1
|
Wang L, Xu W, Zhang S, Gundberg GC, Zheng CR, Wan Z, Mustafina K, Caliendo F, Sandt H, Kamm R, Weiss R. Sensing and guiding cell-state transitions by using genetically encoded endoribonuclease-mediated microRNA sensors. Nat Biomed Eng 2024; 8:1730-1743. [PMID: 38982158 DOI: 10.1038/s41551-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2024] [Indexed: 07/11/2024]
Abstract
Precisely sensing and guiding cell-state transitions via the conditional genetic activation of appropriate differentiation factors is challenging. Here we show that desired cell-state transitions can be guided via genetically encoded sensors, whereby endogenous cell-state-specific miRNAs regulate the translation of a constitutively transcribed endoribonuclease, which, in turn, controls the translation of a gene of interest. We used this approach to monitor several cell-state transitions, to enrich specific cell types and to automatically guide the multistep differentiation of human induced pluripotent stem cells towards a haematopoietic lineage via endothelial cells as an intermediate state. Such conditional activation of gene expression is durable and resistant to epigenetic silencing and could facilitate the monitoring of cell-state transitions in physiological and pathological conditions and eventually the 'rewiring' of cell-state transitions for applications in organoid-based disease modelling, cellular therapies and regenerative medicine.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Biology, Northeastern University, Boston, MA, USA.
| | - Wenlong Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gregory C Gundberg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christine R Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamila Mustafina
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabio Caliendo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hayden Sandt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Brix A, Belleri L, Pezzotta A, Pettinato E, Mazzola M, Zoccolillo M, Marozzi A, Monteiro R, Del Bene F, Mortellaro A, Pistocchi A. ADA2 regulates inflammation and hematopoietic stem cell emergence via the A 2bR pathway in zebrafish. Commun Biol 2024; 7:615. [PMID: 38777862 PMCID: PMC11111730 DOI: 10.1038/s42003-024-06286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.
Collapse
Affiliation(s)
- Alessia Brix
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
| | - Laura Belleri
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
- Department of Development, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
| | - Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
| | - Emanuela Pettinato
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Mara Mazzola
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
| | - Matteo Zoccolillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Anna Marozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy
| | - Rui Monteiro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, Edgbaston, B15 2TTB, UK
| | - Filippo Del Bene
- Department of Development, Institut de la Vision, 17 Rue Moreau, 75012, Paris, France
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy.
| | - Anna Pistocchi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, L.I.T.A., via Fratelli Cervi 93, Segrate, 20054, Milan, Italy.
| |
Collapse
|
3
|
Song J, Zhang X, Lv S, Liu M, Hua X, Yue L, Wang S, He W. Age-related promoter-switch regulates Runx1 expression in adult rat hearts. BMC Cardiovasc Disord 2023; 23:541. [PMID: 37936072 PMCID: PMC10631011 DOI: 10.1186/s12872-023-03583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Runt-related transcription factor-1 (RUNX1), a key member of the core-binding factor family of transcription factors, has emerged as a novel therapeutic target for cardiovascular disease. There is an urgent need to fully understand the expression pattern of Runx1 in the heart and the mechanisms by which it is controlled under normal conditions and in response to disease. The expression of Runx1 is regulated at the transcriptional level by two promoters designated P1 and P2. Alternative usage of these two promoters creates differential mRNA transcripts diversified in distribution and translational potential. While the significance of P1/P2 promoter-switch in the transcriptional control of Runx1 has been highlighted in the embryogenic process, very little is known about the level of P1- and P2-specific transcripts in adult hearts, and the underlying mechanisms controlling the promoter-switch. METHODS To amplify P1/P2 specific sequences in the heart, we used two different sense primers complementary to either P1 or P2 5'-regions to monitor the expression of P1/P2 transcripts. DNA methylation levels were assessed at the Runx1 promoter regions. Rats were grouped by age. RESULTS The expression levels of both P1- and P2-derived Runx1 transcripts were decreased in older rats when compared with that in young adults, paralleled with an age-dependent decline in Runx1 protein level. Furthermore, older rats demonstrated a higher degree of DNA methylation at Runx1 promoter regions. Alternative promoter usage was observed in hearts with increased age, as reflected by altered P1:P2 mRNA ratio. CONCLUSION Our data demonstrate that the expression of Runx1 in the heart is age-dependent and underscore the importance of gene methylation in the promoter-mediated transcriptional control of Runx1, thereby providing new insights to the role of epigenetic regulation in the heart.
Collapse
Affiliation(s)
- Jiawei Song
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sinan Lv
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Meng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Hua
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Limin Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weihong He
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Kitagawa Y, Ikenaka A, Sugimura R, Niwa A, Saito MK. ZEB2 and MEIS1 independently contribute to hematopoiesis via early hematopoietic enhancer activation. iScience 2023; 26:107893. [PMID: 37771659 PMCID: PMC10522983 DOI: 10.1016/j.isci.2023.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/15/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023] Open
Abstract
Cell differentiation is achieved by acquiring a cell type-specific transcriptional program and epigenetic landscape. While the cell type-specific patterning of enhancers has been shown to precede cell fate decisions, it remains unclear how regulators of these enhancers are induced to initiate cell specification and how they appropriately restrict cells that differentiate. Here, using embryonic stem cell-derived hematopoietic cell differentiation cultures, we show the activation of some hematopoietic enhancers during arterialization of hemogenic endothelium, a prerequisite for hematopoiesis. We further reveal that ZEB2, a factor involved in the transcriptional regulation of arterial endothelial cells, and a hematopoietic regulator MEIS1 are independently required for activating these enhancers. Concomitantly, ZEB2 or MEIS1 deficiency impaired hematopoietic cell development. These results suggest that multiple regulators expressed from an earlier developmental stage non-redundantly contribute to the establishment of hematopoietic enhancer landscape, thereby restricting cell differentiation despite the unrestricted expression of these regulators to hematopoietic cells.
Collapse
Affiliation(s)
- Yohko Kitagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akihiro Ikenaka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ryohichi Sugimura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
5
|
RUNX1 overexpression triggers TGF-β signaling to upregulate p15 and thereby blocks early hematopoiesis by inducing cell cycle arrest. Stem Cell Res 2022; 60:102694. [DOI: 10.1016/j.scr.2022.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/19/2022] Open
|
6
|
Yi D, Zhu L, Liu Y, Zeng J, Chang J, Sun W, Teng J, Zhang Y, Dong Y, Pan X, Chen Y, Zhou Y, Lai M, Zhou Q, Liu J, Chen B, Ma F. The distinct effects of P18 overexpression on different stages of hematopoiesis involve TGF-β and NF-κB signaling. Sci Rep 2021; 11:24014. [PMID: 34907231 PMCID: PMC8671498 DOI: 10.1038/s41598-021-03263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Deficiency of P18 can significantly improve the self-renewal potential of hematopoietic stem cells (HSC) and the success of long-term engraftment. However, the effects of P18 overexpression, which is involved in the inhibitory effects of RUNX1b at the early stage of hematopoiesis, have not been examined in detail. In this study, we established inducible P18/hESC lines and monitored the effects of P18 overexpression on hematopoietic differentiation. Induction of P18 from day 0 (D0) dramatically decreased production of CD34highCD43- cells and derivative populations, but not that of CD34lowCD43- cells, changed the cell cycle status and apoptosis of KDR+ cells and downregulated the key hematopoietic genes at D4, which might cause the severe blockage of hematopoietic differentiation at the early stage. By contrast, induction of P18 from D10 dramatically increased production of classic hematopoietic populations and changed the cell cycle status and apoptosis of CD45+ cells at D14. These effects can be counteracted by inhibition of TGF-β or NF-κB signaling respectively. This is the first evidence that P18 promotes hematopoiesis, a rare property among cyclin-dependent kinase inhibitors (CKIs).
Collapse
Affiliation(s)
- Danying Yi
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Lijiao Zhu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yuanling Liu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiahui Zeng
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jing Chang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Wencui Sun
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiawen Teng
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiaxin Liu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China.
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China.
- State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, 300020, China.
| |
Collapse
|
7
|
Lin J, Zeng J, Sun W, Liu K, Enkhbat M, Yi D, Harati J, Liu J, Kingshott P, Chen B, Ma F, Wang PY. Colloidal Self-Assembled Patterns Maintain the Pluripotency and Promote the Hemopoietic Potential of Human Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:771773. [PMID: 34869369 PMCID: PMC8636751 DOI: 10.3389/fcell.2021.771773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
The generation of blood cells in a significant amount for clinical uses is still challenging. Human pluripotent stem cells-derived hemopoietic cells (hPSC-HCs) are a promising cell source to generate blood cells. Previously, it has been shown that the attached substrates are crucial in the maintenance or differentiation of hPSCs. In this study, a new family of artificial extracellular matrix (ECM) called colloidal self-assembled patterns (cSAPs: #1-#5) was used for the expansion of mouse and human PSCs. The optimized cSAP (i.e., #4 and #5) was selected for subsequent hemopoietic differentiation of human embryonic stem cells (hESCs). Results showed that the hematopoietic potential of hESCs was enhanced approx 3-4 folds on cSAP #5 compared to the flat control. The cell population of hematopoietic progenitors (i.e., CD34+CD43+ cells) and erythroid progenitors (i.e., CD71+GPA+ cells) were enhanced 4 folds at day 8 and 3 folds at day 14. RNA sequencing analysis of cSAP-derived hESCs showed that there were 300 genes up-regulated and 627 genes down-regulated compared to the flat control. The enriched signaling pathways, including up-regulation (i.e., Toll-like receptor, HIF-1a, and Notch) or down-regulation (i.e., FAs, MAPK, JAK/STAT, and TGF-β) were classic in the maintenance of hESC phenotype Real time PCR confirmed that the expression of focal adhesion (PTK2, VCL, and CXCL14) and MAPK signaling (CAV1) related genes was down-regulated 2-3 folds compared to the flat control. Altogether, cSAP enhances the pluripotency and the hematopoietic potential of hESCs that subsequently generates more blood-like cells. This study reveals the potential of cSAPs on the expansion and early-stage blood cell lineage differentiation of hPSCs.
Collapse
Affiliation(s)
- Jiao Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiahui Zeng
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Wencui Sun
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Danying Yi
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaxin Liu
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Bo Chen
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Feng Ma
- Stem Cell Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Chengdu, China
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
8
|
Zeng J, Yi D, Sun W, Liu Y, Chang J, Zhu L, Zhang Y, Pan X, Dong Y, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Ma F. Overexpression of HOXA9 upregulates NF-κB signaling to promote human hematopoiesis and alter the hematopoietic differentiation potentials. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:9. [PMID: 33426581 PMCID: PMC7797385 DOI: 10.1186/s13619-020-00066-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Background The HOX genes are master regulators of embryogenesis that are also involved in hematopoiesis. HOXA9 belongs to a cluster of HOX genes that play extensively studied roles in hematopoiesis and leukemogenesis. Methods We established HOXA9-inducible human embryonic stem cells (HOXA9/hESCs) with normal pluripotency and potential for hematopoiesis, which could be used to analyze gene function with high accuracy. HOXA9/hESCs co-cultured with aorta–gonad–mesonephros-derived stromal cells (AGM-S3) were induced to overexpress HOXA9 with doxycycline (DOX) at various times after hematopoiesis started and then subjected to flow cytometry. Results Induction of HOXA9 from Day 4 (D4) or later notably promoted hematopoiesis and also increased the production of CD34+ cells and derived populations. The potential for myelogenesis was significantly elevated while the potential for erythrogenesis was significantly reduced. At D14, a significant promotion of S phase was observed in green fluorescent protein positive (GFP+) cells overexpressing HOXA9. NF-κB signaling was also up-regulated at D14 following induction of HOXA9 on D4. All of these effects could be counteracted by addition of an NF-κB inhibitor or siRNA against NFKB1 along with DOX. Conclusions Overexpression of HOXA9 starting at D4 or later during hematopoiesis significantly promoted hematopoiesis and the production of myeloid progenitors while reduced the production of erythroid progenitors, indicating that HOXA9 plays a key role in hematopoiesis and differentiation of hematopoietic lineages. Supplementary Information The online version contains supplementary material available at 10.1186/s13619-020-00066-0.
Collapse
Affiliation(s)
- Jiahui Zeng
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Danying Yi
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Wencui Sun
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yuanlin Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Jing Chang
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Lijiao Zhu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yonggang Zhang
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Xu Pan
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Yong Dong
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Ya Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Mowen Lai
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Guohui Bian
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Qiongxiu Zhou
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Jiaxin Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China
| | - Bo Chen
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China.
| | - Feng Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Institute of Blood Transfusion, No. 26, Huacai Road, Longtan Industry Park, Chenghua District, Chengdu, 610052, China. .,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610065, China. .,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, 300020, China.
| |
Collapse
|
9
|
HOXC4 up-regulates NF-κB signaling and promotes the cell proliferation to drive development of human hematopoiesis, especially CD43+ cells. BLOOD SCIENCE 2020; 2:117-128. [PMID: 35400027 PMCID: PMC8974941 DOI: 10.1097/bs9.0000000000000054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/19/2020] [Indexed: 01/05/2023] Open
Abstract
The hematopoietic function of HOXC4 has not been extensively investigated. Our research indicated that induction of HOXC4 in co-culture system from D10 significantly promoted productions of most hematopoietic progenitor cells. CD34−CD43+ cells could be clearly classified into CD34−CD43low and CD34−CD43high sub-populations at D14. The former cells had greater myelogenic potential, and their production was not significantly influenced by induction of HOXC4. By contrast, the latter cells had greater potential to differentiate into megakaryocytes and erythroid cells, and thus had properties of erythroid–megakaryocyte common progenitors, which abundance was increased by ∼2-fold when HOXC4 was induced from D10. For CD34−CD43low, CD34+CD43+, and CD34−CD43high sub-populations, CD43 level served as a natural index for the tendency to undergo hematopoiesis. Induction of HOXC4 from D10 caused more CD43+ cells sustain in S-phase with up-regulation of NF-κB signaling, which could be counteracted by inhibition of NF-κB signaling. These observations suggested that promotion of hematopoiesis by HOXC4 is closely related to NF-κB signaling and a change in cell-cycle status, which containing potential of clinical applications.
Collapse
|
10
|
Zeng J, Zhang H, Liu Y, Sun W, Yi D, Zhu L, Zhang Y, Pan X, Chen Y, Zhou Y, Bian G, Lai M, Zhou Q, Liu J, Chen B, Ma F. Overexpression of p21 Has Inhibitory Effect on Human Hematopoiesis by Blocking Generation of CD43+ Cells via Cell-Cycle Regulation. Int J Stem Cells 2020; 13:202-211. [PMID: 32587134 PMCID: PMC7378898 DOI: 10.15283/ijsc20033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/07/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background and Objectives p21, an important member of the Cip/Kip family, is involved in inhibitory effects of RUNX1b overexpression during the early stage of human hematopoiesis. Methods and Results We established a human embryonic stem cell (hESC) line with inducible expression of p21 (p21/hESCs). Overexpression of p21 did not influence either mesoderm induction or emergence of CD34+ cells, but it significantly decreased the production of CD43+ cells and changed the expression profile of hematopoiesis-related factors, leading to the negative effects of p21 on hematopoiesis. Conclusions In RUNX1b/hESC co-cultures when RUNX1b was induced from D0, perturbation of the cell cycle caused by upregulation of p21 probably prevented the appearance of CD43+ cells, but not CD34+ cells. The mechanisms via which CD34+ cells are blocked by RUNX1b overexpression remain to be elucidated.
Collapse
Affiliation(s)
- Jiahui Zeng
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Huifang Zhang
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yuanling Liu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Wencui Sun
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Danying Yi
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Lijiao Zhu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yonggang Zhang
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Xu Pan
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Yijing Chen
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Ya Zhou
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Guohui Bian
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Mowen Lai
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Qiongxiu Zhou
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Jiaxin Liu
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Bo Chen
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China
| | - Feng Ma
- Research Center for Stem Cell Therapies, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, China
| |
Collapse
|
11
|
Sun W, Zeng J, Chang J, Xue Y, Zhang Y, Pan X, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Ma F. RUNX1-205, a novel splice variant of the human RUNX1 gene, has blockage effect on mesoderm-hemogenesis transition and promotion effect during the late stage of hematopoiesis. J Mol Cell Biol 2020; 12:386-396. [PMID: 32313936 PMCID: PMC7288743 DOI: 10.1093/jmcb/mjaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/07/2019] [Accepted: 11/19/2019] [Indexed: 11/13/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is required for definitive hematopoiesis; however, the functions of most human RUNX1 isoforms are unclear. In particular, the effects of RUNX1-205 (a novel splice variant that lacks exon 6 in comparison with RUNX1b) on human hematopoiesis are not clear. In this study, a human embryonic stem cell (hESC) line with inducible RUNX1-205 overexpression was established. Analyses of these cells revealed that induction of RUNX1-205 overexpression at early stage did not influence the induction of mesoderm but blocked the emergence of CD34+ cells, and the production of hematopoietic stem/progenitor cells was significantly reduced. In addition, the expression of hematopoiesis-related factors was downregulated. However, these effects were abolished when RUNX1-205 overexpression was induced after Day 6 in co-cultures of hESCs and AGM-S3 cells, indicating that the inhibitory effect occurred prior to generation of hemogenic endothelial cells, while the promotive effect could be observed during the late stage of hematopoiesis. This is very similar to that of RUNX1b. Interestingly, the mRNA expression profile of RUNX1-205 during hematopoiesis was distinct from that of RUNX1b, and the protein stability of RUNX1-205 was much higher than that of RUNX1b. Thus, the function of RUNX1-205 in normal and diseased models should be further explored.
Collapse
Affiliation(s)
- Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiahui Zeng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jing Chang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yuan Xue
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yonggang Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Ya Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiaxing Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bo Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.,State Key Laboratory of Biotherapy, Sichuan University, Chengdu 61006, China.,State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
12
|
Lie-a-ling M, Mevel R, Patel R, Blyth K, Baena E, Kouskoff V, Lacaud G. RUNX1 Dosage in Development and Cancer. Mol Cells 2020; 43:126-138. [PMID: 31991535 PMCID: PMC7057845 DOI: 10.14348/molcells.2019.0301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/30/2022] Open
Abstract
The transcription factor RUNX1 first came to prominence due to its involvement in the t(8;21) translocation in acute myeloid leukemia (AML). Since this discovery, RUNX1 has been shown to play important roles not only in leukemia but also in the ontogeny of the normal hematopoietic system. Although it is currently still challenging to fully assess the different parameters regulating RUNX1 dosage, it has become clear that the dose of RUNX1 can greatly affect both leukemia and normal hematopoietic development. It is also becoming evident that varying levels of RUNX1 expression can be used as markers of tumor progression not only in the hematopoietic system, but also in non-hematopoietic cancers. Here, we provide an overview of the current knowledge of the effects of RUNX1 dosage in normal development of both hematopoietic and epithelial tissues and their associated cancers.
Collapse
Affiliation(s)
- Michael Lie-a-ling
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Renaud Mevel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Esther Baena
- Cancer Research UK Prostate Oncobiology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK10 TG, UK
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, M13 9PT, UK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, SK0 4TG, UK
| |
Collapse
|
13
|
Chang J, Sun W, Zeng J, Xue Y, Zhang Y, Pan X, Zhou Y, Lai M, Bian G, Zhou Q, Liu J, Chen B, Guo F, Ma F. Establishment of an in vitro system based on AGM-S3 co-culture for screening traditional herbal medicines that stimulate hematopoiesis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 240:111938. [PMID: 31077780 DOI: 10.1016/j.jep.2019.111938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Spatholobus suberectus Dunn is a traditional Chinese medicine (TCM) that can activate blood, dispel stasis, inhibit platelet aggregation, and stimulate hematopoiesis, and thereby treat anemia and diseases related to blood stasis syndrome (BSS). However, its hematopoiesis-stimulating activity is not well understood. AIM OF STUDY Four phenolic compounds (daidzein, formononetin, catechin, and procyandin B2) were isolated and purified from stems of S. suberectus, and tested using an in vitro hematopoiesis system. MATERIALS AND METHODS An AGM-S3 co-culture system for hematopoiesis derived from human embryonic stem cells (hESCs) was employed to explore effects on hematopoiesis. At different stages, extracts from Spatholobus suberectus Dunn were added to the co-culture system at concentrations of 2, 10, or 50 μM, and fluorescence-activated cell sorting (FACS), hematopoietic colony culturing, and quantitative reverse transcription PCR (qRT-PCR) were used to probe changes in hematopoietic progenitors and erythroid progenitors. RESULTS When H1 hESCs co-cultured with AGM-S3 were added along with 10 μM catechin from day 12 (D12), proliferation and differentiation of hematopoietic and erythroid progenitors from hESCs was increased based on FACS with antibodies recognizing CD34/CD45 and GPA/CD71. Hematopoiesis colony culturing further confirmed the promotion effect of catechin on hematopoiesis, and other active fractions did not significantly promote hematopoiesis. qRT-PCR revealed that some important genes related to hematopoiesis and erythroid were up-regulated followed catechin exposure. CONCLUSIONS Our results demonstrate that catechin, an active ingredient of Spatholobus suberectus Dunn, can increase the efficiency of hematopoiesis, including hematopoietic and erythroid progenitors, consistent with previous reports. The AGM-S3 co-culture system could provide an effective tool for screening active compounds in TCMs that promote hematopoiesis, and may be of clinical and pharmaceutical use.
Collapse
Affiliation(s)
- Jing Chang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiahui Zeng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yuan Xue
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Yonggang Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Xu Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Ya Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Jiaxing Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China
| | - Bo Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China.
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu, 610052, China; State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 61006, China; State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin, 300020, China.
| |
Collapse
|
14
|
The piggyBac-based double-inducible binary vector system: A novel universal platform for studying gene functions and interactions. Plasmid 2019; 105:102420. [PMID: 31265838 DOI: 10.1016/j.plasmid.2019.102420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
Eukaryotic inducible overexpression systems, including Tet-On and mifepristone-inducible systems, have been widely used to study gene functions by reverse genetics. Among the transposon systems reported to date, the piggyBac transposon system is one of the most efficient in cultured mammalian cells. Here, we report a piggyBac-based double-inducible system that combined the advantages of previous systems. To create this system, the trans- and cis-elements of the Tet-On and mifepristone-inducible systems were cloned into a piggyBac-based trans-vector and cis-vector, respectively. The coding regions of two splicing variants of RUNX1, RUNX1a and RUNX1b, were inserted into the cis-vector to test its ability to express foreign genes along with fluorescent marker proteins. Transgenic 293 T cells were established, and the system was tested by inducing expression of foreign genes with DOX and/or mifepristone; GFP and/or mCherry were used as reporter genes. The system efficiently and stringently induced expression of GFP/mCherry and their co-expressed genes without significant mutual interference, as determined by qRT-PCR and Western blot. This piggyBac-based double-inducible system represents a new genetic tool for studying gene functions and interactions in vitro and in vivo in almost all organisms.
Collapse
|
15
|
Zhou Y, Zhang Y, Chen B, Dong Y, Zhang Y, Mao B, Pan X, Lai M, Chen Y, Bian G, Zhou Q, Nakahata T, Zhou J, Wu M, Ma F. Overexpression of GATA2 Enhances Development and Maintenance of Human Embryonic Stem Cell-Derived Hematopoietic Stem Cell-like Progenitors. Stem Cell Reports 2019; 13:31-47. [PMID: 31178416 PMCID: PMC6626852 DOI: 10.1016/j.stemcr.2019.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
GATA2 is essential for the endothelial-to-hematopoietic transition (EHT) and generation of hematopoietic stem cells (HSCs). It is poorly understood how GATA2 controls the development of human pluripotent stem cell (hPSC)-derived HS-like cells. Here, using human embryonic stem cells (hESCs) in which GATA2 overexpression was induced by doxycycline (Dox), we elucidated the dual functions of GATA2 in definitive hematopoiesis before and after the emergence of CD34+CD45+CD90+CD38- HS-like cells. Specifically, GATA2 promoted expansion of hemogenic precursors via the EHT and then helped to maintain HS-like cells in a quiescent state by regulating cell cycle. RNA sequencing showed that hPSC-derived HS-like cells were very similar to human fetal liver-derived HSCs. Our findings will help to elucidate the mechanism that controls the early stages of human definitive hematopoiesis and may help to develop a strategy to generate hPSC-derived HSCs.
Collapse
Affiliation(s)
- Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yonggang Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China.
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yong Dong
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yimeng Zhang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Yijin Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks ND 58203, USA
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China; State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China.
| |
Collapse
|