1
|
Amini J, Zafarjafarzadeh N, Ghahramanlu S, Mohammadalizadeh O, Mozaffari E, Bibak B, Sanadgol N. Role of Circular RNA MMP9 in Glioblastoma Progression: From Interaction With hnRNPC and hnRNPA1 to Affecting the Expression of BIRC5 by Sequestering miR-149. J Mol Recognit 2025; 38:e3109. [PMID: 39401767 DOI: 10.1002/jmr.3109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma multiforme (GBM) presents a significant challenge in neuro-oncology due to its aggressive behavior and self-renewal capacity. Circular RNAs (circRNAs), a subset of non-coding RNAs (ncRNAs) generated through mRNA back-splicing, are gaining attention as potential targets for GBM research. In our study, we sought to explore the functional role of circMMP9 (circular form of matrix metalloproteinase-9) as a promising therapeutic target for GBM through bioinformatic predictions and human data analysis. Our results suggest that circMMP9 functions as a sponge for miR-149 and miR-542, both upregulated in GBM based on microarray data. Kaplan-Meier analysis indicated that reduced levels of miR-149 and miR-542 correlate with worse survival outcomes in GBM, suggesting their role as tumor suppressors. Importantly, miR-149 has been demonstrated to inhibit the expression of BIRC5 (baculoviral inhibitor of apoptosis repeat-containing 5 or survivin), a significant promoter of proliferation in GBM. BIRC5 is not only upregulated in GBM but also in various other cancers, including neuroblastoma and other brain cancers. Our protein-protein interaction analysis highlights the significance of BIRC5 as a central hub gene in GBM. CircMMP9 seems to influence this complex relationship by suppressing miR-149 and miR-542, despite their increased expression in GBM. Additionally, we found that circMMP9 directly interacts with heterogeneous nuclear ribonucleoproteins C and A1 (hnRNPC and A1), although not within their protein-binding domains. This suggests that hnRNPC/A1 may play a role in transporting circMMP9. Moreover, RNA-seq data from GBM patient samples confirmed the increased expression of BIRC5, PIK3CB, and hnRNPC/A1, further emphasizing the potential therapeutic significance of circMMP9 in GBM. In this study, we propose for the first time a new epigenetic regulatory role for circMMP9, highlighting a novel aspect of its oncogenic function. circMMP9 may regulate BIRC5 expression in GBM by sponging miR-149 and miR-542. BIRC5, in turn, suppresses apoptosis and enhances proliferation in GBM. Nonetheless, more extensive studies are advised to delve deeper into the roles of circMMP9, especially in the context of glioma.
Collapse
Affiliation(s)
- Javad Amini
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nikta Zafarjafarzadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Ghahramanlu
- Blood Transfusion Department of Samenolaemeh Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Omid Mohammadalizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Elaheh Mozaffari
- Biotechnology Research Center, Islamic Azad University of Shahrekord Branch, Tehran, Iran
| | - Bahram Bibak
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
2
|
Barilani M, Peli V, Manzini P, Pistoni C, Rusconi F, Pinatel EM, Pischiutta F, Tace D, Iachini MC, Elia N, Tribuzio F, Banfi F, Sessa A, Cherubini A, Dolo V, Bollati V, Fiandra L, Longhi E, Zanier ER, Lazzari L. Extracellular Vesicles from Human Induced Pluripotent Stem Cells Exhibit a Unique MicroRNA and CircRNA Signature. Int J Biol Sci 2024; 20:6255-6278. [PMID: 39664576 PMCID: PMC11628337 DOI: 10.7150/ijbs.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Extracellular vesicles (EV) have emerged as promising cell-free therapeutics in regenerative medicine. However, translating primary cell line-derived EV to clinical applications requires large-scale manufacturing and several challenges, such as replicative senescence, donor heterogeneity, and genetic instability. To address these limitations, we used a reprogramming approach to generate human induced pluripotent stem cells (hiPSC) from the young source of cord blood mesenchymal stem/stromal cells (CBMSC). Capitalizing on their inexhaustible supply potential, hiPSC offer an attractive EV reservoir. Our approach encompassed an exhaustive characterization of hiPSC-EV, aligning with the rigorous MISEV2023 guidelines. Analyses demonstrated physical features compatible with small EV (sEV) and established their identity and purity. Moreover, the sEV-shuttled non-coding (nc) RNA landscape, focusing on the microRNA and circular RNA cargo, completed the molecular signature. The kinetics of the hiPSC-sEV release and cell internalization assays unveiled robust EV production and consistent uptake by human neurons. Furthermore, hiPSC-sEV demonstrated ex vivo cell tissue-protective properties. Finally, via bioinformatics, the potential involvement of the ncRNA cargo in the hiPSC-sEV biological effects was explored. This study significantly advances the understanding of pluripotent stem cell-derived EV. We propose cord blood MSC-derived hiPSC as a promising source for potentially therapeutic sEV.
Collapse
Affiliation(s)
- Mario Barilani
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valeria Peli
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paolo Manzini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Clelia Pistoni
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich, Switzerland
| | - Francesco Rusconi
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Eva Maria Pinatel
- ITB-CNR, Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Francesca Pischiutta
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Dorian Tace
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria Chiara Iachini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Noemi Elia
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Tribuzio
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Federica Banfi
- San Raffaele Scientific Institute, Division of Neuroscience, Neuroepigenetics Unit, Milano, Italy
| | - Alessandro Sessa
- San Raffaele Scientific Institute, Division of Neuroscience, Neuroepigenetics Unit, Milano, Italy
| | - Alessandro Cherubini
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milano, Italy
| | - Elena Longhi
- Laboratory of Transplant Immunology SC Trapianti Lombardia - NITp. Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa R Zanier
- Laboratory of Traumatic Brain Injury and Neuroprotection, Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Lorenza Lazzari
- Unit of Cell and Gene Therapies, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
3
|
Mahmoudi E, Khavari B, Cairns MJ. Oxidative Stress-Associated Alteration of circRNA and Their ceRNA Network in Differentiating Neuroblasts. Int J Mol Sci 2024; 25:12459. [PMID: 39596524 PMCID: PMC11594334 DOI: 10.3390/ijms252212459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress from environmental exposures is thought to play a role in neurodevelopmental disorders; therefore, understanding the underlying molecular regulatory network is essential for mitigating its impacts. In this study, we analysed the competitive endogenous RNA (ceRNA) network mediated by circRNAs, a novel class of regulatory molecules, in an SH-SY5Y cell model of oxidative stress, both prior to and during neural differentiation, using RNA sequencing and in silico analysis. We identified 146 differentially expressed circRNAs, including 93 upregulated and 53 downregulated circRNAs, many of which were significantly co-expressed with mRNAs that potentially interact with miRNAs. We constructed a circRNA-miRNA-mRNA network and identified 15 circRNAs serving as hubs within the regulatory axes, with target genes enriched in stress- and neuron-related pathways, such as signaling by VEGF, axon guidance, signaling by FGFR, and the RAF/MAP kinase cascade. These findings provide insights into the role of the circRNA-mediated ceRNA network in oxidative stress during neuronal differentiation, which may help explain the regulatory mechanisms underlying neurodevelopmental disorders associated with oxidative stress.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Behnaz Khavari
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW 2305, Australia
| |
Collapse
|
4
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Wang J, Ku X, Ma Q, Li H, Huang S, Mao L, Yu F, Jin J, Yan W. Hsa_circ_0007099 and PIP4K2A coexpressed in diffuse large B-cell lymphoma with clinical significance. Genes Dis 2024; 11:101056. [PMID: 38510476 PMCID: PMC10950802 DOI: 10.1016/j.gendis.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 03/22/2024] Open
Affiliation(s)
- Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang 310003, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xin Ku
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuling Ma
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Haikuo Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang 310003, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang 310003, China
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang 310003, China
- Zhejiang Provincial Clinical Research Center for Hematologic Diseases, Hangzhou, Zhejiang 310003, China
| | - Wei Yan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Wen K, Chen X, Gu J, Chen Z, Wang Z. Beyond traditional translation: ncRNA derived peptides as modulators of tumor behaviors. J Biomed Sci 2024; 31:63. [PMID: 38877495 PMCID: PMC11177406 DOI: 10.1186/s12929-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/24/2024] [Indexed: 06/16/2024] Open
Abstract
Within the intricate tapestry of molecular research, noncoding RNAs (ncRNAs) were historically overshadowed by a pervasive presumption of their inability to encode proteins or peptides. However, groundbreaking revelations have challenged this notion, unveiling select ncRNAs that surprisingly encode peptides specifically those nearing a succinct 100 amino acids. At the forefront of this epiphany stand lncRNAs and circRNAs, distinctively characterized by their embedded small open reading frames (sORFs). Increasing evidence has revealed different functions and mechanisms of peptides/proteins encoded by ncRNAs in cancer, including promotion or inhibition of cancer cell proliferation, cellular metabolism (glucose metabolism and lipid metabolism), and promotion or concerted metastasis of cancer cells. The discoveries not only accentuate the depth of ncRNA functionality but also open novel avenues for oncological research and therapeutic innovations. The main difficulties in the study of these ncRNA-derived peptides hinge crucially on precise peptide detection and sORFs identification. Here, we illuminate cutting-edge methodologies, essential instrumentation, and dedicated databases tailored for unearthing sORFs and peptides. In addition, we also conclude the potential of clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Kang Wen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Xin Chen
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Jingyao Gu
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China
| | - Zhenyao Chen
- Department of Respiratory Endoscopy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, P.R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210011, P.R. China.
| |
Collapse
|
7
|
Whittle BJ, Izuogu OG, Lowes H, Deen D, Pyle A, Coxhead J, Lawson RA, Yarnall AJ, Jackson MS, Santibanez-Koref M, Hudson G. Early-stage idiopathic Parkinson's disease is associated with reduced circular RNA expression. NPJ Parkinsons Dis 2024; 10:25. [PMID: 38245550 PMCID: PMC10799891 DOI: 10.1038/s41531-024-00636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) precedes diagnosis by years. Early neurodegeneration may be reflected in RNA levels and measurable as a biomarker. Here, we present the largest quantification of whole blood linear and circular RNAs (circRNA) in early-stage idiopathic PD, using RNA sequencing data from two cohorts (PPMI = 259 PD, 161 Controls; ICICLE-PD = 48 PD, 48 Controls). We identified a replicable increase in TMEM252 and LMNB1 gene expression in PD. We identified novel differences in the expression of circRNAs from ESYT2, BMS1P1 and CCDC9, and replicated trends of previously reported circRNAs. Overall, using circRNA as a diagnostic biomarker in PD did not show any clear improvement over linear RNA, minimising its potential clinical utility. More interestingly, we observed a general reduction in circRNA expression in both PD cohorts, accompanied by an increase in RNASEL expression. This imbalance implicates the activation of an innate antiviral immune response and suggests a previously unknown aspect of circRNA regulation in PD.
Collapse
Affiliation(s)
- Benjamin J Whittle
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Osagie G Izuogu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hannah Lowes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dasha Deen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jon Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michael S Jackson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Brezski A, Murtagh J, Schulz MH, Zarnack K. A systematic analysis of circRNAs in subnuclear compartments. RNA Biol 2024; 21:1-16. [PMID: 39257052 PMCID: PMC11404584 DOI: 10.1080/15476286.2024.2395718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/21/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
CircRNAs are an important class of RNAs with diverse cellular functions in human physiology and disease. A thorough knowledge of circRNAs including their biogenesis and subcellular distribution is important to understand their roles in a wide variety of processes. However, the analysis of circRNAs from total RNA sequencing data remains challenging. Therefore, we developed Calcifer, a versatile workflow for circRNA annotation. Using Calcifer, we analysed APEX-Seq data to compare circRNA occurrence between whole cells, nucleus and subnuclear compartments. We generally find that circRNAs show higher abundance in whole cells compared to nuclear samples, consistent with their accumulation in the cytoplasm. The notable exception is the single-exon circRNA circCANX(9), which is unexpectedly enriched in the nucleus. In addition, we observe that circFIRRE prevails over the linear lncRNA FIRRE in both the cytoplasm and the nucleus. Zooming in on the subnuclear compartments, we show that circRNAs are strongly depleted from nuclear speckles, indicating that excess splicing factors in this compartment counteract back-splicing. Our results thereby provide valuable insights into the subnuclear distribution of circRNAs. Regarding circRNA function, we surprisingly find that the majority of all detected circRNAs possess complete open reading frames with potential for cap-independent translation. Overall, we show that Calcifer is an easy-to-use, versatile and sustainable workflow for the annotation of circRNAs which expands the repertoire of circRNA tools and allows to gain new insights into circRNA distribution and function.
Collapse
Affiliation(s)
- Andre Brezski
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| | - Justin Murtagh
- Department of Medicine, Institute for Computational Genomic Medicine and Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| | - Marcel H. Schulz
- Department of Medicine, Institute for Computational Genomic Medicine and Institute of Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
- Cardio-Pulmonary Institute, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
- German Center for Cardiovascular Research, Partner site Rhein-Main, Frankfurt am Main, Hesse, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Hesse, Germany
| |
Collapse
|
9
|
Glaser SF, Brezski A, Baumgarten N, Klangwart M, Heumüller AW, Maji RK, Leisegang MS, Guenther S, Zehendner CM, John D, Schulz MH, Zarnack K, Dimmeler S. Circular RNA circPLOD2 regulates pericyte function by targeting the transcription factor KLF4. Cell Rep 2023; 42:112824. [PMID: 37481725 DOI: 10.1016/j.celrep.2023.112824] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/31/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
Circular RNAs are generated by backsplicing and control cellular signaling and phenotypes. Pericytes stabilize capillary structures and play important roles in the formation and maintenance of blood vessels. Here, we characterize hypoxia-regulated circular RNAs (circRNAs) in human pericytes and show that the circular RNA of procollagen-lysine,2-oxoglutarate 5-dioxygenase-2 (circPLOD2) is induced by hypoxia and regulates pericyte functions. Silencing of circPLOD2 affects pericytes and increases proliferation, migration, and secretion of soluble angiogenic proteins, thereby enhancing endothelial migration and network capability. Transcriptional and epigenomic profiling of circPLOD2-depleted cells reveals widespread changes in gene expression and identifies the transcription factor krüppel-like factor 4 (KLF4) as a key effector of the circPLOD2-mediated changes. KLF4 depletion mimics circPLOD2 silencing, whereas KLF4 overexpression reverses the effects of circPLOD2 depletion on proliferation and endothelial-pericyte interactions. Together, these data reveal an important function of circPLOD2 in controlling pericyte proliferation and capillary formation and show that the circPLOD2-mediated regulation of KLF4 significantly contributes to the transcriptional response to hypoxia.
Collapse
Affiliation(s)
- Simone Franziska Glaser
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Andre Brezski
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Nina Baumgarten
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Marius Klangwart
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Andreas W Heumüller
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - Ranjan Kumar Maji
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Matthias S Leisegang
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stefan Guenther
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany; Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Christoph M Zehendner
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany
| | - David John
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Marcel H Schulz
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University, 60590 Frankfurt, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, Frankfurt, Germany; Cardiopulmonary Institute, Goethe University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
10
|
H. Al-Zuaini H, Rafiq Zahid K, Xiao X, Raza U, Huang Q, Zeng T. Hypoxia-driven ncRNAs in breast cancer. Front Oncol 2023; 13:1207253. [PMID: 37583933 PMCID: PMC10424730 DOI: 10.3389/fonc.2023.1207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Low oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer. Hypoxia drives the expression of these non-coding RNAs as upstream modulators and downstream effectors of hypoxia inducible factor signaling in the favor of breast cancer through a myriad of molecular mechanisms. These non-coding RNAs then contribute in orchestrating aggressive hypoxic tumor environment and regulate cancer associated cellular processes such as proliferation, evasion of apoptotic death, extracellular matrix remodeling, angiogenesis, migration, invasion, epithelial-to-mesenchymal transition, metastasis, therapy resistance, stemness, and evasion of the immune system in breast cancer. In addition, the interplay between hypoxia-driven non-coding RNAs as well as feedback and feedforward loops between these ncRNAs and HIFs further contribute to breast cancer progression. Although the current clinical implications of hypoxia-driven non-coding RNAs are limited to prognostics and diagnostics in breast cancer, extensive explorations have established some of these hypoxia-driven non-coding RNAs as promising targets to treat aggressive breast cancers, and future scientific endeavors hold great promise in targeting hypoxia-driven ncRNAs at clinics to treat breast cancer and limit global cancer burden.
Collapse
Affiliation(s)
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
11
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
de Oliveira Freitas Machado C, Schafranek M, Brüggemann M, Hernández Cañás M, Keller M, Di Liddo A, Brezski A, Blümel N, Arnold B, Bremm A, Wittig I, Jaé N, McNicoll F, Dimmeler S, Zarnack K, Müller-McNicoll M. Poison cassette exon splicing of SRSF6 regulates nuclear speckle dispersal and the response to hypoxia. Nucleic Acids Res 2023; 51:870-890. [PMID: 36620874 PMCID: PMC9881134 DOI: 10.1093/nar/gkac1225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.
Collapse
Affiliation(s)
- Camila de Oliveira Freitas Machado
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Michal Schafranek
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Mirko Brüggemann
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | | | - Mario Keller
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Antonella Di Liddo
- Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Andre Brezski
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Nicole Blümel
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Benjamin Arnold
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Nicolas Jaé
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - François McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Correspondence may also be addressed to Kathi Zarnack.
| | | |
Collapse
|
13
|
Gao X, Fang D, Liang Y, Deng X, Chen N, Zeng M, Luo M. Circular RNAs as emerging regulators in COVID-19 pathogenesis and progression. Front Immunol 2022; 13:980231. [PMID: 36439162 PMCID: PMC9681929 DOI: 10.3389/fimmu.2022.980231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), an infectious acute respiratory disease caused by a newly emerging RNA virus, is a still-growing pandemic that has caused more than 6 million deaths globally and has seriously threatened the lives and health of people across the world. Currently, several drugs have been used in the clinical treatment of COVID-19, such as small molecules, neutralizing antibodies, and monoclonal antibodies. In addition, several vaccines have been used to prevent the spread of the pandemic, such as adenovirus vector vaccines, inactivated vaccines, recombinant subunit vaccines, and nucleic acid vaccines. However, the efficacy of vaccines and the onset of adverse reactions vary among individuals. Accumulating evidence has demonstrated that circular RNAs (circRNAs) are crucial regulators of viral infections and antiviral immune responses and are heavily involved in COVID-19 pathologies. During novel coronavirus infection, circRNAs not only directly affect the transcription process and interfere with viral replication but also indirectly regulate biological processes, including virus-host receptor binding and the immune response. Consequently, understanding the expression and function of circRNAs during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection will provide novel insights into the development of circRNA-based methods. In this review, we summarize recent progress on the roles and underlying mechanisms of circRNAs that regulate the inflammatory response, viral replication, immune evasion, and cytokines induced by SARS-CoV-2 infection, and thus highlighting the diagnostic and therapeutic challenges in the treatment of COVID-19 and future research directions.
Collapse
Affiliation(s)
- Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
14
|
Hypoxia-responsive circRNAs: A novel but important participant in non-coding RNAs ushered toward tumor hypoxia. Cell Death Dis 2022; 13:666. [PMID: 35915091 PMCID: PMC9343381 DOI: 10.1038/s41419-022-05114-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 01/21/2023]
Abstract
Given the rapid developments in RNA-seq technologies and bioinformatic analyses, circular RNAs (circRNAs) have gradually become recognized as a novel class of endogenous RNAs, characterized by covalent loop structures lacking free terminals, which perform multiple biological functions in cancer genesis, progression and metastasis. Hypoxia, a common feature of the tumor microenvironments, profoundly affects several fundamental adaptive responses of tumor cells by regulating the coding and non-coding transcriptomes and renders cancer's phenotypes more aggressive. Recently, hypoxia-responsive circRNAs have been recognized as a novel player in hypoxia-induced non-coding RNA transcriptomics to modulate the hypoxic responses and promote the progression and metastasis of hypoxic tumors. Moreover, via extracellular vesicles-exosomes, these hypoxia-responsive circRNAs could transmit hypoxia responses from cancer cells to the cells of surrounding matrices, even more distant cells of other organs. Here, we have summarized what is known about hypoxia-responsive circRNAs, with a focus on their interaction with hypoxia-inducible factors (HIFs), regulation of hypoxic responses and relevance with malignant carcinoma's clinical features, which will offer novel insights on the non-coding RNAs' regulation of cancer cells under hypoxic stress and might aid the identification of new theranostic targets and define new therapeutic strategies for those cancer patients with resistance to radiochemotherapy, because of the ubiquity of tumoral hypoxia.
Collapse
|
15
|
Lee YC, Wang WY, Lin HH, Huang YR, Lin YC, Hsiao KY. The Functional Roles and Regulation of Circular RNAs during Cellular Stresses. Noncoding RNA 2022; 8:ncrna8030038. [PMID: 35736635 PMCID: PMC9228399 DOI: 10.3390/ncrna8030038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Circular RNAs (circRNAs) are a novel class of regulatory RNA involved in many biological, physiological and pathological processes by functioning as a molecular sponge, transcriptional/epigenetic/splicing regulator, modulator of protein–protein interactions, and a template for encoding proteins. Cells are constantly dealing with stimuli from the microenvironment, and proper responses rely on both the precise control of gene expression networks and protein–protein interactions at the molecular level. The critical roles of circRNAs in the regulation of these processes have been heavily studied in the past decades. However, how the microenvironmental stimulation controls the circRNA biogenesis, cellular shuttling, translation efficiency and degradation globally and/or individually remains largely uncharacterized. In this review, how the impact of major microenvironmental stresses on the known transcription factors, splicing modulators and epitranscriptomic regulators, and thereby how they may contribute to the regulation of circRNAs, is discussed. These lines of evidence will provide new insight into how the biogenesis and functions of circRNA can be precisely controlled and targeted for treating human diseases.
Collapse
Affiliation(s)
- Yueh-Chun Lee
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Wei-Yu Wang
- Division of Hemato-Oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City 60002, Taiwan;
| | - Hui-Hsuan Lin
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Yi-Ren Huang
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Ya-Chi Lin
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Kuei-Yang Hsiao
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan;
- Institute of Biochemistry, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Bachelor Program of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-42-284-0468 (ext. 8433)
| |
Collapse
|
16
|
Hypoxia-Induced circRNAs in Human Diseases: From Mechanisms to Potential Applications. Cells 2022; 11:cells11091381. [PMID: 35563687 PMCID: PMC9105251 DOI: 10.3390/cells11091381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a special class of endogenous RNAs characterized by closed loop structures lacking 5′ to 3′ polarity and polyadenylated tails. They are widely present in various organisms and are more stable and conserved than linear RNAs. Accumulating evidence indicates that circRNAs play important roles in physiology-related processes. Under pathological conditions, hypoxia usually worsens disease progression by manipulating the microenvironment for inflammation and invasion through various dysregulated biological molecules. Among them, circRNAs, which are involved in many human diseases, including cancer, are associated with the overexpression of hypoxia-inducible factors. However, the precise mechanisms of hypoxic regulation by circRNAs remain largely unknown. This review summarizes emerging evidence regarding the interplay between circRNAs and hypoxia in the pathophysiological changes of diverse human diseases, including cancer. Next, the impact of hypoxia-induced circRNAs on cancer progression, therapeutic resistance, angiogenesis, and energy metabolism will be discussed. Last, but not least, the potential application of circRNAs in the early detection, prognosis, and treatment of various diseases will be highlighted.
Collapse
|
17
|
Zhang X, Chu H, Chik KKH, Wen L, Shuai H, Yang D, Wang Y, Hou Y, Yuen TTT, Cai JP, Yuan S, Yin F, Yuen KY, Chan JFW. hnRNP C modulates MERS-CoV and SARS-CoV-2 replication by governing the expression of a subset of circRNAs and cognitive mRNAs. Emerg Microbes Infect 2022; 11:519-531. [PMID: 35060842 PMCID: PMC8843244 DOI: 10.1080/22221751.2022.2032372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ABSTRACTHost circular RNAs (circRNAs) play critical roles in the pathogenesis of viral infections. However, how viruses modulate the biogenesis of host proviral circRNAs to facilitate their replication remains unclear. We have recently shown that Middle East respiratory syndrome coronavirus (MERS-CoV) infection increases co-expression of circRNAs and their cognate messenger RNAs (mRNAs), possibly by hijacking specific host RNA binding proteins (RBPs). In this study, we systemically analysed the interactions between the representative circRNA-mRNA pairs upregulated upon MERS-CoV infection and host RBPs. Our analysis identified heterogeneous nuclear ribonucleoprotein C (hnRNP C) as a key host factor that governed the expression of numerous MERS-CoV-perturbed circRNAs, including hsa_circ_0002846, hsa_circ_0002061, and hsa_circ_0004445. RNA immunoprecipitation assay showed that hnRNP C could bind physically to these circRNAs. Specific knockdown of hnRNP C by small interfering RNA significantly (P < 0.05 to P < 0.0001) suppressed MERS-CoV replication in human lung adenocarcinoma (Calu-3) and human small airway epithelial (HSAEC) cells. Both MERS-CoV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection increased the total and phosphorylated forms of hnRNP C to activate the downstream CRK-mTOR pathway. Treatment of MERS-CoV- (IC50: 0.618 µM) or SARS-CoV-2-infected (IC50: 1.233 µM) Calu-3 cells with the mTOR inhibitor OSI-027 resulted in significantly reduced viral loads. Collectively, our study identified hnRNP C as a key regulator of MERS-CoV-perturbed circRNAs and their cognate mRNAs, and the potential of targeting hnRNP C-related signalling pathways as an anticoronaviral strategy.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Kenn Ka-Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Lei Wen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Dong Yang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yixin Wang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Yuxin Hou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Terrence Tsz-Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China
| | - Feifei Yin
- Key Laboratory of Translational Tropical Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, People's Republic of China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
18
|
Ng AYE, Pek JW. Circular sisRNA identification and characterisation. Methods 2021; 196:138-146. [PMID: 33838268 DOI: 10.1016/j.ymeth.2021.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 01/22/2023] Open
Abstract
Stable Intronic Sequence RNA (sisRNA) is a relatively new class of non-coding RNA. Found in many organisms, these sisRNA produced from their host genes are generally involved in regulatory roles, controlling gene expression at multiple levels through active involvement in regulatory feedback loops. Large scale identification of sisRNA via genome-wide RNA sequencing has been difficult, largely in part due to its low abundance. Done on its own, RNA sequencing often yields a large mass of information that is ironically uninformative; the potential sisRNA reads being masked by other highly abundant RNA species like ribosomal RNA and messenger RNA. In this review, we present a practical workflow for the enrichment of circular sisRNA through the use of transcriptionally quiescent systems, rRNA-depletion, and RNase R treatment prior to deep sequencing. This workflow allows circular sisRNA to be reliably detected. We also present various methods to experimentally validate the circularity and stability of the circular sisRNA identified, as well as a few methods for further functional characterisation.
Collapse
Affiliation(s)
- Amanda Yunn Ee Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117543, Singapore.
| |
Collapse
|
19
|
Wang M, Wu M, Xie T, Chen J. Circular RNAs Sparkle in the Diagnosis and Theranostics of Hepatocellular Carcinoma. Front Genet 2021; 11:628655. [PMID: 33679871 PMCID: PMC7930616 DOI: 10.3389/fgene.2020.628655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Exonic circular RNAs (circRNAs) are a novel subgroup of non-coding RNAs, which are generated by a back-splicing mechanism of the exons or introns. Unlike the linear RNA, circRNA forms a covalently closed loop, and it normally appears more abundant than the linear products of its host gene. Due to the relatively high specificity and stability of circular RNAs in tissues and body fluid, circular RNAs have attracted widely scientific interest for its potential application in cancer diagnosis and as a guide for preclinical therapy, especially for hard-to-treat cancers with high heterogeneity, such as hepatocellular carcinoma (HCC). Thus, we summarize the updated knowledge of circular RNAs, including the mechanism of the generation of endogenous circular RNAs and their regulatory, diagnostic, and therapeutic roles in HCC.
Collapse
Affiliation(s)
- Menglan Wang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Minjie Wu
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Barreca MM, Zichittella C, Alessandro R, Conigliaro A. Hypoxia-Induced Non-Coding RNAs Controlling Cell Viability in Cancer. Int J Mol Sci 2021; 22:ijms22041857. [PMID: 33673376 PMCID: PMC7918432 DOI: 10.3390/ijms22041857] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Hypoxia, a characteristic of the tumour microenvironment, plays a crucial role in cancer progression and therapeutic response. The hypoxia-inducible factors (HIF-1α, HIF-2α, and HIF-3α), are the master regulators in response to low oxygen partial pressure, modulating hypoxic gene expression and signalling transduction pathways. HIFs’ activation is sufficient to change the cell phenotype at multiple levels, by modulating several biological activities from metabolism to the cell cycle and providing the cell with new characteristics that make it more aggressive. In the past few decades, growing numbers of studies have revealed the importance of non-coding RNAs (ncRNAs) as molecular mediators in the establishment of hypoxic response, playing important roles in regulating hypoxic gene expression at the transcriptional, post-transcriptional, translational, and posttranslational levels. Here, we review recent findings on the different roles of hypoxia-induced ncRNAs in cancer focusing on the data that revealed their involvement in tumour growth.
Collapse
Affiliation(s)
- Maria Magdalena Barreca
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Chiara Zichittella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (M.M.B.); (C.Z.); (R.A.)
- Correspondence:
| |
Collapse
|
21
|
Shao Y, Lu B. The crosstalk between circular RNAs and the tumor microenvironment in cancer metastasis. Cancer Cell Int 2020; 20:448. [PMID: 32943996 PMCID: PMC7488731 DOI: 10.1186/s12935-020-01532-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Background Carcinomas are highly heterogeneous with regard to various cancer cells within a tumor microenvironment (TME), which is composed of stromal cells, blood vessels, immunocytes, and modified extracellular matrix. Focus of the study Circular RNAs (circRNAs) are non-coding RNAs that are expressed in cancer and stromal cells. They are closely associated with cancer metastasis as their expression in tumor cells directs the latter to migrate to different organs. circRNAs packaged in exosomes might be involved in this process. This is particularly important as the TME acts in tandem with cancer cells to enhance their proliferation and metastatic capability. In this review, we focus on recent studies on the crosstalk between circRNAs and the TME during cancer metastasis. Conclusion We particularly emphasize the roles of the interaction between circRNAs and the TME in anoikis resistance, vessel co-option, and local circRNA expression in directing homing of exosome.
Collapse
Affiliation(s)
- Ying Shao
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| | - Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
22
|
Chen M, Huang X, Li L, Huang M, Cai R, Liao X. A Regulatory Axis of circ_0008193/miR-1180-3p/TRIM62 Suppresses Proliferation, Migration, Invasion, and Warburg Effect in Lung Adenocarcinoma Cells Under Hypoxia. Med Sci Monit 2020; 26:e922900. [PMID: 32782238 PMCID: PMC7444845 DOI: 10.12659/msm.922900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Expression profiles of circular ribonucleic acids (circRNAs) have been recently reported in lung cancers including lung adenocarcinoma (LUAD). Hypoxia is a hallmark of lung cancers. However, the role of hsa_circ_0008193 (circ_0008193) in LUAD under hypoxia remains to be illuminated. MATERIAL AND METHODS Gene expression levels were detected using real-time quantitative polymerase chain reaction and western blotting. Cell proliferation, migration, invasion, and Warburg effect were detected using 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide assay, transwell assays, special kits, and xenograft experiments. The relationship among circ_0008193, micro (mi)RNA (miR)-1180-3p, and tripartite motif containing 62 (TRIM62) was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. RESULTS Expression of circ_0008193 was downregulated in human LUAD tumor tissues and cell lines (A549 and H1975), accompanied by miR-1180-3p upregulation and TRIM62 downregulation. Moreover, circ_0008193 downregulation was correlated with tumor size and lymph node metastasis. Functionally, circ_0008193 overexpression inhibited cell viability, glucose uptake, lactate production, migration, and invasion, as well as expression of hexokinase II, lactate dehydrogenase A, matrix metalloproteinase 2 (MMP2), and MMP9 in hypoxic LUAD cells in vitro. Furthermore, tumor growth of A549 cells in vivo was also hindered by circ_0008193 overexpression. Mechanically, circ_0008193 regulated TRIM62 expression via sponging miR-1180-3p, and TRIM62 was targeted by miR-1180-3p. Both miR-1180-3p upregulation and TRIM62 downregulation could abolish the suppressive role of circ_0008193 in LUAD cells. CONCLUSIONS Upregulating circ_0008193 inhibited LUAD cell proliferation, migration, invasion, and Warburg effect under hypoxia in vitro and in vivo through regulation of the miR-1180-3p/TRIM62 axis.
Collapse
|
23
|
Robic A, Demars J, Kühn C. In-Depth Analysis Reveals Production of Circular RNAs from Non-Coding Sequences. Cells 2020; 9:cells9081806. [PMID: 32751504 PMCID: PMC7464727 DOI: 10.3390/cells9081806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
The sequencing of total RNA depleted for ribosomal sequences remains the method of choice for the study of circRNAs. Our objective was to characterize non-canonical circRNAs, namely not originating from back splicing and circRNA produced by non-coding genes. To this end, we analyzed a dataset from porcine testis known to contain about 100 intron-derived circRNAs. Labelling reads containing a circular junction and originating from back splicing provided information on the very small contribution of long non-coding genes to the production of canonical circRNAs. Analyses of the other reads revealed two origins for non-canonical circRNAs: (1) Intronic sequences for lariat-derived intronic circRNAs and intron circles, (2) Mono-exonic genes (mostly non-coding) for either a new type of circRNA (including only part of the exon: sub-exonic circRNAs) or, even more rarely, mono-exonic canonical circRNAs. The most complex set of sub-exonic circRNAs was produced by RNase_MRP (ribozyme RNA). We specifically investigated the intronic circRNA of ATXN2L, which is probably an independently transcribed sisRNA (stable intronic sequence RNA). We may be witnessing the emergence of a new non-coding gene in the porcine genome. Our results are evidence that most non-canonical circRNAs originate from non-coding sequences.
Collapse
Affiliation(s)
- Annie Robic
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France;
- Correspondence:
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326 Castanet Tolosan, France;
| | - Christa Kühn
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany;
- Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
24
|
Dong P, Xu D, Xiong Y, Yue J, Ihira K, Konno Y, Watari H. The Expression, Functions and Mechanisms of Circular RNAs in Gynecological Cancers. Cancers (Basel) 2020; 12:E1472. [PMID: 32512912 PMCID: PMC7352180 DOI: 10.3390/cancers12061472] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed, endogenous non-coding RNAs and certain circRNAs are linked to human tumors. Owing to their circular form, circRNAs are protected from degradation by exonucleases, and therefore, they are more stable than linear RNAs. Many circRNAs have been shown to sponge microRNAs, interact with RNA-binding proteins, regulate gene transcription, and be translated into proteins. Mounting evidence suggests that circRNAs are dysregulated in cancer tissues and can mediate various signaling pathways, thus affecting tumorigenesis, metastasis, and remodeling of the tumor microenvironment. First, we review the characteristics, biogenesis, and biological functions of circRNAs, and describe various mechanistic models of circRNAs. Then, we provide a systematic overview of the functional roles of circRNAs in gynecological cancers. Finally, we describe the potential future applications of circRNAs as biomarkers for prognostic stratification and as therapeutic targets in gynecological cancers. Although the function of most circRNAs remains elusive, some individual circRNAs have biologically relevant functions in cervical cancer, ovarian cancer, and endometrial cancer. Certain circRNAs have the potential to serve as biomarkers and therapeutic targets in gynecological cancers.
Collapse
Affiliation(s)
- Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (D.X.); (K.I.); (Y.K.)
| | - Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (D.X.); (K.I.); (Y.K.)
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (D.X.); (K.I.); (Y.K.)
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (D.X.); (K.I.); (Y.K.)
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (D.X.); (K.I.); (Y.K.)
| |
Collapse
|
25
|
Enculescu M, Braun S, Thonta Setty S, Busch A, Zarnack K, König J, Legewie S. Exon Definition Facilitates Reliable Control of Alternative Splicing in the RON Proto-Oncogene. Biophys J 2020; 118:2027-2041. [PMID: 32336349 DOI: 10.1016/j.bpj.2020.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 01/01/2023] Open
Abstract
Alternative splicing is a key step in eukaryotic gene expression that allows for the production of multiple transcript and protein isoforms from the same gene. Even though splicing is perturbed in many diseases, we currently lack insights into regulatory mechanisms promoting its precision and efficiency. We analyze high-throughput mutagenesis data obtained for an alternatively spliced exon in the proto-oncogene RON and determine the functional units that control this splicing event. Using mathematical modeling of distinct splicing mechanisms, we show that alternative splicing is based in RON on a so-called "exon definition" mechanism. Here, the recognition of the adjacent exons by the spliceosome is required for removal of an intron. We use our model to analyze the differences between the exon and intron definition scenarios and find that exon definition prevents the accumulation of deleterious, partially spliced retention products during alternative splicing regulation. Furthermore, it modularizes splicing control, as multiple regulatory inputs are integrated into a common net input, irrespective of the location and nature of the corresponding cis-regulatory elements in the pre-messenger RNA. Our analysis suggests that exon definition promotes robust and reliable splicing outcomes in RON splicing.
Collapse
Affiliation(s)
| | - Simon Braun
- Institute of Molecular Biology, Mainz, Germany
| | - Samarth Thonta Setty
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anke Busch
- Institute of Molecular Biology, Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
26
|
Bindereif A, Wang Z. A joint adventure of Sino-German researchers to explore the wild world of RNAs. J Mol Cell Biol 2019; 11:811-812. [PMID: 31638144 PMCID: PMC6884702 DOI: 10.1093/jmcb/mjz097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 11/25/2022] Open
Affiliation(s)
- Albrecht Bindereif
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, Biomedical Big Data Center, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Biology and Chemistry, Institute of Biochemistry, Justus Liebig University of Giessen, Giessen D-35392, Germany
| |
Collapse
|