China
| | - Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Christian Pilarsky
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xin-Ke Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Kim DE, Lee JH, Ji KB, Park KS, Kil TY, Koo O, Kim MK. Generation of genome-edited dogs by somatic cell nuclear transfer. BMC Biotechnol 2022; 22:19. [PMID: 35831828 PMCID: PMC9281017 DOI: 10.1186/s12896-022-00749-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 06/30/2022] [Indexed: 01/17/2023] Open
Abstract
Background Canine cloning technology based on somatic cell nuclear transfer (SCNT) combined with genome-editing tools such as CRISPR-Cas9 can be used to correct pathogenic mutations in purebred dogs or to generate animal models of disease. Results We constructed a CRISPR-Cas9 vector targeting canine DJ-1. Genome-edited canine fibroblasts were established using vector transfection and antibiotic selection. We performed canine SCNT using genome-edited fibroblasts and successfully generated two genome-edited dogs. Both genome-edited dogs had insertion-deletion mutations at the target locus, and DJ-1 expression was either downregulated or completely repressed. Conclusion SCNT successfully produced genome-edited dogs by using the CRISPR-Cas9 system for the first time. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-022-00749-3.
Collapse
Affiliation(s)
- Dong-Ern Kim
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Korea
| | - Ji-Hye Lee
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Korea
| | - Kuk-Bin Ji
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Korea
| | | | - Tae-Young Kil
- Department of Social Welfare, Joongbu University, Geumsan, 32713, Korea
| | | | - Min-Kyu Kim
- Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, 34134, Korea. .,MK biotech Inc., Daejeon, 34134, Korea.
| |
Collapse
|
21
|
Lin Y, Li J, Li C, Tu Z, Li S, Li XJ, Yan S. Application of CRISPR/Cas9 System in Establishing Large Animal Models. Front Cell Dev Biol 2022; 10:919155. [PMID: 35656550 PMCID: PMC9152178 DOI: 10.3389/fcell.2022.919155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The foundation for investigating the mechanisms of human diseases is the establishment of animal models, which are also widely used in agricultural industry, pharmaceutical applications, and clinical research. However, small animals such as rodents, which have been extensively used to create disease models, do not often fully mimic the key pathological changes and/or important symptoms of human disease. As a result, there is an emerging need to establish suitable large animal models that can recapitulate important phenotypes of human diseases for investigating pathogenesis and developing effective therapeutics. However, traditional genetic modification technologies used in establishing small animal models are difficultly applied for generating large animal models of human diseases. This difficulty has been overcome to a great extent by the recent development of gene editing technology, especially the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In this review, we focus on the applications of CRISPR/Cas9 system to establishment of large animal models, including nonhuman primates, pigs, sheep, goats and dogs, for investigating disease pathogenesis and treatment. We also discuss the limitations of large animal models and possible solutions according to our current knowledge. Finally, we sum up the applications of the novel genome editing tool Base Editors (BEs) and its great potential for gene editing in large animals.
Collapse
|
22
|
Xu X, Zhang X, Peng X, Liu C, Li W, Liu M. Comparison of the efficiency and precision of Base editor and CRISPR/Cas9 for inducing defined point mutation(S395F) in ovine embryos. Reprod Domest Anim 2022; 57:829-838. [DOI: 10.1111/rda.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/10/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Xin Xu
- College of Life Science and Technology Xinjiang University Urumqi 830046 Xinjiang China
| | - Xuemei Zhang
- Institute of animal biotechnology Xinjiang Academy of Animal Science Urumqi 830026 Xinjiang China
| | - Xinrong Peng
- Institute of animal biotechnology Xinjiang Academy of Animal Science Urumqi 830026 Xinjiang China
| | - Chunjie Liu
- College of Animal Science Tarim University Alar 843300 Xinjiang China
| | - Wenrong Li
- Institute of animal biotechnology Xinjiang Academy of Animal Science Urumqi 830026 Xinjiang China
| | - Mingjun Liu
- Institute of animal biotechnology Xinjiang Academy of Animal Science Urumqi 830026 Xinjiang China
| |
Collapse
|
23
|
Oh HJ, Chung E, Kim J, Kim MJ, Kim GA, Lee SH, Ra K, Eom K, Park S, Chae JH, Kim JS, Lee BC. Generation of a Dystrophin Mutant in Dog by Nuclear Transfer Using CRISPR/Cas9-Mediated Somatic Cells: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23052898. [PMID: 35270040 PMCID: PMC8911381 DOI: 10.3390/ijms23052898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Dystrophinopathy is caused by mutations in the dystrophin gene, which lead to progressive muscle degeneration, necrosis, and finally, death. Recently, golden retrievers have been suggested as a useful animal model for studying human dystrophinopathy, but the model has limitations due to difficulty in maintaining the genetic background using conventional breeding. In this study, we successfully generated a dystrophin mutant dog using the CRISPR/Cas9 system and somatic cell nuclear transfer. The dystrophin mutant dog displayed phenotypes such as elevated serum creatine kinase, dystrophin deficiency, skeletal muscle defects, an abnormal electrocardiogram, and avoidance of ambulation. These results indicate that donor cells with CRISPR/Cas9 for a specific gene combined with the somatic cell nuclear transfer technique can efficiently produce a dystrophin mutant dog, which will help in the successful development of gene therapy drugs for dogs and humans.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Eugene Chung
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Korea;
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 5029, Korea; (J.K.); (K.E.)
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Geon A. Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
- Department of Clinical Pathology, College of Health Science, Eulji University, Uijeongbu 11759, Korea
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 5029, Korea; (J.K.); (K.E.)
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (S.P.); (J.-H.C.)
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (S.P.); (J.-H.C.)
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Korea;
- Correspondence: (J.-S.K.); (B.C.L.); Tel.: +82-2-880-9327 (J.-S.K.); +82-2-880-1269 (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
- Correspondence: (J.-S.K.); (B.C.L.); Tel.: +82-2-880-9327 (J.-S.K.); +82-2-880-1269 (B.C.L.)
| |
Collapse
|
24
|
Liao B, Chen X, Zhou X, Zhou Y, Shi Y, Ye X, Liao M, Zhou Z, Cheng L, Ren B. Applications of CRISPR/Cas gene-editing technology in yeast and fungi. Arch Microbiol 2021; 204:79. [DOI: 10.1007/s00203-021-02723-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
|
25
|
CRISPR/Cas9-mediated knockout of APOC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits. Lipids Health Dis 2021; 20:180. [PMID: 34922545 PMCID: PMC8684289 DOI: 10.1186/s12944-021-01605-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 01/14/2023] Open
Abstract
Background High levels of apolipoprotein C3 (APOC3) can lead to hypertriglyceridemia, which increases the risk of cardiovascular disease. We aim to create APOC3-knockout (KO) rabbits and explore the effects of APOC3 deletion on the occurrence and development of atherosclerosis. Methods An sgRNA anchored to exon 2 of APOC3 was designed to edit embryo genomes using the CRISPR/Cas9 system. The founder rabbits were sequenced, and their lipid profile, inflammatory cytokines, and atherosclerotic plaques were analyzed. Results When given a normal chow (NC) diet, all APOC3-KO rabbits had 50% lower triglyceride (TG) levels than those of the matched age control group. Additionally, their plasma lipoprotein lipase increased. When fed a high-fat diet, APOC3 deficiency was observed to be more conducive to the maintenance of plasma TG, total cholesterol, and low-density lipoprotein cholesterol levels, and the inhibition of the inflammatory response and the protection against atherosclerosis in rabbits. Conclusion APOC3 deficiency can delay the formation of atherosclerosis-induced HFD in rabbits, indicating this is a novel therapeutic target to treat atherosclerosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-021-01605-7.
Collapse
|
26
|
Abe Y, Nakao H, Goto M, Tamano M, Koebis M, Nakao K, Aiba A. Efficient marmoset genome engineering by autologous embryo transfer and CRISPR/Cas9 technology. Sci Rep 2021; 11:20234. [PMID: 34642413 PMCID: PMC8511084 DOI: 10.1038/s41598-021-99656-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Genetic engineering of non-human primates, which are most closely related to humans, has been expected to generate ideal animal models for human genetic diseases. The common marmoset (Callithrix jacchus) is a non-human primate species adequate for the production of genetically modified animals because of their small body size and high reproductive capacity. Autologous embryo transfer (AET) is routinely utilized in assisted reproductive technologies for humans but not for experimental animals. This study has developed a novel method for efficiently producing mutant marmosets using AET and CRISPR/Cas9 systems. The embryos were recovered from oviducts of naturally mated females, injected with Cas9/guide RNA, and transferred into the oviducts of the donors. This AET method can reduce the time for in vitro culture of embryos to less than 30 min. This method uses an embryo donor as the recipient, thus reducing the number of animals and allowing for "Reduction" in the 3R principles of humane experimental technique. Furthermore, this method can utilize nulliparous females as well as parous females. We applied our novel method and generated the 6 marmosets carrying mutations in the fragile X mental retardation 1 (FMR1) gene using only 18 females including 14 nulliparous females.
Collapse
Affiliation(s)
- Yukiko Abe
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Harumi Nakao
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motoki Goto
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Moe Tamano
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Michinori Koebis
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuki Nakao
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Atsu Aiba
- Section of Animal Research and Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
27
|
Wang X, Liang Y, Zhao J, Li Y, Gou S, Zheng M, Zhou J, Zhang Q, Mi J, Lai L. Generation of permanent neonatal diabetes mellitus dogs with glucokinase point mutations through base editing. Cell Discov 2021; 7:92. [PMID: 34635647 PMCID: PMC8505425 DOI: 10.1038/s41421-021-00304-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Xiaomin Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, Westlake University, Hangzhou, China
| | - Yanhui Liang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jianping Zhao
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yuan Li
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Shixue Gou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Beijing SINOGENE Biotechnology Co., Ltd, Beijing, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Min Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Juanjuan Zhou
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,Research Unit of Generation of Large Animal Disease Models, Chinese Academy of Medical Sciences (2019RU015), Guangzhou, China
| | - Quanjun Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jidong Mi
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China. .,School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
28
|
Asian Mouse Mutagenesis Resource Association (AMMRA): mouse genetics and laboratory animal resources in the Asia Pacific. Mamm Genome 2021; 33:192-202. [PMID: 34482437 PMCID: PMC8418786 DOI: 10.1007/s00335-021-09912-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
The Asian Mouse Mutagenesis Resource Association (AMMRA) is a non-profit organization consisting of major resource and research institutions with rodent expertise from within the Asia Pacific region. For more than a decade, aiming to support biomedical research and stimulate international collaboration, AMMRA has always been a friendly and passionate ally of Asian and Australian member institutions devoted to sharing knowledge, exchanging resources, and promoting biomedical research. AMMRA is also missioned to global connection by working closely with the consortiums such as the International Mouse Phenotyping Consortium and the International Mouse Strain Resource. This review discusses the emergence of AMMRA and outlines its many roles and responsibilities in promoting, assisting, enriching research, and ultimately enhancing global life science research quality.
Collapse
|
29
|
Barazesh M, Mohammadi S, Bahrami Y, Mokarram P, Morowvat MH, Saidijam M, Karimipoor M, Kavousipour S, Vosoughi AR, Khanaki K. CRISPR/Cas9 Technology as a Modern Genetic Manipulation Tool for Recapitulating of Neurodegenerative Disorders in Large Animal Models. Curr Gene Ther 2021; 21:130-148. [PMID: 33319680 DOI: 10.2174/1566523220666201214115024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/12/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative diseases are often the consequence of alterations in structures and functions of the Central Nervous System (CNS) in patients. Despite obtaining massive genomic information concerning the molecular basis of these diseases and since the neurological disorders are multifactorial, causal connections between pathological pathways at the molecular level and CNS disorders development have remained obscure and need to be elucidated to a great extent. OBJECTIVE Animal models serve as accessible and valuable tools for understanding and discovering the roles of causative factors in the development of neurodegenerative disorders and finding appropriate treatments. Contrary to rodents and other small animals, large animals, especially non-human primates (NHPs), are remarkably similar to humans; hence, they establish suitable models for recapitulating the main human's neuropathological manifestations that may not be seen in rodent models. In addition, they serve as useful models to discover effective therapeutic targets for neurodegenerative disorders due to their similarity to humans in terms of physiology, evolutionary distance, anatomy, and behavior. METHODS In this review, we recommend different strategies based on the CRISPR-Cas9 system for generating animal models of human neurodegenerative disorders and explaining in vivo CRISPR-Cas9 delivery procedures that are applied to disease models for therapeutic purposes. RESULTS With the emergence of CRISPR/Cas9 as a modern specific gene-editing technology in the field of genetic engineering, genetic modification procedures such as gene knock-in and knock-out have become increasingly easier compared to traditional gene targeting techniques. Unlike the old techniques, this versatile technology can efficiently generate transgenic large animal models without the need to complicate lab instruments. Hence, these animals can accurately replicate the signs of neurodegenerative disorders. CONCLUSION Preclinical applications of CRISPR/Cas9 gene-editing technology supply a unique opportunity to establish animal models of neurodegenerative disorders with high accuracy and facilitate perspectives for breakthroughs in the research on the nervous system disease therapy and drug discovery. Furthermore, the useful outcomes of CRISPR applications in various clinical phases are hopeful for their translation to the clinic in a short time.
Collapse
Affiliation(s)
- Mahdi Barazesh
- School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| | - Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khoram Abad, Iran
| | - Yadollah Bahrami
- Molecular Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooneh Mokarram
- Autophagy Research center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Soudabeh Kavousipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Reza Vosoughi
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Korosh Khanaki
- Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
30
|
Bayarsaikhan D, Bayarsaikhan G, Lee B. Recent advances in stem cells and gene editing: Drug discovery and therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:231-269. [PMID: 34127195 DOI: 10.1016/bs.pmbts.2021.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recently introduced genome editing technology has had a remarkable impact on genetic medicine. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas nucleases are the three major platforms used for priming of stem cells or correction of mutated genes. Among these nucleases, CRISPR/Cas is the most easily applicable. Various CRISPR/Cas variants such as base editors, prime editors, mad7 nucleases, RESCUE, REPAIR, digenome sequencing, and SHERLOCK are being developed and considered as a promising tool for gene therapy and drug discovery. These advances in the CRISPR/Cas platform have enabled the correction of gene mutations from DNA to RNA level and validation of the safety of genome editing performance at a very precise level by allowing the detection of one base-pair mismatch. These promising alternatives of the CRISPR/Cas system can benefit millions of patients with intractable diseases. Although the therapeutic effects of stem cells have been confirmed in a wide range of disease models, their safety still remains an issue. Hence, scientists are concentrating on generating functionally improved stem cells by using programmable nucleases such as CRISPR. Therefore, in this chapter, we have summarized the applicable options of the CRISPR/Cas platforms by weighing their advantages and limitations in drug discovery and gene therapy.
Collapse
Affiliation(s)
- Delger Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea
| | - Govigerel Bayarsaikhan
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea
| | - Bonghee Lee
- Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon City, Republic of Korea.
| |
Collapse
|
31
|
Gendoping und molekulares Doping. Rechtsmedizin (Berl) 2020. [DOI: 10.1007/s00194-020-00431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Moro LN, Viale DL, Bastón JI, Arnold V, Suvá M, Wiedenmann E, Olguín M, Miriuka S, Vichera G. Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer. Sci Rep 2020; 10:15587. [PMID: 32973188 PMCID: PMC7518276 DOI: 10.1038/s41598-020-72040-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
The application of new technologies for gene editing in horses may allow the generation of improved sportive individuals. Here, we aimed to knock out the myostatin gene (MSTN), a negative regulator of muscle mass development, using CRISPR/Cas9 and to generate edited embryos for the first time in horses. We nucleofected horse fetal fibroblasts with 1, 2 or 5 µg of 2 different gRNA/Cas9 plasmids targeting the first exon of MSTN. We observed that increasing plasmid concentrations improved mutation efficiency. The average efficiency was 63.6% for gRNA1 (14/22 edited clonal cell lines) and 96.2% for gRNA2 (25/26 edited clonal cell lines). Three clonal cell lines were chosen for embryo generation by somatic cell nuclear transfer: one with a monoallelic edition, one with biallelic heterozygous editions and one with a biallelic homozygous edition, which rendered edited blastocysts in each case. Both MSTN editions and off-targets were analyzed in the embryos. In conclusion, CRISPR/Cas9 proved an efficient method to edit the horse genome in a dose dependent manner with high specificity. Adapting this technology sport advantageous alleles could be generated, and a precision breeding program could be developed.
Collapse
Affiliation(s)
- Lucia Natalia Moro
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Diego Luis Viale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Neurología y Citogenética Molecular, CESyMA, Buenos Aires, Argentina
| | | | | | - Mariana Suvá
- KHEIRON BIOTECH S.A, Pilar, Buenos Aires, Argentina
| | | | | | - Santiago Miriuka
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
33
|
Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18:2401-2415. [PMID: 33005303 PMCID: PMC7508700 DOI: 10.1016/j.csbj.2020.08.031] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023] Open
Abstract
Genome editing is the modification of genomic DNA at a specific target site in a wide variety of cell types and organisms, including insertion, deletion and replacement of DNA, resulting in inactivation of target genes, acquisition of novel genetic traits and correction of pathogenic gene mutations. Due to the advantages of simple design, low cost, high efficiency, good repeatability and short-cycle, CRISPR-Cas systems have become the most widely used genome editing technology in molecular biology laboratories all around the world. In this review, an overview of the CRISPR-Cas systems will be introduced, including the innovations, the applications in human disease research and gene therapy, as well as the challenges and opportunities that will be faced in the practical application of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China
| |
Collapse
|
34
|
Lala I. Germ-Inating Solutions or Gene-Rating Problems: An Islamic Perspective on Human Germline Gene Editing. JOURNAL OF RELIGION AND HEALTH 2020; 59:1855-1869. [PMID: 30778792 DOI: 10.1007/s10943-019-00770-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human germline gene editing (hGGE) poses many questions for the Muslim community. They range from the scientific: is there sufficient evidence that hGGE is better than existing technologies? To the ethical: is the lack of consent an insurmountable hurdle? What is the moral status of the embryo? What effect would hGGE have on societal inequalities? And, most crucially, can hGGE be interdicted on the basis of preventing its ineluctable use in eugenic programming? This paper confronts these issues from a religious perspective basing its judgements and reasoning on traditional sources of Islamic jurisprudence. It concludes that, except in very few instances that must be individual and case-specific, hGGE is not congruent with the tenets of Islam.
Collapse
Affiliation(s)
- Ismail Lala
- Independent Scholar, University of Oxford, Bolton, UK.
| |
Collapse
|
35
|
Scearce-Levie K, Sanchez PE, Lewcock JW. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat Rev Drug Discov 2020; 19:447-462. [PMID: 32612262 DOI: 10.1038/s41573-020-0065-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
A large number of mouse models have been engineered, characterized and used to advance biomedical research in Alzheimer disease (AD). Early models simply damaged the rodent brain through toxins or lesions. Later, the spread of genetic engineering technology enabled investigators to develop models of familial AD by overexpressing human genes such as those encoding amyloid precursor protein (APP) or presenilins (PSEN1 or PSEN2) carrying mutations linked to early-onset AD. Recently, more complex models have sought to explore the impact of multiple genetic risk factors in the context of different biological challenges. Although none of these models has proven to be a fully faithful reproduction of the human disease, models remain essential as tools to improve our understanding of AD biology, conduct thorough pharmacokinetic and pharmacodynamic analyses, discover translatable biomarkers and evaluate specific therapeutic approaches. To realize the full potential of animal models as new technologies and knowledge become available, it is critical to define an optimal strategy for their use. Here, we review progress and challenges in the use of AD mouse models, highlight emerging scientific innovations in model development, and introduce a conceptual framework for use of preclinical models for therapeutic development.
Collapse
|
36
|
Creation and characterization of an immortalized canine myoblast cell line: Myok9. Mamm Genome 2020; 31:95-109. [PMID: 32246189 DOI: 10.1007/s00335-020-09833-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The availability of an in vitro canine cell line would reduce the need for dogs for primary in vitro cell culture and reduce overall cost in pre-clinical studies. An immortalized canine muscle cell line, named Myok9, from primary myoblasts of a normal dog has been developed by the authors. Immortalization was performed by SV40 viral transfection of the large T antigen into the primary muscle cells. Proliferation assays, growth curves, quantitative PCR, western blotting, mass spectrometry, and light microscopy were performed to characterize the MyoK9 cell line at different stages of growth and differentiation. The expression of muscle-related genes was determined to assess myogenic origin. Myok9 cells expressed dystrophin and other muscle-specific proteins during differentiation, as detected with mass spectrometry and western blotting. Using the Myok9 cell line, new therapies before moving to pre-clinical studies to enhance the number and speed of analyses and reduce the cost of early experimentation can be tested now. This cell line will be made available to the research community to further evaluate potential therapeutics.
Collapse
|
37
|
Zhu X, Wei Y, Zhan Q, Yan A, Feng J, Liu L, Tang D. CRISPR/Cas9-Mediated Biallelic Knockout of IRX3 Reduces the Production and Survival of Somatic Cell-Cloned Bama Minipigs. Animals (Basel) 2020; 10:E501. [PMID: 32192102 PMCID: PMC7142520 DOI: 10.3390/ani10030501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bama minipigs are a local pig breed that is unique to China and has a high development and utilization value. However, its high fat content, low feed utilization rate, and slow growth rate have limited its popularity and utilization. Compared with the long breeding cycle and high cost of traditional genetic breeding of pigs, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) endonuclease 9 system (CRISPR/Cas9)-mediated gene editing can cost-effectively implement targeted mutations in animal genomes, thereby providing a powerful tool for rapid improvement of the economic traits of Bama minipigs. The iroquois homeobox 3 (IRX3) gene has been implicated in human obesity. Mouse experiments have shown that knocking out IRX3 significantly enhances basal metabolism, reduces fat content, and controls body mass and composition. This study aimed to knock out IRX3 using the CRISPR/Cas9 gene editing method to breed Bama minipigs with significantly reduced fat content. First, the CRISPR/Cas9 gene editing method was used to efficiently obtain IRX3-/- cells. Then, the gene-edited cells were used as donor cells to produce surviving IRX3-/- Bama minipigs using somatic cell cloning. The results show that the use of IRX3-/- cells as donor cells for the production of somatic cell-cloned pigs results in a significant decrease in the average live litter size and a significant increase in the average number of stillbirths. Moreover, the birth weight of surviving IRX3-/- somatic cell-cloned pigs is significantly lower, and viability is poor such that all piglets die shortly after birth. Therefore, the preliminary results of this study suggest that IRX3 may have important biological functions in pigs, and IRX3 should not be used as a gene editing target to reduce fat content in Bama minipigs. Moreover, this study shows that knocking out IRX3 does not favor the survival of pigs, and whether targeted regulation of IRX3 in the treatment of human obesity will also induce severe adverse consequences requires further investigation.
Collapse
Affiliation(s)
- Xiangxing Zhu
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Yanyan Wei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Qunmei Zhan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Aifen Yan
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Lian Liu
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| |
Collapse
|
38
|
Ge L, Dong X, Gong X, Kang J, Zhang Y, Quan F. Mutation in myostatin 3'UTR promotes C2C12 myoblast proliferation and differentiation by blocking the translation of MSTN. Int J Biol Macromol 2020; 154:634-643. [PMID: 32156541 DOI: 10.1016/j.ijbiomac.2020.03.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/26/2022]
Abstract
The point mutation in myostatin (MSTN) can produce the Texel sheep double muscle phenotype. However, whether other species have the same mode of action as MSTN and whether breeding materials can be obtained through cross-species genetic editing remain unclear. The mutation in the mouse MSTN 3'UTR could create a target site for mmu-miR-1/206, as verified by the dual luciferase reporter system. A C2C12 cell model with the mutation in MSTN 3'UTR was constructed using CRISPR/Cas9 gene editing. Then, the mRNA and protein expression of MSTN was analyzed in the mutant C2C12 cell model. Results revealed that the mutation blocked the translational level of MSTN. By inhibiting mmu-mir-206, low expression of MSTN protein in mutant C2C12 cell can be rescued. Furthermore, the proliferation and differentiation abilities of the mutant C2C12 cell model were tested by RT-PCR, CCK8 analysis, EDU (5-ethynyl-2'-deoxyuridine) proliferation analysis, immunofluorescence analysis, Western blot, and myotube fusion statistics. This study may serve as a reference for elucidating the function and molecular mechanism of MSTN and as a foundation for accurate breeding improvement.
Collapse
Affiliation(s)
- Luxing Ge
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiangchen Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xutong Gong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Lee H, Yoon DE, Kim K. Genome editing methods in animal models. Anim Cells Syst (Seoul) 2020; 24:8-16. [PMID: 32158611 PMCID: PMC7048190 DOI: 10.1080/19768354.2020.1726462] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Genetically engineered animal models that reproduce human diseases are very important for the pathological study of various conditions. The development of the clustered regularly interspaced short palindromic repeats (CRISPR) system has enabled a faster and cheaper production of animal models compared with traditional gene-targeting methods using embryonic stem cells. Genome editing tools based on the CRISPR-Cas9 system are a breakthrough technology that allows the precise introduction of mutations at the target DNA sequences. In particular, this accelerated the creation of animal models, and greatly contributed to the research that utilized them. In this review, we introduce various strategies based on the CRISPR-Cas9 system for building animal models of human diseases and describe various in vivo delivery methods of CRISPR-Cas9 that are applied to disease models for therapeutic purposes. In addition, we summarize the currently available animal models of human diseases that were generated using the CRISPR-Cas9 system and discuss future directions.
Collapse
Affiliation(s)
- Hyunji Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
40
|
Yuan H, Yu T, Wang L, Yang L, Zhang Y, Liu H, Li M, Tang X, Liu Z, Li Z, Lu C, Chen X, Pang D, Ouyang H. Efficient base editing by RNA-guided cytidine base editors (CBEs) in pigs. Cell Mol Life Sci 2020; 77:719-733. [PMID: 31302752 PMCID: PMC11105001 DOI: 10.1007/s00018-019-03205-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 06/11/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
Cytidine base editors (CBEs) have been demonstrated to be useful for precisely inducing C:G-to-T:A base mutations in various organisms. In this study, we showed that the BE4-Gam system induced the targeted C-to-T base conversion in porcine blastocysts at an efficiency of 66.7-71.4% via the injection of a single sgRNA targeting a xeno-antigen-related gene and BE4-Gam mRNA. Furthermore, the efficiency of simultaneous three gene base conversion via the injection of three targeting sgRNAs and BE4-Gam mRNA into porcine parthenogenetic embryos was 18.1%. We also obtained beta-1,4-N-acetyl-galactosaminyl transferase 2, alpha-1,3-galactosyltransferase, and cytidine monophosphate-N-acetylneuraminic acid hydroxylase deficient pig by somatic cell nuclear transfer, which exhibited significantly decreased activity. In addition, a new CBE version (termed AncBE4max) was used to edit genes in blastocysts and porcine fibroblasts (PFFs) for the first time. While this new version demonstrated a three genes base-editing rate of 71.4% at the porcine GGTA1, B4galNT2, and CMAH loci, it increased the frequency of bystander edits, which ranged from 17.8 to 71.4%. In this study, we efficiently and precisely mutated bases in porcine blastocysts and PFFs using CBEs and successfully generated C-to-T and C-to-G mutations in pigs. These results suggest that CBEs provide a more simple and efficient method for improving economic traits, reducing the breeding cycle, and increasing disease tolerance in pigs, thus aiding in the development of human disease models.
Collapse
Affiliation(s)
- Hongming Yuan
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Tingting Yu
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Lingyu Wang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Lin Yang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Yuanzhu Zhang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Huan Liu
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Mengjing Li
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Zhiquan Liu
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Zhanjun Li
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Chao Lu
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Xue Chen
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, People's Republic of China.
| |
Collapse
|
41
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
42
|
Chen B, Gu P, Jia J, Liu W, Liu Y, Liu W, Xu T, Lin X, Lin T, Liu Y, Chen H, Xu M, Yuan J, Zhang J, Zhang Y, Xiao D, Gu W. Optimization Strategy for Generating Gene-edited Tibet Minipigs by Synchronized Oestrus and Cytoplasmic Microinjection. Int J Biol Sci 2019; 15:2719-2732. [PMID: 31754342 PMCID: PMC6854383 DOI: 10.7150/ijbs.35930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/30/2019] [Indexed: 02/06/2023] Open
Abstract
The Tibet minipig is a rare highland pig breed worldwide and has many applications in biomedical and agricultural research. However, Tibet minipigs are not like domesticated pigs in that their ovulation number is low, which is unfavourable for the collection of zygotes. Partly for this reason, few studies have reported the successful generation of genetically modified Tibet minipigs by zygote injection. To address this issue, we described an efficient way to generate gene-edited Tibet minipigs, the major elements of which include the utilization of synchronized oestrus instead of superovulation to obtain zygotes, optimization of the preparation strategy, and co-injection of clustered regularly interspaced short palindromic repeat sequences associated protein 9 (Cas9) mRNA and single-guide RNAs (sgRNAs) into the cytoplasm of zygotes. We successfully obtained allelic TYR gene knockout (TYR-/-) Tibet minipigs with a typical albino phenotype (i.e., red-coloured eyes with light pink-tinted irises and no pigmentation in the skin and hair) as well as TYR-/-IL2RG-/- and TYR-/-RAG1-/- Tibet minipigs with typical phenotypes of albinism and immunodeficiency, which was characterized by thymic atrophy and abnormal immunocyte proportions. The overall gene editing efficiency was 75% for the TYR single gene knockout, while for TYR-IL2RG and TYR-RAG1 dual gene editing, the values were 25% and 75%, respectively. No detectable off-target mutations were observed. By intercrossing F0 generation minipigs, targeted genetic mutations can also be transmitted to gene-edited minipigs' offspring through germ line transmission. This study is a valuable exploration for the efficient generation of gene-edited Tibet minipigs with medical research value in the future.
Collapse
Affiliation(s)
- Bangzhu Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Peng Gu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Junshuang Jia
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yumin Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Wen Liu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Tao Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China
| | - Xiaolin Lin
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Taoyan Lin
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Hengwei Chen
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Mingchen Xu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jin Yuan
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Jianing Zhang
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Yinghui Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dong Xiao
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Weiwang Gu
- Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China.,Songshan Lake Pearl Laboratory Animal Sci. & Tech. Co., Ltd., Dongguan 523808, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
43
|
Mooney MR, Davis EE, Katsanis N. Analysis of Single Nucleotide Variants in CRISPR-Cas9 Edited Zebrafish Exomes Shows No Evidence of Off-Target Inflation. Front Genet 2019; 10:949. [PMID: 31681410 PMCID: PMC6797590 DOI: 10.3389/fgene.2019.00949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022] Open
Abstract
Therapeutic applications of CRISPR-Cas9 gene editing have spurred innovation in Cas9 enzyme engineering and single guide RNA (sgRNA) design algorithms to minimize potential off-target events. While recent work in rodents outlines favorable conditions for specific editing and uses a trio design (mother, father, offspring) to control for the contribution of natural genome variation, the potential for CRISPR-Cas9 to induce de novo mutations in vivo remains a topic of interest. In zebrafish, we performed whole exome sequencing (WES) on two generations of offspring derived from the same founding pair: 54 exomes from control and CRISPR-Cas9 edited embryos in the first generation (F0), and 16 exomes from the progeny of inbred F0 pairs in the second generation (F1). We did not observe an increase in the number of transmissible variants in edited individuals in F1, nor in F0 edited mosaic individuals, arguing that in vivo editing does not precipitate an inflation of deleterious point mutations.
Collapse
Affiliation(s)
- Marie R. Mooney
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, United States
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, United States
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children’s Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC, United States
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children’s Research Institute, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
44
|
Sun YZ, Liu ST, Li XM, Zou K. Progress in in vitro culture and gene editing of porcine spermatogonial stem cells. Zool Res 2019; 40:343-348. [PMID: 31393095 PMCID: PMC6755112 DOI: 10.24272/j.issn.2095-8137.2019.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Research on in vitro culture and gene editing of domestic spermatogonial stem cells (SSCs) is of considerable interest but remains a challenging issue in animal science. In recent years, some progress on the isolation, purification, and genetic manipulation of porcine SSCs has been reported. Here, we summarize the characteristics of porcine SSCs as well current advances in their in vitro culture, potential usage, and genetic manipulation. Furthermore, we discuss the current application of gene editing in pig cloning technology. Collectively, this commentary aims to summarize the progress made and obstacles encountered in porcine SSC research to better serve animal husbandry, improve livestock fecundity, and enhance potential clinical use.
Collapse
Affiliation(s)
- Yi-Zhuo Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China
| | - Si-Tong Liu
- College of Life Sciences, Jilin University, Changchun Jilin 130012, China
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China
| | - Xiao-Meng Li
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China; E-mail:
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China; E-mail:
| |
Collapse
|
45
|
Li X, Hao F, Hu X, Wang H, Dai B, Wang X, Liang H, Cang M, Liu D. Generation of Tβ4 knock-in Cashmere goat using CRISPR/Cas9. Int J Biol Sci 2019; 15:1743-1754. [PMID: 31360116 PMCID: PMC6643211 DOI: 10.7150/ijbs.34820] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The cashmere goat breed is known to provide excellent quality cashmere. Here, we attempted to breed high-yielding cashmere goats by specifically inserting the Tβ4 gene into the goat CCR5 locus and provided an animal model for future research. We successfully obtained Tβ4 knock-in goat without any screening and fluorescent markers using CRISPR/Cas9 technology. A series of experiments were performed to examine physical conditions and characteristics of the Tβ4 knock-in goat. The goat exhibited an increase in cashmere yield by 74.5% without affecting the fineness and quality. Additionally, RNA-seq analysis indicated that Tβ4 may promote hair growth by affecting processes such as vasoconstriction, angiogenesis, and vascular permeability around secondary hair follicles. Together, our study can significantly improve the breeding of cashmere goat and thereby increase economic efficiency.
Collapse
Affiliation(s)
- Xiaocong Li
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Xiao Hu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Bai Dai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Ming Cang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010000, China
| |
Collapse
|
46
|
Wang GD, Larson G, Kidd JM, vonHoldt BM, Ostrander EA, Zhang YP. Dog10K: the International Consortium of Canine Genome Sequencing. Natl Sci Rev 2019; 6:611-613. [PMID: 31598382 PMCID: PMC6776106 DOI: 10.1093/nsr/nwz068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, UK
| | - Jeffrey M Kidd
- Department of Human Genetics and Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, USA
| | | | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, China
| |
Collapse
|
47
|
Zhao J, Lai L, Ji W, Zhou Q. Genome editing in large animals: current status and future prospects. Natl Sci Rev 2019; 6:402-420. [PMID: 34691891 PMCID: PMC8291540 DOI: 10.1093/nsr/nwz013] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
Large animals (non-human primates, livestock and dogs) are playing important roles in biomedical research, and large livestock animals serve as important sources of meat and milk. The recently developed programmable DNA nucleases have revolutionized the generation of gene-modified large animals that are used for biological and biomedical research. In this review, we briefly introduce the recent advances in nuclease-meditated gene editing tools, and we outline these editing tools' applications in human disease modeling, regenerative medicine and agriculture. Additionally, we provide perspectives regarding the challenges and prospects of the new genome editing technology.
Collapse
Affiliation(s)
- Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Liangxue Lai
- South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai 200031, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
48
|
Horie K, Inoue K, Suzuki S, Adachi S, Yada S, Hirayama T, Hidema S, Young LJ, Nishimori K. Oxytocin receptor knockout prairie voles generated by CRISPR/Cas9 editing show reduced preference for social novelty and exaggerated repetitive behaviors. Horm Behav 2019; 111:60-69. [PMID: 30713102 PMCID: PMC6506400 DOI: 10.1016/j.yhbeh.2018.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 02/02/2023]
Abstract
Behavioral neuroendocrinology has benefited tremendously from the use of a wide range of model organisms that are ideally suited for particular questions. However, in recent years the ability to manipulate the genomes of laboratory strains of mice has led to rapid advances in our understanding of the role of specific genes, circuits and neural populations in regulating behavior. While genome manipulation in mice has been a boon for behavioral neuroscience, the intensive focus on the mouse restricts the diversity in behavioral questions that can be investigated using state-of-the-art techniques. The CRISPR/Cas9 system has great potential for efficiently generating mutants in non-traditional animal models and consequently to reinvigorate comparative behavioral neuroendocrinology. Here we describe the efficient generation of oxytocin receptor (Oxtr) mutant prairie voles (Microtus ochrogaster) using the CRISPR/Cas9 system, and describe initial behavioral phenotyping focusing on behaviors relevant to autism. Oxtr mutant male voles show no disruption in pup ultrasonic vocalization, anxiety as measured by the open field test, alloparental behavior, or sociability in the three chamber test. Mutants did however show a modest elevation in repetitive behavior in the marble burying test, and an impairment in preference for social novelty. The ability to efficiently generate targeted mutations in the prairie vole genome will greatly expand the utility of this model organism for discovering the genetic and circuit mechanisms underlying complex social behaviors, and serves as a proof of principle for expanding this approach to other non-traditional model organisms.
Collapse
Affiliation(s)
- Kengo Horie
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan
| | - Kiyoshi Inoue
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, USA
| | - Shingo Suzuki
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan
| | - Saki Adachi
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan
| | - Saori Yada
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan
| | - Takashi Hirayama
- Department of Obstetrics and Gynecology, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shizu Hidema
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, USA; Center for Social Neural Networks, University of Tsukuba, Tsukuba, Japan; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza-Aoba, Aoba-ku, Sendai 980-0845, Miyagi, Japan.
| |
Collapse
|
49
|
Nagashima JB, Travis AJ, Songsasen N. The Domestic Dog Embryo: In Vitro Fertilization, Culture, and Transfer. Methods Mol Biol 2019; 2006:247-267. [PMID: 31230286 DOI: 10.1007/978-1-4939-9566-0_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Advances in embryo technologies in the domestic dog have made significant strides in the past decade. This progress has been spurred by interests in taking advantage of the dog as a biomedical research model for human and companion animal medicine, developing assisted reproductive technologies to manage genetic diversity in endangered canids maintained ex situ, and improving breeding in rare or working breeds of dogs. Here, we focus on recent advancements and techniques for collection of in vivo-matured oocytes, in vitro fertilization (IVF), in vitro culture of early (≤8-cell) and advanced stage (≥16-cell) embryos, and embryo transfer.
Collapse
Affiliation(s)
- J B Nagashima
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA.
| | - A J Travis
- Baker Institute for Animal Health, College of Veterinary Medicine, Ithaca, NY, USA
- Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, USA
| | - N Songsasen
- Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| |
Collapse
|
50
|
Memi F, Ntokou A, Papangeli I. CRISPR/Cas9 gene-editing: Research technologies, clinical applications and ethical considerations. Semin Perinatol 2018; 42:487-500. [PMID: 30482590 DOI: 10.1053/j.semperi.2018.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy carries the potential to treat more than 10,000 human monogenic diseases and benefit an even greater number of complex polygenic conditions. The repurposing of CRISPR/Cas9, an ancient bacterial immune defense system, into a gene-editing technology has armed researchers with a revolutionary tool for gene therapy. However, as the breadth of research and clinical applications of this technology continues to expand, outstanding technical challenges and ethical considerations will need to be addressed before clinical applications become commonplace. Here, we review CRISPR/Cas9 technology and discuss its benefits and limitations in research and the clinical context, as well as ethical considerations surrounding the use of CRISPR gene editing.
Collapse
Affiliation(s)
- Fani Memi
- Department of Cell and Developmental Biology, University College London, 21 University Street, WC1E 6DE London, UK.
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| | - Irinna Papangeli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Yale School of Medicine, 300 George, 7(th) Floor, New Haven, CT 06511, United States.
| |
Collapse
|