1
|
Hu R, Li G, Hu P, Niu H, Li W, Jiang S, Guan G, Xu Q, Liu M, Chen L. bmp10 maintains cardiac function by regulating iron homeostasis. J Genet Genomics 2024:S1673-8527(24)00263-7. [PMID: 39414074 DOI: 10.1016/j.jgg.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Heart disease remains the leading cause of death worldwide. Iron imbalance, whether deficiency or overload, contributes to heart failure. However, the molecular mechanisms governing iron homeostasis in the heart are poorly understood. Here, we demonstrate that mutation of bmp10, a heart-born morphogen crucial for embryonic heart development, results in severe anemia and cardiac hypertrophy in zebrafish. Initially, bmp10 deficiency causes cardiac iron deficiency, which later progresses to iron overload due to the dysregulated hepcidin/ferroportin axis in cardiac cells, leading to ferroptosis and heart failure. Early iron supplementation in bmp10-/- mutants rescues erythropoiesis, while iron chelation in juvenile fishes significantly alleviates cardiac hypertrophy. We further demonstrate that the interplay between HIF1α-driven hypoxic signaling and the IL6/p-STAT3 inflammatory pathways is critical for regulating cardiac iron metabolism. Our findings reveal BMP10 as a key regulator of iron homeostasis in the vertebrate heart and highlight the potential of targeting the BMP10-hepcidin-iron axis as a therapeutic strategy for iron-related cardiomyopathy.
Collapse
Affiliation(s)
- Ruiqin Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Genfang Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Peng Hu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Hongbo Niu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Wenhao Li
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Shouwen Jiang
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Guijun Guan
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Qianghua Xu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Mingli Liu
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China
| | - Liangbiao Chen
- International Research Center for Marine Bioscience (Ministry of Science and Technology), Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Ministry of Education) Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Wu S, Dou T, Wang K, Yuan S, Yan S, Xu Z, Liu Y, Jian Z, Zhao J, Zhao R, Wu H, Gu D, Liu L, Li Q, Wu DD, Ge C, Su Z, Jia J. Artificial selection footprints in indigenous and commercial chicken genomes. BMC Genomics 2024; 25:428. [PMID: 38689225 PMCID: PMC11061962 DOI: 10.1186/s12864-024-10291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Although many studies have been done to reveal artificial selection signatures in commercial and indigenous chickens, a limited number of genes have been linked to specific traits. To identify more trait-related artificial selection signatures and genes, we re-sequenced a total of 85 individuals of five indigenous chicken breeds with distinct traits from Yunnan Province, China. RESULTS We found 30 million non-redundant single nucleotide variants and small indels (< 50 bp) in the indigenous chickens, of which 10 million were not seen in 60 broilers, 56 layers and 35 red jungle fowls (RJFs) that we compared with. The variants in each breed are enriched in non-coding regions, while those in coding regions are largely tolerant, suggesting that most variants might affect cis-regulatory sequences. Based on 27 million bi-allelic single nucleotide polymorphisms identified in the chickens, we found numerous selective sweeps and affected genes in each indigenous chicken breed and substantially larger numbers of selective sweeps and affected genes in the broilers and layers than previously reported using a rigorous statistical model. Consistent with the locations of the variants, the vast majority (~ 98.3%) of the identified selective sweeps overlap known quantitative trait loci (QTLs). Meanwhile, 74.2% known QTLs overlap our identified selective sweeps. We confirmed most of previously identified trait-related genes and identified many novel ones, some of which might be related to body size and high egg production traits. Using RT-qPCR, we validated differential expression of eight genes (GHR, GHRHR, IGF2BP1, OVALX, ELF2, MGARP, NOCT, SLC25A15) that might be related to body size and high egg production traits in relevant tissues of relevant breeds. CONCLUSION We identify 30 million single nucleotide variants and small indels in the five indigenous chicken breeds, 10 million of which are novel. We predict substantially more selective sweeps and affected genes than previously reported in both indigenous and commercial breeds. These variants and affected genes are good candidates for further experimental investigations of genotype-phenotype relationships and practical applications in chicken breeding programs.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sisi Yuan
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rouhan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Hao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Davoudi P, Do DN, Colombo S, Rathgeber B, Sargolzaei M, Plastow G, Wang Z, Hu G, Valipour S, Miar Y. Genome-wide association studies for economically important traits in mink using copy number variation. Sci Rep 2024; 14:24. [PMID: 38167844 PMCID: PMC10762091 DOI: 10.1038/s41598-023-50497-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Copy number variations (CNVs) are structural variants consisting of duplications and deletions of DNA segments, which are known to play important roles in the genetics of complex traits in livestock species. However, CNV-based genome-wide association studies (GWAS) have remained unexplored in American mink. Therefore, the purpose of the current study was to investigate the association between CNVs and complex traits in American mink. A CNV-based GWAS was performed with the ParseCNV2 software program using deregressed estimated breeding values of 27 traits as pseudophenotypes, categorized into traits of growth and feed efficiency, reproduction, pelt quality, and Aleutian disease tests. The study identified a total of 10,137 CNVs (6968 duplications and 3169 deletions) using the Affymetrix Mink 70K single nucleotide polymorphism (SNP) array in 2986 American mink. The association analyses identified 250 CNV regions (CNVRs) associated with at least one of the studied traits. These CNVRs overlapped with a total of 320 potential candidate genes, and among them, several genes have been known to be related to the traits such as ARID1B, APPL1, TOX, and GPC5 (growth and feed efficiency traits); GRM1, RNASE10, WNT3, WNT3A, and WNT9B (reproduction traits); MYO10, and LIMS1 (pelt quality traits); and IFNGR2, APEX1, UBE3A, and STX11 (Aleutian disease tests). Overall, the results of the study provide potential candidate genes that may regulate economically important traits and therefore may be used as genetic markers in mink genomic breeding programs.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc., Plain City, OH, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Shafagh Valipour
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
4
|
Tan X, Liu R, Zhao D, He Z, Li W, Zheng M, Li Q, Wang Q, Liu D, Feng F, Zhu D, Zhao G, Wen J. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. J Adv Res 2024; 55:1-16. [PMID: 36871617 PMCID: PMC10770282 DOI: 10.1016/j.jare.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
INTRODUCTION Investigating the genetic markers and genomic signatures related to chicken meat production by combing multi-omics methods could provide new insights into modern chicken breeding technology systems. OBJECT Chicken is one of the most efficient and environmentally friendly livestock, especially the fast-growing white-feathered chicken (broiler), which is well known for high meat yield, but the underlying genetic basis is poorly understood. METHOD We generated whole-genome resequencing of three purebred broilers (n = 748) and six local breeds/lines (n = 114), and sequencing data of twelve chicken breeds (n = 199) were obtained from the NCBI database. Additionally, transcriptome sequencing of six tissues from two chicken breeds (n = 129) at two developmental stages was performed. A genome-wide association study combined with cis-eQTL mapping and the Mendelian randomization was applied. RESULT We identified > 17 million high-quality SNPs, of which 21.74% were newly identified, based on 21 chicken breeds/lines. A total of 163 protein-coding genes underwent positive selection in purebred broilers, and 83 genes were differentially expressed between purebred broilers and local chickens. Notably, muscle development was proven to be the major difference between purebred broilers and local chickens, or ancestors, based on genomic and transcriptomic evidence from multiple tissues and stages. The MYH1 gene family showed the top selection signatures and muscle-specific expression in purebred broilers. Furthermore, we found that the causal gene SOX6 influenced breast muscle yield and also related to myopathy occurrences. A refined haplotype was provided, which had a significant effect on SOX6 expression and phenotypic changes. CONCLUSION Our study provides a comprehensive atlas comprising the typical genomic variants and transcriptional characteristics for muscle development and suggests a new regulatory target (SOX6-MYH1s axis) for breast muscle yield and myopathy, which could aid in the development of genome-scale selective breeding aimed at high meat yield in broiler chickens.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Di Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengxiao He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Mao Y, Miao Y, Zhu X, Duan S, Wang Y, Wang X, Wu C, Wang G. Expression of bone morphogenetic protein 10 and its role in biomineralization in Hyriopsis cumingii. Int J Biol Macromol 2023; 253:127245. [PMID: 37797863 DOI: 10.1016/j.ijbiomac.2023.127245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Shells and pearls are the products of biomineralization of shellfish after ingesting external mineral ions. Bone morphogenetic proteins (BMPs) play a role in a variety of biological function, and the genes that encode them, are considered important shell-forming genes in mollusks and are associated with shell and pearl formation, embryonic development, and other functions, but bone morphogenetic protein 10 (BMP10) is poorly understood in Hyriopsis cumingii. In this study, we cloned Hc-BMP10 and obtained a 2477 bp full-length sequence encoding 460 amino acids with a conserved TGF-β structural domain. During the embryonic developmental stages, the cleavage stage had the highest expression of Hc-BMP10, followed by juvenile clams; the expression in the mantle gradually decreased with increasing mussel age. A strong signal was detected on epidermal cells on the mantle edge by in situ hybridization. In both the shell notching and inserting operations of the pearl fragment assay, we found that the expression of Hc-BMP10 increased after the above treatments. RNA interference assays showed that the silencing of Hc-BMP10 resulted in a change in the morphology of the prismatic layer and nacreous layer, with the prismatic layer less closely aligned and the disordered aragonite flakes in the nacreous layer. These findings indicate that Hc-BMP10 is involved in the growth and development of H. cumingii, as well as the formation of shells and pearls. Therefore, this study provides some reference for selecting superior species for growth and pearl breeding of H. cumingii at a molecular level and further investigation of the molecular mechanism for biomineralization of Hc-BMP10.
Collapse
Affiliation(s)
- Yingrui Mao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yulin Miao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xiaoyue Zhu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Shenghua Duan
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Yayu Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Xiaoqiang Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Congdi Wu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China.
| | - Guiling Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Afairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China.
| |
Collapse
|
6
|
Wang H, Zhao X, Wen J, Wang C, Zhang X, Ren X, Zhang J, Li H, Muhatai G, Qu L. Comparative population genomics analysis uncovers genomic footprints and genes influencing body weight trait in Chinese indigenous chicken. Poult Sci 2023; 102:103031. [PMID: 37716235 PMCID: PMC10511812 DOI: 10.1016/j.psj.2023.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/18/2023] Open
Abstract
Body weight of chicken is a typical quantitative trait, which shows phenotypic variations due to selective breeding. Despite some QTL loci have been obtained, the body weight of native chicken breeds in different geographic regions varies greatly, its genetic basis remains unresolved questions. To address this issue, we analyzed 117 Chinese indigenous chickens from 10 breeds (Huiyang Bearded, Xinhua, Hotan Black, Baicheng You, Liyang, Yunyang Da, Jining Bairi, Lindian, Beijing You, Tibetan). We applied fixation index (FST) analysis to find selected genomic regions and genes associated with body weight traits. Our study suggests that NELL1, XYLT1, and NCAPG/LCORL genes are strongly selected in the body weight trait of Chinese indigenous chicken breeds. In addition, the IL1RAPL1 gene was strongly selected in large body weight chickens, while the PCDH17 and CADM2 genes were strongly selected in small body weight chickens. This result suggests that the patterns of genetic variation of native chicken and commercial chicken, and/or distinct local chicken breeds may follow different evolutionary mechanisms.
Collapse
Affiliation(s)
- Huie Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xiurong Zhao
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chengqian Wang
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Xinye Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinxin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Gemingguli Muhatai
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Lujiang Qu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China; State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Xu D, Zhu W, Wu Y, Wei S, Shu G, Tian Y, Du X, Tang J, Feng Y, Wu G, Han X, Zhao X. Whole-genome sequencing revealed genetic diversity, structure and patterns of selection in Guizhou indigenous chickens. BMC Genomics 2023; 24:570. [PMID: 37749517 PMCID: PMC10521574 DOI: 10.1186/s12864-023-09621-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND The eight phenotypically distinguishable indigenous chicken breeds in Guizhou province of China are great resources for high-quality development of the poultry industry in China. However, their full value and potential have yet to be understood in depth. To illustrate the genetic diversity, the relationship and population structure, and the genetic variation patterns shaped by selection in Guizhou indigenous chickens, we performed a genome-wide analysis of 240 chickens from 8 phenotypically and geographically representative Guizhou chicken breeds and 60 chickens from 2 commercial chicken breeds (one broiler and one layer), together with 10 red jungle fowls (RJF) genomes available from previous studies. RESULTS The results obtained in this present study showed that Guizhou chicken breed populations harbored higher genetic diversity as compared to commercial chicken breeds, however unequal polymorphisms were present within Guizhou indigenous chicken breeds. The results from the population structure analysis markedly reflected the breeding history and the geographical distribution of Guizhou indigenous chickens, whereas, some breeds with complex genetic structure were ungrouped into one cluster. In addition, we confirmed mutual introgression within Guizhou indigenous chicken breeds and from commercial chicken breeds. Furthermore, selective sweep analysis revealed candidate genes which were associated with specific and common phenotypic characteristics evolved rapidly after domestication of Guizhou local chicken breeds and economic traits such as egg production performance, growth performance, and body size. CONCLUSION Taken together, the results obtained from the comprehensive analysis of the genetic diversity, genetic relationships and population structures in this study showed that Guizhou indigenous chicken breeds harbor great potential for commercial utilization, however effective conservation measures are currently needed. Additionally, the present study drew a genome-wide selection signature draft for eight Guizhou indigenous chicken breeds and two commercial breeds, as well as established a resource that can be exploited in chicken breeding programs to manipulate the genes associated with desired phenotypes. Therefore, this study will provide an essential genetic basis for further research, conservation, and breeding of Guizhou indigenous chickens.
Collapse
Affiliation(s)
- Dan Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Wei Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Youhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Shuo Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Xiaohui Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China
| | - Jigao Tang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Yulong Feng
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Gemin Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou Province, China.
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, P. R. China.
- Key Laboratory of Livestock and Poultry Multi-Omics, MinistryofAgricultureandRuralAffairs, College of Animal Science and Technology(Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Ya'an, P. R. China.
| |
Collapse
|
8
|
Youm DJ, Ko BJ, Kim D, Park M, Won S, Lee YH, Kim B, Seol D, Chai HH, Lim D, Jeong C, Kim H. The idiosyncratic genome of Korean long-tailed chicken as a valuable genetic resource. iScience 2023; 26:106236. [PMID: 36915682 PMCID: PMC10006692 DOI: 10.1016/j.isci.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Today, breeds with ornamental traits such as exceptionally long tail feathers are economically valuable. However, the genetic basis of long-tail feathers is yet to be understood. To provide better understanding of long tail feathers, we sequenced Korean long-tailed chicken (KLC) genomes and compared them with genomes of other chicken breeds. We first analyzed the genome structure of KLC and its genomic relationship with other chickens and observed unique characteristics. Subsequently, we searched for genomic regions under selection. Feather keratin 1-like enriched region and several genes were found to have novel putative functions and effects on the long tail trait in KLC. Our findings support the value of KLC as a unique genetic resource and cast light on the genetic basis of long tail traits in avian species. We expect this novel knowledge to provide new genomic evidence and options for designing and implementing genetic improvements of ornamental chicken productivity through precision crossbreeding aids.
Collapse
Affiliation(s)
- Dong-Jae Youm
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Donghee Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Myeongkyu Park
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- eGnome, Inc, Seoul 05836, Republic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
| | - Bongsang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- eGnome, Inc, Seoul 05836, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Han-Ha Chai
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA 1500, Wanju 55365, Republic of Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA 1500, Wanju 55365, Republic of Korea
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Republic of Korea
- eGnome, Inc, Seoul 05836, Republic of Korea
- Corresponding author
| |
Collapse
|
9
|
Origins, timing and introgression of domestic geese revealed by whole genome data. J Anim Sci Biotechnol 2023; 14:26. [PMID: 36782272 PMCID: PMC9926862 DOI: 10.1186/s40104-022-00826-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/14/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Geese are among the most important poultry species in the world. The current generally accepted hypothesis is that the European domestic geese originated from greylag geese (Anser anser), and Chinese domestic geese have two origins, most of which originated from swan geese (Anser cygnoides), and the Yili goose originated from greylag geese. To explain the origin and demographic history of geese, we selected 14 goose breeds from Europe and China and wild populations of swan and greylag geese, and whole genome sequencing data were obtained for 74 samples. RESULTS Population structure analysis and phylogenetic trees showed that the wild ancestor of Chinese domestic geese, except for Yili, is the swan geese, and the wild ancestor of Chinese Yili and European domestic geese is greylag geese. Analysis of the demographic history suggests that the domestication of Chinese geese occurred ~ 3499 years ago and that of the European geese occurred ~ 7552 years ago. Furthermore, gene flow was observed between domestic geese and their wild ancestors. Analysis of introgression showed that Yili geese had been introgressed by Chinese domestic geese, and the body size of Yili geese may be influenced by introgression events of some growth-related genes, including IGF-1. CONCLUSIONS Our study provides evidence for the origin of geese at the genome-wide level and advances the understanding of the history of goose domestication and the traits affected by introgression events.
Collapse
|
10
|
Lyu S, Arends D, Nassar MK, Weigend A, Weigend S, Wang E, Brockmann GA. High-density genotyping reveals candidate genomic regions for chicken body size in breeds of Asian origin. Poult Sci 2022; 102:102303. [PMID: 36436378 PMCID: PMC9706647 DOI: 10.1016/j.psj.2022.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Body size is one of the main selection indices in chicken breeding. Although often investigated, knowledge of the underlying genetic mechanisms is incomplete. The aim of the current study was to identify genomic regions associated with body size differences between Asian Game and Asian Bantam type chickens. In this study, 94 and 107 chickens from 4 Asian Game and 5 Asian Bantam type breeds, respectively, were genotyped using the chicken 580K single nucleotide polymorphism (SNP) array. A genome-wide association study (GWAS) and principal component analyses (PCA) were performed to identify genomic regions associated with body size related-traits such as wing length, shank length, shank thickness, keel length, and body weight. Hierarchical clustering of genotype data showed a clear genetic difference between the investigated Asian Game and Asian Bantam chicken types. GWAS identified 16 genomic regions associated with wing length (2, FDR ≤ 0.018), shank thickness (6, FDR ≤ 0.008), keel length (5, FDR ≤ 0.023), and body weight (3, FDR ≤ 0.041). PCA showed that the first principal component (PC1) separated the 2 chicken types and significantly correlated with the measured body size related-traits (P ≤ 2.24e-40). SNPs contributing significantly to PC1 were subjected to a more detailed investigation. This analysis identified 11 regions potentially associated with differences in body size related-traits. A region on chromosome 4 (GGA4) (17.3-21.3 Mb) was detected in both analyses GWAS and PCA. This region harbors 60 genes. Among them are myotubularin 1 (MTM1) and secreted frizzled-related protein 2 (SFPR2) which can be considered as potential candidate genes for body size related-traits. Our results clearly show that the investigated Asian Game type chicken breeds are genetically different from the Asian Bantam breeds. A region on GGA4 between 17.3 and 21.3 Mb was identified which contributes to the phenotypic difference, though further validation of candidate genes is necessary.
Collapse
Affiliation(s)
- Shijie Lyu
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universitt zu Berlin, Berlin 10115, Germany,Institute of Animal Science and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Danny Arends
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universitt zu Berlin, Berlin 10115, Germany,Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Mostafa K. Nassar
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Annett Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee 31535, Germany
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee 31535, Germany
| | - Eryao Wang
- Institute of Animal Science and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Gudrun A. Brockmann
- Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universitt zu Berlin, Berlin 10115, Germany,Corresponding author:
| |
Collapse
|
11
|
Fu W, Wang R, Xu N, Wang J, Li R, Asadollahpour Nanaei H, Nie Q, Zhao X, Han J, Yang N, Jiang Y. Galbase: a comprehensive repository for integrating chicken multi-omics data. BMC Genomics 2022; 23:364. [PMID: 35549894 PMCID: PMC9097087 DOI: 10.1186/s12864-022-08598-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Multi-omics data can provide a stereoscopic view to explore potential causal variations and genes, as well as underlying genetic mechanisms of complex traits. However, for many non-mammalian species, including chickens, these resources are poorly integrated and reused, greatly limiting genetic research and breeding processes of the species. Results Here, we constructed Galbase, an easily accessible repository that integrates public chicken multi-omics data from 928 re-sequenced genomes, 429 transcriptomes, 379 epigenomes, 15,275 QTL entries, and 7,526 associations. A total of 21.67 million SNPs, 2.71 million InDels, and 488,583 cis-regulatory elements were included. Galbase allows users to retrieve genomic variations in geographical maps, gene expression profiling in heatmaps, and epigenomic signals in peak patterns. It also provides modules for batch annotation of genes, regions, and loci based on multi-layered omics data. Additionally, a series of convenient tools, including the UCSC Genome Browser, WashU Epigenome Browser, BLAT, BLAST, and LiftOver, were also integrated to facilitate search, visualization, and analysis of sequence features. Conclusion Galbase grants new opportunities to research communities to undertake in-depth functional genomic studies on chicken. All features of Galbase make it a useful resource to identify genetic variations responsible for chicken complex traits. Galbase is publicly available at http://animal.nwsuaf.edu.cn/ChickenVar. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08598-2.
Collapse
Affiliation(s)
- Weiwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Naiyi Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jinxin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Québec, Canada
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China. .,Center for Functional Genomics, Institute of Future Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
12
|
Wang MS, Zhang JJ, Guo X, Li M, Meyer R, Ashari H, Zheng ZQ, Wang S, Peng MS, Jiang Y, Thakur M, Suwannapoom C, Esmailizadeh A, Hirimuthugoda NY, Zein MSA, Kusza S, Kharrati-Koopaee H, Zeng L, Wang YM, Yin TT, Yang MM, Li ML, Lu XM, Lasagna E, Ceccobelli S, Gunwardana HGTN, Senasig TM, Feng SH, Zhang H, Bhuiyan AKFH, Khan MS, Silva GLLP, Thuy LT, Mwai OA, Ibrahim MNM, Zhang G, Qu KX, Hanotte O, Shapiro B, Bosse M, Wu DD, Han JL, Zhang YP. Large-scale genomic analysis reveals the genetic cost of chicken domestication. BMC Biol 2021; 19:118. [PMID: 34130700 PMCID: PMC8207802 DOI: 10.1186/s12915-021-01052-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/19/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Species domestication is generally characterized by the exploitation of high-impact mutations through processes that involve complex shifting demographics of domesticated species. These include not only inbreeding and artificial selection that may lead to the emergence of evolutionary bottlenecks, but also post-divergence gene flow and introgression. Although domestication potentially affects the occurrence of both desired and undesired mutations, the way wild relatives of domesticated species evolve and how expensive the genetic cost underlying domestication is remain poorly understood. Here, we investigated the demographic history and genetic load of chicken domestication. RESULTS We analyzed a dataset comprising over 800 whole genomes from both indigenous chickens and wild jungle fowls. We show that despite having a higher genetic diversity than their wild counterparts (average π, 0.00326 vs. 0.00316), the red jungle fowls, the present-day domestic chickens experienced a dramatic population size decline during their early domestication. Our analyses suggest that the concomitant bottleneck induced 2.95% more deleterious mutations across chicken genomes compared with red jungle fowls, supporting the "cost of domestication" hypothesis. Particularly, we find that 62.4% of deleterious SNPs in domestic chickens are maintained in heterozygous states and masked as recessive alleles, challenging the power of modern breeding programs to effectively eliminate these genetic loads. Finally, we suggest that positive selection decreases the incidence but increases the frequency of deleterious SNPs in domestic chicken genomes. CONCLUSION This study reveals a new landscape of demographic history and genomic changes associated with chicken domestication and provides insight into the evolutionary genomic profiles of domesticated animals managed under modern human selection.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rachel Meyer
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Hidayat Ashari
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, Indonesia.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Zhu-Qing Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, The Cooperative Innovation Center for Sustainable Pig Production, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mukesh Thakur
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Zoological Survey of India, New Alipore, Kolkata, West Bengal, 700053, India
| | - Chatmongkon Suwannapoom
- School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand.,Unit of Excellence on Biodiversity and Natural Resources Management, University of Phayao, Phayao, 56000, Thailand
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Department of Animal Science, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran
| | - Nalini Yasoda Hirimuthugoda
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - Moch Syamsul Arifin Zein
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Bogor, 16911, Indonesia
| | - Szilvia Kusza
- Institute of Animal Husbandry, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, H-4032, Hungary
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran.,Institute of Biotechnology, School of Agriculture, Shiraz University, P.O. Box 1585, Shiraz, Iran
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yun-Mei Wang
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Xue-Mei Lu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, 06123, Perugia, Italy
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, 06123, Perugia, Italy
| | | | | | - Shao-Hong Feng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Hao Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Ministry of Agriculture of China, Beijing, 100193, China
| | | | | | | | - Le Thi Thuy
- National Institute of Animal Husbandry, Hanoi, Vietnam
| | - Okeyo A Mwai
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
| | | | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China.,China National Genebank, BGI-Shenzhen, Shenzhen, 518083, China.,Centre for Social Evolution, Department of Biology, University of Copenhagen, DK-1870, Copenhagen, Denmark
| | - Kai-Xing Qu
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,Livestock Genetics Program, International Livestock Research Institute (ILRI), P.O. Box 5689, Addis Ababa, Ethiopia
| | - Beth Shapiro
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, 95064, USA.,Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Mirte Bosse
- Wageningen University & Research - Animal Breeding and Genomics, 6708 PB, Wageningen, The Netherlands.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China.
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China. .,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650204, China. .,State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
13
|
Wang YM, Khederzadeh S, Li SR, Otecko NO, Irwin DM, Thakur M, Ren XD, Wang MS, Wu DD, Zhang YP. Integrating Genomic and Transcriptomic Data to Reveal Genetic Mechanisms Underlying Piao Chicken Rumpless Trait. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:787-799. [PMID: 33631431 PMCID: PMC9170765 DOI: 10.1016/j.gpb.2020.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Piao chicken, a rare Chinese native poultry breed, lacks primary tail structures, such as pygostyle, caudal vertebra, uropygial gland, and tail feathers. So far, the molecular mechanisms underlying tail absence in this breed remain unclear. In this study, we comprehensively employed comparative transcriptomic and genomic analyses to unravel potential genetic underpinnings of rumplessness in Piao chicken. Our results reveal many biological factors involved in tail development and several genomic regions under strong positive selection in this breed. These regions contain candidate genes associated with rumplessness, including Irx4, Il18, Hspb2, and Cryab. Retrieval of quantitative trait loci (QTL) and gene functions implies that rumplessness might be consciously or unconsciously selected along with the high-yield traits in Piao chicken. We hypothesize that strong selection pressures on regulatory elements might lead to changes in gene activity in mesenchymal stem cells of the tail bud. The ectopic activity could eventually result in tail truncation by impeding differentiation and proliferation of the stem cells. Our study provides fundamental insights into early initiation and genetic basis of the rumpless phenotype in Piao chicken.
Collapse
Affiliation(s)
- Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China; Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Shi-Rong Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Newton Otieno Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada
| | - Mukesh Thakur
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Zoological Survey of India, Kolkata 700053, India
| | - Xiao-Die Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
14
|
Lee D, Lee J, Heo KN, Kwon K, Moon Y, Lim D, Lee KT, Kim J. Population analysis of the Korean native duck using whole-genome sequencing data. BMC Genomics 2020; 21:554. [PMID: 32787779 PMCID: PMC7430827 DOI: 10.1186/s12864-020-06933-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Advances in next-generation sequencing technologies have provided an opportunity to perform population-level comparative genomic analysis to discover unique genomic characteristics of domesticated animals. Duck is one of the most popular domesticated waterfowls, which is economically important as a source of meat, eggs, and feathers. The objective of this study is to perform population and functional analyses of Korean native duck, which has a distinct meat flavor and texture phenotype, using whole-genome sequencing data. To study the distinct genomic features of Korean native duck, we conducted population-level genomic analysis of 20 Korean native ducks together with 15 other duck breeds. RESULTS A total of 15.56 million single nucleotide polymorphisms were detected in Korean native duck. Based on the unique existence of non-synonymous single nucleotide polymorphisms in Korean native duck, a total of 103 genes related to the unique genomic characteristics of Korean native duck were identified in comparison with 15 other duck breeds, and their functions were investigated. The nucleotide diversity and population structures among the used duck breeds were then compared, and their phylogenetic relationship was analyzed. Finally, highly differentiated genomic regions among Korean native duck and other duck breeds were identified, and functions of genes in those regions were examined. CONCLUSIONS This is the first study to compare the population of Korean native duck with those of other duck breeds by using whole-genome sequencing data. Our findings can be used to expand our knowledge of genomic characteristics of Korean native duck, and broaden our understanding of duck breeds.
Collapse
Affiliation(s)
- Daehwan Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jongin Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kang-Neung Heo
- National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Kisang Kwon
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Youngbeen Moon
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dajeong Lim
- National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Kyung-Tai Lee
- National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Jaebum Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
15
|
Wang MS, Thakur M, Peng MS, Jiang Y, Frantz LAF, Li M, Zhang JJ, Wang S, Peters J, Otecko NO, Suwannapoom C, Guo X, Zheng ZQ, Esmailizadeh A, Hirimuthugoda NY, Ashari H, Suladari S, Zein MSA, Kusza S, Sohrabi S, Kharrati-Koopaee H, Shen QK, Zeng L, Yang MM, Wu YJ, Yang XY, Lu XM, Jia XZ, Nie QH, Lamont SJ, Lasagna E, Ceccobelli S, Gunwardana HGTN, Senasige TM, Feng SH, Si JF, Zhang H, Jin JQ, Li ML, Liu YH, Chen HM, Ma C, Dai SS, Bhuiyan AKFH, Khan MS, Silva GLLP, Le TT, Mwai OA, Ibrahim MNM, Supple M, Shapiro B, Hanotte O, Zhang G, Larson G, Han JL, Wu DD, Zhang YP. 863 genomes reveal the origin and domestication of chicken. Cell Res 2020; 30:693-701. [PMID: 32581344 PMCID: PMC7395088 DOI: 10.1038/s41422-020-0349-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/20/2020] [Indexed: 01/10/2023] Open
Abstract
Despite the substantial role that chickens have played in human societies across the world, both the geographic and temporal origins of their domestication remain controversial. To address this issue, we analyzed 863 genomes from a worldwide sampling of chickens and representatives of all four species of wild jungle fowl and each of the five subspecies of red jungle fowl (RJF). Our study suggests that domestic chickens were initially derived from the RJF subspecies Gallus gallus spadiceus whose present-day distribution is predominantly in southwestern China, northern Thailand and Myanmar. Following their domestication, chickens were translocated across Southeast and South Asia where they interbred locally with both RJF subspecies and other jungle fowl species. In addition, our results show that the White Leghorn chicken breed possesses a mosaic of divergent ancestries inherited from other subspecies of RJF. Despite the strong episodic gene flow from geographically divergent lineages of jungle fowls, our analyses show that domestic chickens undergo genetic adaptations that underlie their unique behavioral, morphological and reproductive traits. Our study provides novel insights into the evolutionary history of domestic chickens and a valuable resource to facilitate ongoing genetic and functional investigations of the world's most numerous domestic animal.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Ecology and Evolutionary Biology, Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Mukesh Thakur
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Zoological Survey of India, New Alipore, Kolkata, West Bengal, India
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Laurent Alain François Frantz
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Jin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Joris Peters
- ArchaeoBioCenter and Department of Veterinary Sciences, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, LMU Munich, Munich, Germany
- SNSB, Bavarian State Collection of Anthropology and Palaeoanatomy, Munich, Germany
| | - Newton Otieno Otecko
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | - Xing Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhu-Qing Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Nalini Yasoda Hirimuthugoda
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - Hidayat Ashari
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Sri Suladari
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Moch Syamsul Arifin Zein
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Science (LIPI), Cibinong, Indonesia
| | - Szilvia Kusza
- Institute of Animal Husbandry, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Saeed Sohrabi
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamed Kharrati-Koopaee
- Department of Animal Science, Shahid Bahonar University of Kerman, Kerman, Iran
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Quan-Kuan Shen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin Zeng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ya-Jiang Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China
| | - Xing-Yan Yang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China
| | - Xue-Mei Lu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin-Zheng Jia
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Qing-Hua Nie
- College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Susan Joy Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Emiliano Lasagna
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, Perugia, Italy
| | - Simone Ceccobelli
- Dipartimento di Scienze Agrarie, Alimentarie Ambientali, University of Perugia, Perugia, Italy
| | | | | | - Shao-Hong Feng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, Guangdong, China
| | - Jing-Fang Si
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie-Qiong Jin
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (CAS-SEABRI), Yezin, Myanmar
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong-Man Chen
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Cheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shan-Shan Dai
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | | | | | | | - Thi-Thuy Le
- National Institute of Animal Husbandry, Hanoi, Vietnam
| | - Okeyo Ally Mwai
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | - Megan Supple
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
- China National Genebank, BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya.
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, Yunnan, China.
| |
Collapse
|
16
|
Asadollahpour Nanaei H, Esmailizadeh A, Ayatollahi Mehrgardi A, Han J, Wu DD, Li Y, Zhang YP. Comparative population genomic analysis uncovers novel genomic footprints and genes associated with small body size in Chinese pony. BMC Genomics 2020; 21:496. [PMID: 32689947 PMCID: PMC7370493 DOI: 10.1186/s12864-020-06887-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Body size is considered as one of the most fundamental properties of an organism. Due to intensive breeding and artificial selection throughout the domestication history, horses exhibit striking variations for heights at withers and body sizes. Debao pony (DBP), a famous Chinese horse, is known for its small body size and lives in Guangxi mountains of southern China. In this study, we employed comparative population genomics to study the genetic basis underlying the small body size of DBP breed based on the whole genome sequencing data. To detect genomic signatures of positive selection, we applied three methods based on population comparison, fixation index (FST), cross population composite likelihood ratio (XP-CLR) and nucleotide diversity (θπ), and further analyzed the results to find genomic regions under selection for body size-related traits. Results A number of protein-coding genes in windows with the top 1% values of FST (367 genes), XP-CLR (681 genes), and log2 (θπ ratio) (332 genes) were identified. The most significant signal of positive selection was mapped to the NELL1 gene, probably underlies the body size and development traits, and may also have been selected for short stature in the DBP population. In addition, some other loci on different chromosomes were identified to be potentially involved in the development of body size. Conclusions Results of our study identified some positively selected genes across the horse genome, which are possibly involved in body size traits. These novel candidate genes may be useful targets for clarifying our understanding of the molecular basis of body size and as such they should be of great interest for future research into the genetic architecture of relevant traits in horse breeding program.
Collapse
Affiliation(s)
- Hojjat Asadollahpour Nanaei
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran. .,State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China.
| | - Ahmad Ayatollahi Mehrgardi
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, No. 32 Jiaochang Donglu, Kunming, Yunnan, China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
17
|
Ren T, Zhang Z, Fu R, Yang Y, Li W, Liang J, Mo G, Luo W, Zhang X. A 51 bp indel polymorphism within the PTH1R gene is significantly associated with chicken growth and carcass traits. Anim Genet 2020; 51:568-578. [PMID: 32400914 DOI: 10.1111/age.12942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2020] [Indexed: 01/04/2023]
Abstract
Parathyroid hormone (PTH) is a crucial regulator of calcium homeostasis and bone remodeling, and the parathyroid hormone 1 receptor (PTH1R) belongs to a class II G-protein-coupled receptor. PTH activates PTH1R, which mediates catabolic and anabolic processes in the skeleton. However, the functional mechanism of PTH1R has not been thoroughly elucidated in organisms. This study identified a 51 bp indel mutation in the first intron of the PTH1R gene and elucidated the effect of this gene mutation on the growth and carcass traits in chickens. The results indicated that the 51 bp indel was significantly associated with subcutaneous fat thickness, abdominal fat weight, body weight and daily gain over 4-8 weeks. Furthermore, we found that PTH1R gene expression was highest in the kidney and liver tissues, and it showed a trend of decreasing in leg and breast muscle tissues at different embryonic stages. In addition, we examined the expression of the three genotypes of the PTH1R gene in the liver, breast muscle and abdominal fat and found that the II genotype was significantly higher than the DD and ID genotypes. In summary, these findings suggest that the PTH1R gene can serve as a potential molecular marker for chicken breeding.
Collapse
Affiliation(s)
- T Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Z Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - R Fu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - Y Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - W Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - J Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - G Mo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - W Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| | - X Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642, Guangdong, China
| |
Collapse
|
18
|
Huang X, Otecko NO, Peng M, Weng Z, Li W, Chen J, Zhong M, Zhong F, Jin S, Geng Z, Luo W, He D, Ma C, Han J, Ommeh SC, Zhang Y, Zhang X, Du B. Genome-wide genetic structure and selection signatures for color in 10 traditional Chinese yellow-feathered chicken breeds. BMC Genomics 2020; 21:316. [PMID: 32312230 PMCID: PMC7171827 DOI: 10.1186/s12864-020-6736-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Yellow-feathered chickens (YFCs) have a long history in China. They are well-known for the nutritional and commercial importance attributable to their yellow color phenotype. Currently, there is a huge paucity in knowledge of the genetic determinants responsible for phenotypic and biochemical properties of these iconic chickens. This study aimed to uncover the genetic structure and the molecular underpinnings of the YFCs trademark coloration. RESULTS The whole-genomes of 100 YFCs from 10 major traditional breeds and 10 Huaibei partridge chickens from China were re-sequenced. Comparative population genomics based on autosomal single nucleotide polymorphisms (SNPs) revealed three geographically based clusters among the YFCs. Compared to other Chinese indigenous chicken genomes incorporated from previous studies, a closer genetic proximity within YFC breeds than between YFC breeds and other chicken populations is evident. Through genome-wide scans for selective sweeps, we identified RALY heterogeneous nuclear ribonucleoprotein (RALY), leucine rich repeat containing G protein-coupled receptor 4 (LGR4), solute carrier family 23 member 2 (SLC23A2), and solute carrier family 2 member 14 (SLC2A14), besides the classical beta-carotene dioxygenase 2 (BCDO2), as major candidates pigment determining genes in the YFCs. CONCLUSION We provide the first comprehensive genomic data of the YFCs. Our analyses show phylogeographical patterns among the YFCs and potential candidate genes giving rise to the yellow color trait of the YFCs. This study lays the foundation for further research on the genome-phenotype cross-talks that define important poultry traits and for formulating genetic breeding and conservation strategies for the YFCs.
Collapse
Affiliation(s)
- Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Minsheng Peng
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Zhuoxian Weng
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Weina Li
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Jiebo Chen
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Ming Zhong
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Fusheng Zhong
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China
| | - Sihua Jin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Luo
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Danlin He
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Cheng Ma
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.,International Livestock Research Institute (ILRI), Nairobi, 30709-00100, Kenya
| | - Sheila C Ommeh
- Animal Biotechnology Group, Institute For Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, 62000-00200, Kenya
| | - Yaping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China. .,State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, 650091, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xiquan Zhang
- College of Animal Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Bingwang Du
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, School of Life Science of Jiaying University, Meizhou, 514015, China.
| |
Collapse
|
19
|
Guo X, Li YQ, Wang MS, Wang ZB, Zhang Q, Shao Y, Jiang RS, Wang S, Ma CD, Murphy RW, Wang GQ, Dong J, Zhang L, Wu DD, Du BW, Peng MS, Zhang YP. A parallel mechanism underlying frizzle in domestic chickens. J Mol Cell Biol 2019; 10:589-591. [PMID: 29868726 DOI: 10.1093/jmcb/mjy037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/04/2018] [Indexed: 01/27/2023] Open
Affiliation(s)
- Xing Guo
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yan-Qing Li
- College of Agricultural, Guangdong Ocean University, Zhanjiang, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhi-Bin Wang
- College of Agricultural, Guangdong Ocean University, Zhanjiang, China
| | - Quan Zhang
- College of Agricultural, Guangdong Ocean University, Zhanjiang, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Run-Shen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Sheng Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chen-Dong Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Canada
| | - Guang-Qin Wang
- Jinsheng Animal Husbandry Technology Co. Ltd, Zhanjiang, China
| | - Jing Dong
- College of Agricultural, Guangdong Ocean University, Zhanjiang, China
| | - Li Zhang
- College of Agricultural, Guangdong Ocean University, Zhanjiang, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Bing-Wang Du
- College of Agricultural, Guangdong Ocean University, Zhanjiang, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
| |
Collapse
|
20
|
Wang MS, Otecko NO, Wang S, Wu DD, Yang MM, Xu YL, Murphy RW, Peng MS, Zhang YP. An Evolutionary Genomic Perspective on the Breeding of Dwarf Chickens. Mol Biol Evol 2018; 34:3081-3088. [PMID: 28961939 DOI: 10.1093/molbev/msx227] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The evolutionary history for dwarfism in chickens remains an enigma. Herein, we explore the evolution of the Serama, the smallest breed of chicken. Leveraging comparative population genomics, analyses identify several genes that are potentially associated with the growth and development of bones and muscles. These genes, and in particular both POU1F1 and IGF1, are under strong positive selection. Three allopatric dwarf bantams (Serama, Yuanbao, and Daweishan) with different breeding-histories, form distinct clusters and exhibit unique population structures. Parallel genetic mechanisms underlay their variation in body size. These findings provide insights into the multiple and complex pathways, depending on genomic variation, that chicken can take in response to aviculture selection for dwarfism.
Collapse
Affiliation(s)
- Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Newton O Otecko
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Sheng Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Min-Min Yang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yi-Long Xu
- Xiaodu Veterinary Station in Tongnan District, Chongqing, China
| | - Robert W Murphy
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, Canada
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
21
|
Yuan Y, Peng D, Gu X, Gong Y, Sheng Z, Hu X. Polygenic Basis and Variable Genetic Architectures Contribute to the Complex Nature of Body Weight -A Genome-Wide Study in Four Chinese Indigenous Chicken Breeds. Front Genet 2018; 9:229. [PMID: 30013594 PMCID: PMC6036123 DOI: 10.3389/fgene.2018.00229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/11/2018] [Indexed: 01/08/2023] Open
Abstract
Body weight (BW) is one of the most important economic traits for animal production and breeding, and it has been studied extensively for its phenotype–genotype associations. While mapping studies have mostly aimed at finding as many loci as possible that contributed to the variation in BW, the role of other factors in its genetic architecture, including their frequencies in the population and their interactions, have been largely overlooked. To comprehensively characterized the genetic architecture of BW, we performed a genome-wide association study (GWAS) both at the single-marker and haplotype level on birds from four indigenous Chinese chicken breeds (Chahua, Silkie, Langshan, and Beard), rather than studying crosses between two founder lines. Additionally, samples from two more breeds (Red Junglefowl and Recessive White) were included to better reflect variable genetic characteristics across populations. Six loci were mapped in this study, revealing the polygenic basis underlying BW. Moreover, by further examining the frequencies of the significantly associated haplotypes in each subpopulation and their effect sizes, most of the loci were found to affect BW in the Beard chicken breed alone. Two loci in GGA9 and GGA27, however, had a common effect on BW across subpopulations, showing that different underlying genetic mechanisms contribute to the phenotypic variability. These findings, particularly the variable genetic architectures found in different loci, improve our understanding of the overall genetic contributions to the large variability in BW among Chinese indigenous chicken breeds. These findings thus will have important implications for future chicken breeding.
Collapse
Affiliation(s)
- Yangyang Yuan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dezhi Peng
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Xiaorong Gu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoxiang Hu
- State Key Laboratory for Agro-Biotechnology, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Wang YM, Xu HB, Wang MS, Otecko NO, Ye LQ, Wu DD, Zhang YP. Annotating long intergenic non-coding RNAs under artificial selection during chicken domestication. BMC Evol Biol 2017; 17:192. [PMID: 28810830 PMCID: PMC5558714 DOI: 10.1186/s12862-017-1036-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background Numerous biological functions of long intergenic non-coding RNAs (lincRNAs) have been identified. However, the contribution of lincRNAs to the domestication process has remained elusive. Following domestication from their wild ancestors, animals display substantial changes in many phenotypic traits. Therefore, it is possible that diverse molecular drivers play important roles in this process. Results We analyzed 821 transcriptomes in this study and annotated 4754 lincRNA genes in the chicken genome. Our population genomic analysis indicates that 419 lincRNAs potentially evolved during artificial selection related to the domestication of chicken, while a comparative transcriptomic analysis identified 68 lincRNAs that were differentially expressed under different conditions. We also found 47 lincRNAs linked to special phenotypes. Conclusions Our study provides a comprehensive view of the genome-wide landscape of lincRNAs in chicken. This will promote a better understanding of the roles of lincRNAs in domestication, and the genetic mechanisms associated with the artificial selection of domestic animals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1036-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun-Mei Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Bo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Shan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Newton Otieno Otecko
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling-Qun Ye
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|