1
|
King SM. Inherently disordered regions of axonemal dynein assembly factors. Cytoskeleton (Hoboken) 2024; 81:515-528. [PMID: 37712517 PMCID: PMC10940205 DOI: 10.1002/cm.21789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The dynein-driven beating of cilia is required to move individual cells and to generate fluid flow across surfaces and within cavities. These motor enzymes are highly complex and can contain upwards of 20 different protein components with a total mass approaching 2 MDa. The dynein heavy chains are enormous proteins consisting of ~4500 residues and ribosomes take approximately 15 min to synthesize one. Studies in a broad array of organisms ranging from the green alga Chlamydomonas to humans has identified 19 cytosolic factors (DNAAFs) that are needed to specifically build axonemal dyneins; defects in many of these proteins lead to primary ciliary dyskinesia in mammals which can result in infertility, severe bronchial problems, and situs inversus. How all these factors cooperate in a spatially and temporally regulated manner to promote dynein assembly in cytoplasm remains very uncertain. These DNAAFs contain a variety of well-folded domains many of which provide protein interaction surfaces. However, many also exhibit large regions that are predicted to be inherently disordered. Here I discuss the nature of these unstructured segments, their predicted propensity for driving protein phase separation, and their potential for adopting more defined conformations during the dynein assembly process.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Chen D, Fan G, Xu Y, Luo P, Chen Q, Chen X, Guo Z, Zhu X, Gao Y. A novel homozygous mutation in the DNAAF3 gene leads to severe asthenozoospermia and teratospermia. J Cell Mol Med 2024; 28:e70092. [PMID: 39289782 PMCID: PMC11408122 DOI: 10.1111/jcmm.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder characterized by ultrastructural defects in the cilia or flagella of cells, causing respiratory abnormalities, sinusitis, visceral transposition, and male infertility. DNAAF3 plays an important role in the assembly and transportation of axonemal dynein complexes in cilia or flagella and has been shown to be associated with PCD. To date, only two cases of PCD with infertility associated with DNAAF3 mutations have been reported, and no mouse models for this gene have been successfully constructed. This study was conducted on an infertile Chinese male patient with a history of bronchitis. Examination of the patient's semen revealed severe asthenozoospermia and teratospermia. Whole exome sequencing revealed a new homozygous loss-of-function DNAAF3 mutation. CRISPR-Cas9 gene-editing technology was used to construct the same mutation in C57/B6 mice, revealing that homozygous C57/B6 mice were characterized by severe hydrocephalus and early death. The results of this study expand the mutation spectrum of DNAAF3 and confirm its correlation with PCD pathogenesis. This study provides new insights on the mechanisms underlying male infertility related to DNAAF3 mutation and PCD.
Collapse
Affiliation(s)
- Dongjia Chen
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guoqing Fan
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yan Xu
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Peng Luo
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Qinyun Chen
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xuren Chen
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zexin Guo
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Xianqing Zhu
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yong Gao
- Reproductive Medicine Center, Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangdong Provincial Clinical Research Center for obstetrical and gynecological diseases, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
3
|
Penny GM, Dutcher SK. Gene dosage of independent dynein arm motor preassembly factors influences cilia assembly in Chlamydomonas reinhardtii. PLoS Genet 2024; 20:e1011038. [PMID: 38498551 PMCID: PMC11020789 DOI: 10.1371/journal.pgen.1011038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/16/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Motile cilia assembly utilizes over 800 structural and cytoplasmic proteins. Variants in approximately 58 genes cause primary ciliary dyskinesia (PCD) in humans, including the dynein arm (pre)assembly factor (DNAAF) gene DNAAF4. In humans, outer dynein arms (ODAs) and inner dynein arms (IDAs) fail to assemble motile cilia when DNAAF4 function is disrupted. In Chlamydomonas reinhardtii, a ciliated unicellular alga, the DNAAF4 ortholog is called PF23. The pf23-1 mutant assembles short cilia and lacks IDAs, but partially retains ODAs. The cilia of a new null allele (pf23-4) completely lack ODAs and IDAs and are even shorter than cilia from pf23-1. In addition, PF23 plays a role in the cytoplasmic modification of IC138, a protein of the two-headed IDA (I1/f). As most PCD variants in humans are recessive, we sought to test if heterozygosity at two genes affects ciliary function using a second-site non-complementation (SSNC) screening approach. We asked if phenotypes were observed in diploids with pairwise heterozygous combinations of 21 well-characterized ciliary mutant Chlamydomonas strains. Vegetative cultures of single and double heterozygous diploid cells did not show SSNC for motility phenotypes. When protein synthesis is inhibited, wild-type Chlamydomonas cells utilize the pool of cytoplasmic proteins to assemble half-length cilia. In this sensitized assay, 8 double heterozygous diploids with pf23 and other DNAAF mutations show SSNC; they assemble shorter cilia than wild-type. In contrast, double heterozygosity of the other 203 strains showed no effect on ciliary assembly. Immunoblots of diploids heterozygous for pf23 and wdr92 or oda8 show that PF23 is reduced by half in these strains, and that PF23 dosage affects phenotype severity. Reductions in PF23 and another DNAAF in diploids affect the ability to assemble ODAs and IDAs and impedes ciliary assembly. Thus, dosage of multiple DNAAFs is an important factor in cilia assembly and regeneration.
Collapse
Affiliation(s)
- Gervette M. Penny
- Department of Genetics, Washington University in Saint Louis, Saint Louis,Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University in Saint Louis, Saint Louis,Missouri, United States of America
| |
Collapse
|
4
|
Lyu Q, Li Q, Zhou J, Zhao H. Formation and function of multiciliated cells. J Cell Biol 2024; 223:e202307150. [PMID: 38032388 PMCID: PMC10689204 DOI: 10.1083/jcb.202307150] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
In vertebrates, multiciliated cells (MCCs) are terminally differentiated cells that line the airway tracts, brain ventricles, and reproductive ducts. Each MCC contains dozens to hundreds of motile cilia that beat in a synchronized manner to drive fluid flow across epithelia, the dysfunction of which is associated with a group of human diseases referred to as motile ciliopathies, such as primary cilia dyskinesia. Given the dynamic and complex process of multiciliogenesis, the biological events essential for forming multiple motile cilia are comparatively unelucidated. Thanks to advancements in genetic tools, omics technologies, and structural biology, significant progress has been achieved in the past decade in understanding the molecular mechanism underlying the regulation of multiple motile cilia formation. In this review, we discuss recent studies with ex vivo culture MCC and animal models, summarize current knowledge of multiciliogenesis, and particularly highlight recent advances and their implications.
Collapse
Affiliation(s)
- Qian Lyu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Sakato-Antoku M, Balsbaugh JL, King SM. N-Terminal Processing and Modification of Ciliary Dyneins. Cells 2023; 12:2492. [PMID: 37887336 PMCID: PMC10605206 DOI: 10.3390/cells12202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Axonemal dyneins are highly complex microtubule motors that power ciliary motility. These multi-subunit enzymes are assembled at dedicated sites within the cytoplasm. At least nineteen cytosolic factors are specifically needed to generate dynein holoenzymes and/or for their trafficking to the growing cilium. Many proteins are subject to N-terminal processing and acetylation, which can generate degrons subject to the AcN-end rule, alter N-terminal electrostatics, generate new binding interfaces, and affect subunit stoichiometry through targeted degradation. Here, we have used mass spectrometry of cilia samples and electrophoretically purified dynein heavy chains from Chlamydomonas to define their N-terminal processing; we also detail the N-terminal acetylase complexes present in this organism. We identify four classes of dynein heavy chain based on their processing pathways by two distinct acetylases, one of which is dependent on methionine aminopeptidase activity. In addition, we find that one component of both the outer dynein arm intermediate/light chain subcomplex and the docking complex is processed to yield an unmodified Pro residue, which may provide a setpoint to direct the cytosolic stoichiometry of other dynein complex subunits that contain N-terminal degrons. Thus, we identify and describe an additional level of processing and complexity in the pathways leading to axonemal dynein formation in cytoplasm.
Collapse
Affiliation(s)
- Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269, USA;
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA;
| |
Collapse
|
6
|
Rabiasz A, Ziętkiewicz E. Schmidtea mediterranea as a Model Organism to Study the Molecular Background of Human Motile Ciliopathies. Int J Mol Sci 2023; 24:ijms24054472. [PMID: 36901899 PMCID: PMC10002865 DOI: 10.3390/ijms24054472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Cilia and flagella are evolutionarily conserved organelles that form protrusions on the surface of many growth-arrested or differentiated eukaryotic cells. Due to the structural and functional differences, cilia can be roughly classified as motile and non-motile (primary). Genetically determined dysfunction of motile cilia is the basis of primary ciliary dyskinesia (PCD), a heterogeneous ciliopathy affecting respiratory airways, fertility, and laterality. In the face of the still incomplete knowledge of PCD genetics and phenotype-genotype relations in PCD and the spectrum of PCD-like diseases, a continuous search for new causative genes is required. The use of model organisms has been a great part of the advances in understanding molecular mechanisms and the genetic basis of human diseases; the PCD spectrum is not different in this respect. The planarian model (Schmidtea mediterranea) has been intensely used to study regeneration processes, and-in the context of cilia-their evolution, assembly, and role in cell signaling. However, relatively little attention has been paid to the use of this simple and accessible model for studying the genetics of PCD and related diseases. The recent rapid development of the available planarian databases with detailed genomic and functional annotations prompted us to review the potential of the S. mediterranea model for studying human motile ciliopathies.
Collapse
|
7
|
Wang L, Li X, Liu G, Pan J. FBB18 participates in preassembly of almost all axonemal dyneins independent of R2TP complex. PLoS Genet 2022; 18:e1010374. [PMID: 36026524 PMCID: PMC9455862 DOI: 10.1371/journal.pgen.1010374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Assembly of dynein arms requires cytoplasmic processes which are mediated by dynein preassembly factors (DNAAFs). CFAP298, which is conserved in organisms with motile cilia, is required for assembly of dynein arms but with obscure mechanisms. Here, we show that FBB18, a Chlamydomonas homologue of CFAP298, localizes to the cytoplasm and functions in folding/stabilization of almost all axonemal dyneins at the early steps of dynein preassembly. Mutation of FBB18 causes no or short cilia accompanied with partial loss of both outer and inner dynein arms. Comparative proteomics using 15N labeling suggests partial degradation of almost all axonemal dynein heavy chains (DHCs). A mutant mimicking a patient variant induces particular loss of DHCα. FBB18 associates with 9 DNAAFs and 14 out of 15 dynein HCs but not with IC1/IC2. FBB18 interacts with RuvBL1/2, components of the HSP90 co-chaperone R2TP complex but not the holo-R2TP complex. Further analysis suggests simultaneous formation of multiple DNAAF complexes involves dynein folding/stability and thus provides new insights into axonemal dynein preassembly.
Collapse
Affiliation(s)
- Limei Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuecheng Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
8
|
The Role of Hsp90-R2TP in Macromolecular Complex Assembly and Stabilization. Biomolecules 2022; 12:biom12081045. [PMID: 36008939 PMCID: PMC9406135 DOI: 10.3390/biom12081045] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Hsp90 is a ubiquitous molecular chaperone involved in many cell signaling pathways, and its interactions with specific chaperones and cochaperones determines which client proteins to fold. Hsp90 has been shown to be involved in the promotion and maintenance of proper protein complex assembly either alone or in association with other chaperones such as the R2TP chaperone complex. Hsp90-R2TP acts through several mechanisms, such as by controlling the transcription of protein complex subunits, stabilizing protein subcomplexes before their incorporation into the entire complex, and by recruiting adaptors that facilitate complex assembly. Despite its many roles in protein complex assembly, detailed mechanisms of how Hsp90-R2TP assembles protein complexes have yet to be determined, with most findings restricted to proteomic analyses and in vitro interactions. This review will discuss our current understanding of the function of Hsp90-R2TP in the assembly, stabilization, and activity of the following seven classes of protein complexes: L7Ae snoRNPs, spliceosome snRNPs, RNA polymerases, PIKKs, MRN, TSC, and axonemal dynein arms.
Collapse
|
9
|
Lennon J, zur Lage P, von Kriegsheim A, Jarman AP. Strongly Truncated Dnaaf4 Plays a Conserved Role in Drosophila Ciliary Dynein Assembly as Part of an R2TP-Like Co-Chaperone Complex With Dnaaf6. Front Genet 2022; 13:943197. [PMID: 35873488 PMCID: PMC9298768 DOI: 10.3389/fgene.2022.943197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Axonemal dynein motors are large multi-subunit complexes that drive ciliary movement. Cytoplasmic assembly of these motor complexes involves several co-chaperones, some of which are related to the R2TP co-chaperone complex. Mutations of these genes in humans cause the motile ciliopathy, Primary Ciliary Dyskinesia (PCD), but their different roles are not completely known. Two such dynein (axonemal) assembly factors (DNAAFs) that are thought to function together in an R2TP-like complex are DNAAF4 (DYX1C1) and DNAAF6 (PIH1D3). Here we investigate the Drosophila homologues, CG14921/Dnaaf4 and CG5048/Dnaaf6. Surprisingly, Drosophila Dnaaf4 is truncated such that it completely lacks a TPR domain, which in human DNAAF4 is likely required to recruit HSP90. Despite this, we provide evidence that Drosophila Dnaaf4 and Dnaaf6 proteins can associate in an R2TP-like complex that has a conserved role in dynein assembly. Both are specifically expressed and required during the development of the two Drosophila cell types with motile cilia: mechanosensory chordotonal neurons and sperm. Flies that lack Dnaaf4 or Dnaaf6 genes are viable but with impaired chordotonal neuron function and lack motile sperm. We provide molecular evidence that Dnaaf4 and Dnaaf6 are required for assembly of outer dynein arms (ODAs) and a subset of inner dynein arms (IDAs).
Collapse
Affiliation(s)
- Jennifer Lennon
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Petra zur Lage
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Smith AJ, Bustamante-Marin XM, Yin W, Sears PR, Herring LE, Dicheva NN, López-Giráldez F, Mane S, Tarran R, Leigh MW, Knowles MR, Zariwala MA, Ostrowski LE. The role of SPAG1 in the assembly of axonemal dyneins in human airway epithelia. J Cell Sci 2022; 135:jcs259512. [PMID: 35178554 PMCID: PMC8995097 DOI: 10.1242/jcs.259512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations in SPAG1, a dynein axonemal assembly factor (DNAAF) that facilitates the assembly of dynein arms in the cytoplasm before their transport into the cilium, result in primary ciliary dyskinesia (PCD), a genetically heterogenous disorder characterized by chronic oto-sino-pulmonary disease, infertility and laterality defects. To further elucidate the role of SPAG1 in dynein assembly, we examined its expression, interactions and ciliary defects in control and PCD human airway epithelia. Immunoprecipitations showed that SPAG1 interacts with multiple DNAAFs, dynein chains and canonical components of the R2TP complex. Protein levels of dynein heavy chains (DHCs) and interactions between DHCs and dynein intermediate chains (DICs) were reduced in SPAG1 mutants. We also identified a previously uncharacterized 60 kDa SPAG1 isoform, through examination of PCD subjects with an atypical ultrastructural defect for SPAG1 variants, that can partially compensate for the absence of full-length SPAG1 to assemble a reduced number of outer dynein arms. In summary, our data show that SPAG1 is necessary for axonemal dynein arm assembly by scaffolding R2TP-like complexes composed of several DNAAFs that facilitate the folding and/or binding of the DHCs to the DIC complex.
Collapse
Affiliation(s)
- Amanda J. Smith
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ximena M. Bustamante-Marin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weining Yin
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick R. Sears
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E. Herring
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nedyalka N. Dicheva
- University of North Carolina Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06520, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Margaret W. Leigh
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R. Knowles
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Maimoona A. Zariwala
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lawrence E. Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
12
|
Qiu T, Roy S. Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. J Cell Physiol 2022; 237:2644-2653. [DOI: 10.1002/jcp.30689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Qiu
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
13
|
Pinto AL, Rasteiro M, Bota C, Pestana S, Sampaio P, Hogg C, Burgoyne T, Lopes SS. Zebrafish Motile Cilia as a Model for Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:8361. [PMID: 34445067 PMCID: PMC8393663 DOI: 10.3390/ijms22168361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
Zebrafish is a vertebrate teleost widely used in many areas of research. As embryos, they develop quickly and provide unique opportunities for research studies owing to their transparency for at least 48 h post fertilization. Zebrafish have many ciliated organs that include primary cilia as well as motile cilia. Using zebrafish as an animal model helps to better understand human diseases such as Primary Ciliary Dyskinesia (PCD), an autosomal recessive disorder that affects cilia motility, currently associated with more than 50 genes. The aim of this study was to validate zebrafish motile cilia, both in mono and multiciliated cells, as organelles for PCD research. For this purpose, we obtained systematic high-resolution data in both the olfactory pit (OP) and the left-right organizer (LRO), a superficial organ and a deep organ embedded in the tail of the embryo, respectively. For the analysis of their axonemal ciliary structure, we used conventional transmission electron microscopy (TEM) and electron tomography (ET). We characterised the wild-type OP cilia and showed, for the first time in zebrafish, the presence of motile cilia (9 + 2) in the periphery of the pit and the presence of immotile cilia (still 9 + 2), with absent outer dynein arms, in the centre of the pit. In addition, we reported that a central pair of microtubules in the LRO motile cilia is common in zebrafish, contrary to mouse embryos, but it is not observed in all LRO cilia from the same embryo. We further showed that the outer dynein arms of the microtubular doublet of both the OP and LRO cilia are structurally similar in dimensions to the human respiratory cilia at the resolution of TEM and ET. We conclude that zebrafish is a good model organism for PCD research but investigators need to be aware of the specific physical differences to correctly interpret their results.
Collapse
Affiliation(s)
- Andreia L. Pinto
- Paediatric Respiratory Medicine, Primary Ciliary Dyskinesia Centre, Royal Brompton & Harefield NHS Trust, London SW3 6NP, UK; (A.L.P.); (C.H.); (T.B.)
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
- Department of Life Sciences, NOVA School of Science and Technology, 2825-149 Caparica, Portugal
| | - Margarida Rasteiro
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| | - Catarina Bota
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| | - Sara Pestana
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| | - Pedro Sampaio
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| | - Claire Hogg
- Paediatric Respiratory Medicine, Primary Ciliary Dyskinesia Centre, Royal Brompton & Harefield NHS Trust, London SW3 6NP, UK; (A.L.P.); (C.H.); (T.B.)
- Department of Paediatrics, Imperial College London, London SW3 6LY, UK
| | - Thomas Burgoyne
- Paediatric Respiratory Medicine, Primary Ciliary Dyskinesia Centre, Royal Brompton & Harefield NHS Trust, London SW3 6NP, UK; (A.L.P.); (C.H.); (T.B.)
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, Rua Câmara Pestana nº 6, 6-A, Edifício CEDOC II, 1150-082 Lisboa, Portugal; (M.R.); (C.B.); (S.P.); (P.S.)
| |
Collapse
|
14
|
Abstract
Axonemal dyneins power the beating of motile cilia and flagella. These massive multimeric motor complexes are assembled in the cytoplasm, and subsequently trafficked to cilia and incorporated into the axonemal superstructure. Numerous cytoplasmic factors are required for the dynein assembly process, and, in mammals, defects lead to primary ciliary dyskinesia, which results in infertility, bronchial problems and failure to set up the left-right body axis correctly. Liquid-liquid phase separation (LLPS) has been proposed to underlie the formation of numerous membrane-less intracellular assemblies or condensates. In multiciliated cells, cytoplasmic assembly of axonemal dyneins also occurs in condensates that exhibit liquid-like properties, including fusion, fission and rapid exchange of components both within condensates and with bulk cytoplasm. However, a recent extensive meta-analysis suggests that the general methods used to define LLPS systems in vivo may not readily distinguish LLPS from other mechanisms. Here, I consider the time and length scales of axonemal dynein heavy chain synthesis, and the possibility that during translation of dynein heavy chain mRNAs, polysomes are crosslinked via partially assembled proteins. I propose that axonemal dynein factory formation in the cytoplasm may be a direct consequence of the sheer scale and complexity of the assembly process itself.
Collapse
Affiliation(s)
- Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3305, USA
| |
Collapse
|
15
|
Aprea I, Raidt J, Höben IM, Loges NT, Nöthe-Menchen T, Pennekamp P, Olbrich H, Kaiser T, Biebach L, Tüttelmann F, Horvath J, Schubert M, Krallmann C, Kliesch S, Omran H. Defects in the cytoplasmic assembly of axonemal dynein arms cause morphological abnormalities and dysmotility in sperm cells leading to male infertility. PLoS Genet 2021; 17:e1009306. [PMID: 33635866 PMCID: PMC7909641 DOI: 10.1371/journal.pgen.1009306] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Axonemal protein complexes, such as outer (ODA) and inner (IDA) dynein arms, are responsible for the generation and regulation of flagellar and ciliary beating. Studies in various ciliated model organisms have shown that axonemal dynein arms are first assembled in the cell cytoplasm and then delivered into axonemes during ciliogenesis. In humans, mutations in genes encoding for factors involved in this process cause structural and functional defects of motile cilia in various organs such as the airways and result in the hereditary disorder primary ciliary dyskinesia (PCD). Despite extensive knowledge about the cytoplasmic assembly of axonemal dynein arms in respiratory cilia, this process is still poorly understood in sperm flagella. To better define its clinical relevance on sperm structure and function, and thus male fertility, further investigations are required. Here we report the fertility status in different axonemal dynein preassembly mutant males (DNAAF2/ KTU, DNAAF4/ DYX1C1, DNAAF6/ PIH1D3, DNAAF7/ZMYND10, CFAP300/C11orf70 and LRRC6). Besides andrological examinations, we functionally and structurally analyzed sperm flagella of affected individuals by high-speed video- and transmission electron microscopy as well as systematically compared the composition of dynein arms in sperm flagella and respiratory cilia by immunofluorescence microscopy. Furthermore, we analyzed the flagellar length in dynein preassembly mutant sperm. We found that the process of axonemal dynein preassembly is also critical in sperm, by identifying defects of ODAs and IDAs in dysmotile sperm of these individuals. Interestingly, these mutant sperm consistently show a complete loss of ODAs, while some respiratory cilia from the same individual can retain ODAs in the proximal ciliary compartment. This agrees with reports of solely one distinct ODA type in sperm, compared to two different ODA types in proximal and distal respiratory ciliary axonemes. Consistent with observations in model organisms, we also determined a significant reduction of sperm flagellar length in these individuals. These findings are relevant to subsequent studies on the function and composition of sperm flagella in PCD patients and non-syndromic infertile males. Our study contributes to a better understanding of the fertility status in PCD-affected males and should help guide genetic and andrological counselling for affected males and their families. Impaired male fertility is a major issue and affects several men worldwide. Patients may present with reduced number or complete absence of sperm in the ejaculate, as well as functional and/or morphological sperm defects compromising sperm motility. Despite several diagnostic efforts, the underlying causes of these defects often remain unknown („idiopathic“). The beating of sperm flagella as well as motile cilia, such as those of the respiratory tract, is driven by dynein-based motor protein complexes, namely outer and inner dynein arms. In motile cilia these protein complexes are known to be first assembled in the cytoplasm and then delivered into the cilium. In sperm, this process is still poorly understood. Here we analyze sperm cells of male individuals with mutations in distinct genes encoding factors involved in the preassembly of these motor protein complexes. Consistent with defects in their respiratory ciliated cells, these individuals also demonstrate defects in sperm flagella that cause male infertility due to immotile sperm, with a reduction of flagellar length. Our results strengthen the assumption that the preassembly process of outer and inner dynein arms is clinically relevant also in sperm and provide knowledge that should guide genetic and andrological counselling for a subgroup of men with idiopathic infertility.
Collapse
Affiliation(s)
- Isabella Aprea
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Johanna Raidt
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Inga Marlena Höben
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Niki Tomas Loges
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Tabea Nöthe-Menchen
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Heike Olbrich
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Thomas Kaiser
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Luisa Biebach
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Muenster, Muenster, Germany
| | - Judit Horvath
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Maria Schubert
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Claudia Krallmann
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Muenster, Germany
| | - Sabine Kliesch
- Institute of Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
16
|
Mutations in PIH proteins MOT48, TWI1 and PF13 define common and unique steps for preassembly of each, different ciliary dynein. PLoS Genet 2020; 16:e1009126. [PMID: 33141819 PMCID: PMC7608865 DOI: 10.1371/journal.pgen.1009126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and a family of proteins containing the PIH1 domain, PIH proteins, are involved in the assembly process. However, the functional differences and relationships between members of this family of proteins remain largely unknown. Using Chlamydomonas reinhardtii as a model, we isolated and characterized two novel Chlamydomonas PIH preassembly mutants, mot48-2 and twi1-1. A new allele of mot48 (ida10), mot48-2, shows large defects in ciliary dynein assembly in the axoneme and altered motility. A second mutant, twi1-1, shows comparatively smaller defects in motility and dynein assembly. A double mutant mot48-2; twi1-1 displays greater reduction in motility and in dynein assembly compared to each single mutant. Similarly, a double mutant twi1-1; pf13 also shows a significantly greater defect in motility and dynein assembly than either parent mutant. Thus, MOT48 (IDA10), TWI1 and PF13 may define different steps, and have partially overlapping functions, in a pathway required for ciliary dynein preassembly. Together, our data suggest the three PIH proteins function in preassembly steps that are both common and unique for different ciliary dyneins. Motile cilia are hair-like organelles that protrude from many eukaryotic cells, and play vital roles in organisms including cell motility, environmental sensing and removal of infectious materials. Motile cilia are driven by gigantic motor protein complexes, called ciliary dyneins, defects in which cause abnormal ciliary motility, ultimately resulting in human diseases collectively called primary ciliary dyskinesia (PCD). Ciliary dyneins are preassembled in the cytoplasm before being transported into cilia, and preassembly requires a family of potential co-chaperones, the PIH proteins. Mutations in the PIH proteins cause defective assembly of ciliary dyneins and can result in PCD. However, despite their importance, the precise functions, and functional relationships, between the PIH proteins are unclear. In this study, using Chlamydomonas reinhardtii, we assessed the functional relationship between three PIH proteins with respect to dynein preassembly and motility. We found that these PIH proteins have complicated and related roles in dynein assembly, possibly with each playing common and unique roles in dynein assembly. Our results provide new information on each conserved PIH protein for dynein assembly and provide a new understanding of PCD caused by PIH mutations.
Collapse
|
17
|
Fingerhut JM, Yamashita YM. mRNA localization mediates maturation of cytoplasmic cilia in Drosophila spermatogenesis. J Cell Biol 2020; 219:e202003084. [PMID: 32706373 PMCID: PMC7480094 DOI: 10.1083/jcb.202003084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
Cytoplasmic cilia, a specialized type of cilia in which the axoneme resides within the cytoplasm rather than within the ciliary compartment, are proposed to allow for the efficient assembly of very long cilia. Despite being found diversely in male gametes (e.g., Plasmodium falciparum microgametocytes and human and Drosophila melanogaster sperm), very little is known about cytoplasmic cilia assembly. Here, we show that a novel RNP granule containing the mRNAs for axonemal dynein motor proteins becomes highly polarized to the distal end of the cilia during cytoplasmic ciliogenesis in Drosophila sperm. This allows for the incorporation of these axonemal dyneins into the axoneme directly from the cytoplasm, possibly by localizing translation. We found that this RNP granule contains the proteins Reptin and Pontin, loss of which perturbs granule formation and prevents incorporation of the axonemal dyneins, leading to sterility. We propose that cytoplasmic cilia assembly requires the precise localization of mRNAs encoding key axonemal constituents, allowing these proteins to incorporate efficiently into the axoneme.
Collapse
Affiliation(s)
- Jaclyn M. Fingerhut
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M. Yamashita
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
18
|
Rodríguez CF, Llorca O. RPAP3 C-Terminal Domain: A Conserved Domain for the Assembly of R2TP Co-Chaperone Complexes. Cells 2020; 9:cells9051139. [PMID: 32384603 PMCID: PMC7290369 DOI: 10.3390/cells9051139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
Abstract
The Rvb1-Rvb2-Tah1-Pih1 (R2TP) complex is a co-chaperone complex that works together with HSP90 in the activation and assembly of several macromolecular complexes, including RNA polymerase II (Pol II) and complexes of the phosphatidylinositol-3-kinase-like family of kinases (PIKKs), such as mTORC1 and ATR/ATRIP. R2TP is made of four subunits: RuvB-like protein 1 (RUVBL1) and RuvB-like 2 (RUVBL2) AAA-type ATPases, RNA polymerase II-associated protein 3 (RPAP3), and the Protein interacting with Hsp90 1 (PIH1) domain-containing protein 1 (PIH1D1). R2TP associates with other proteins as part of a complex co-chaperone machinery involved in the assembly and maturation of a growing list of macromolecular complexes. Recent progress in the structural characterization of R2TP has revealed an alpha-helical domain at the C-terminus of RPAP3 that is essential to bring the RUVBL1 and RUVBL2 ATPases to R2TP. The RPAP3 C-terminal domain interacts directly with RUVBL2 and it is also known as RUVBL2-binding domain (RBD). Several human proteins contain a region homologous to the RPAP3 C-terminal domain, and some are capable of assembling R2TP-like complexes, which could have specialized functions. Only the RUVBL1-RUVBL2 ATPase complex and a protein containing an RPAP3 C-terminal-like domain are found in all R2TP and R2TP-like complexes. Therefore, the RPAP3 C-terminal domain is one of few components essential for the formation of all R2TP and R2TP-like co-chaperone complexes.
Collapse
Affiliation(s)
| | - Oscar Llorca
- Correspondence: ; Tel.: +34-91-732-8000 (ext. 3000/3033)
| |
Collapse
|
19
|
Rare Human Diseases: Model Organisms in Deciphering the Molecular Basis of Primary Ciliary Dyskinesia. Cells 2019; 8:cells8121614. [PMID: 31835861 PMCID: PMC6952885 DOI: 10.3390/cells8121614] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a recessive heterogeneous disorder of motile cilia, affecting one per 15,000-30,000 individuals; however, the frequency of this disorder is likely underestimated. Even though more than 40 genes are currently associated with PCD, in the case of approximately 30% of patients, the genetic cause of the manifested PCD symptoms remains unknown. Because motile cilia are highly evolutionarily conserved organelles at both the proteomic and ultrastructural levels, analyses in the unicellular and multicellular model organisms can help not only to identify new proteins essential for cilia motility (and thus identify new putative PCD-causative genes), but also to elucidate the function of the proteins encoded by known PCD-causative genes. Consequently, studies involving model organisms can help us to understand the molecular mechanism(s) behind the phenotypic changes observed in the motile cilia of PCD affected patients. Here, we summarize the current state of the art in the genetics and biology of PCD and emphasize the impact of the studies conducted using model organisms on existing knowledge.
Collapse
|
20
|
Role of the Novel Hsp90 Co-Chaperones in Dynein Arms' Preassembly. Int J Mol Sci 2019; 20:ijms20246174. [PMID: 31817850 PMCID: PMC6940843 DOI: 10.3390/ijms20246174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
The outer and inner dynein arms (ODAs and IDAs) are composed of multiple subunits including dynein heavy chains possessing a motor domain. These complex structures are preassembled in the cytoplasm before being transported to the cilia. The molecular mechanism(s) controlling dynein arms’ preassembly is poorly understood. Recent evidence suggests that canonical R2TP complex, an Hsp-90 co-chaperone, in cooperation with dynein axonemal assembly factors (DNAAFs), plays a crucial role in the preassembly of ODAs and IDAs. Here, we have summarized recent data concerning the identification of novel chaperone complexes and their role in dynein arms’ preassembly and their association with primary cilia dyskinesia (PCD), a human genetic disorder.
Collapse
|
21
|
Osinka A, Poprzeczko M, Zielinska MM, Fabczak H, Joachimiak E, Wloga D. Ciliary Proteins: Filling the Gaps. Recent Advances in Deciphering the Protein Composition of Motile Ciliary Complexes. Cells 2019; 8:cells8070730. [PMID: 31319499 PMCID: PMC6678824 DOI: 10.3390/cells8070730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Cilia are highly evolutionarily conserved, microtubule-based cell protrusions present in eukaryotic organisms from protists to humans, with the exception of fungi and higher plants. Cilia can be broadly divided into non-motile sensory cilia, called primary cilia, and motile cilia, which are locomotory organelles. The skeleton (axoneme) of primary cilia is formed by nine outer doublet microtubules distributed on the cilium circumference. In contrast, the skeleton of motile cilia is more complex: in addition to outer doublets, it is composed of two central microtubules and several diverse multi-protein complexes that are distributed periodically along both types of microtubules. For many years, researchers have endeavored to fully characterize the protein composition of ciliary macro-complexes and the molecular basis of signal transduction between these complexes. Genetic and biochemical analyses have suggested that several hundreds of proteins could be involved in the assembly and function of motile cilia. Within the last several years, the combined efforts of researchers using cryo-electron tomography, genetic and biochemical approaches, and diverse model organisms have significantly advanced our knowledge of the ciliary structure and protein composition. Here, we summarize the recent progress in the identification of the subunits of ciliary complexes, their precise intraciliary localization determined by cryo-electron tomography data, and the role of newly identified proteins in cilia.
Collapse
Affiliation(s)
- Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
22
|
Patel-King RS, Sakato-Antoku M, Yankova M, King SM. WDR92 is required for axonemal dynein heavy chain stability in cytoplasm. Mol Biol Cell 2019; 30:1834-1845. [PMID: 31116681 PMCID: PMC6727741 DOI: 10.1091/mbc.e19-03-0139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
WDR92 associates with a prefoldin-like cochaperone complex and known dynein assembly factors. WDR92 has been very highly conserved and has a phylogenetic signature consistent with it playing a role in motile ciliary assembly or activity. Knockdown of WDR92 expression in planaria resulted in ciliary loss, reduced beat frequency and dyskinetic motion of the remaining ventral cilia. We have now identified a Chlamydomonas wdr92 mutant that encodes a protein missing the last four WD repeats. The wdr92-1 mutant builds only ∼0.7-μm cilia lacking both inner and outer dynein arms, but with intact doublet microtubules and central pair. When cytoplasmic extracts prepared by freeze/thaw from a control strain were fractionated by gel filtration, outer arm dynein components were present in several distinct high molecular weight complexes. In contrast, wdr92-1 extracts almost completely lacked all three outer arm heavy chains, while the IFT dynein heavy chain was present in normal amounts. A wdr92-1 tpg1-2 double mutant builds ∼7-μm immotile flaccid cilia that completely lack dynein arms. These data indicate that WDR92 is a key assembly factor specifically required for the stability of axonemal dynein heavy chains in cytoplasm and suggest that cytoplasmic/IFT dynein heavy chains use a distinct folding pathway.
Collapse
Affiliation(s)
- Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| |
Collapse
|
23
|
Binding properties of the quaternary assembly protein SPAG1. Biochem J 2019; 476:1679-1694. [PMID: 31118266 DOI: 10.1042/bcj20190198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
In cells, many constituents are able to assemble resulting in large macromolecular machineries possessing very specific biological and physiological functions, e.g. ribosome, spliceosome and proteasome. Assembly of such entities is commonly mediated by transient protein factors. SPAG1 is a multidomain protein, known to participate in the assembly of both the inner and outer dynein arms. These arms are required for the function of sensitive and motile cells. Together with RUVBL1, RUVBL2 and PIH1D2, SPAG1 is a key element of R2SP, a protein complex assisting the quaternary assembly of specific protein clients in a tissue-specific manner and associating with heat shock proteins (HSPs) and regulators. In this study, we have investigated the role of TPR domains of SPAG1 in the recruitment of HSP chaperones by combining biochemical assays, ITC, NMR spectroscopy and molecular dynamics (MD) simulations. First, we propose that only two, out of the three TPR domains, are able to recruit the protein chaperones HSP70 and HSP90. We then focused on one of these TPR domains and elucidated its 3D structure using NMR spectroscopy. Relying on an NMR-driven docking approach and MD simulations, we deciphered its binding interface with the C-terminal tails of both HSP70 and HSP90. Finally, we addressed the biological function of SPAG1 and specifically demonstrated that a SPAG1 sub-fragment, containing a putative P-loop motif, cannot efficiently bind and hydrolyze GTP in vitro Our data challenge the interpretation of SPAG1 possessing GTPase activity. We propose instead that SPAG1 regulates nucleotide hydrolysis activity of the HSP and RUVBL1/2 partners.
Collapse
|
24
|
Yang X, Peng J, Pan J. Nourseothricin N-acetyl transferase (NAT), a new selectable marker for nuclear gene expression in Chlamydomonas. PLANT METHODS 2019; 15:140. [PMID: 31827577 PMCID: PMC6862857 DOI: 10.1186/s13007-019-0526-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/13/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Chlamydomonas reinhardtii is a unicellular green alga, which is a most commonly used model organism for basic research and biotechnological applications. Generation of transgenic strains, which usually requires selectable markers, is instrumental in such studies/applications. Compared to other organisms, the number of selectable markers is limited in this organism. Nourseothricin (NTC) N-acetyl transferase (NAT) has been reported as a selectable marker in a variety of organisms but not including C. reinhardtii. Thus, we investigated whether NAT was useful and effective for selection of transgenic strains in C. reinhardtii. The successful use of NAT would provide alterative choice for selectable markers in this organism and likely in other microalgae. RESULTS C. reinhardtii was sensitive to NTC at concentrations as low as 5 µg/ml. There was no cross-resistance to nourseothricin in strains that had been transformed with hygromycin B and/or paromomycin resistance genes. A codon-optimized NAT from Streptomyces noursei was synthesized and assembled into different expression vectors followed by transformation into Chlamydomonas. Around 500 transformants could be obtained by using 50 ng DNA on selection with 10 µg/ml NTC. The transformants exhibited normal growth rate and were stable at least for 10 months on conditions even without selection. We successfully tested that NAT could be used as a selectable marker for ectopic expression of IFT54-HA in strains with paromomycin and hygromycin B resistance markers. We further showed that the selection rate for IFT54-HA positive clones was greatly increased by fusing IFT54-HA to NAT and processing with the FMDV 2A peptide. CONCLUSIONS This work represents the first demonstration of stable expression of NAT in the nuclear genome of C. reinhardtii and provides evidence that NAT can be used as an effective selectable marker for transgenic strains. It provides alterative choice for selectable markers in C. reinhardtii. NAT is compatible with paromomycin and hygromycin B resistance genes, which allows for multiple selections.
Collapse
Affiliation(s)
- Xinjia Yang
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Jialin Peng
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000 Shandong China
| |
Collapse
|