1
|
Peterson AJ, Hall RA, Harrison JJ, Hobson-Peters J, Hugo LE. Unleashing Nature's Allies: Comparing the Vertical Transmission Dynamics of Insect-Specific and Vertebrate-Infecting Flaviviruses in Mosquitoes. Viruses 2024; 16:1499. [PMID: 39339975 PMCID: PMC11437461 DOI: 10.3390/v16091499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Insect-specific viruses (ISVs) include viruses that are restricted to the infection of mosquitoes and are spread mostly through transovarial transmission. Despite using a distinct mode of transmission, ISVs are often phylogenetically related to arthropod-borne viruses (arboviruses) that are responsible for human diseases and able to infect both mosquitoes and vertebrates. ISVs can also induce a phenomenon called "superinfection exclusion", whereby a primary ISV infection in an insect inhibits subsequent viral infections of the insect. This has sparked interest in the use of ISVs for the control of pathogenic arboviruses transmitted by mosquitoes. In particular, insect-specific flaviviruses (ISFs) have been shown to inhibit infection of vertebrate-infecting flaviviruses (VIFs) both in vitro and in vivo. This has shown potential as a new and ecologically friendly biological approach to the control of arboviral disease. For this intervention to have lasting impacts for biological control, it is imperative that ISFs are maintained in mosquito populations with high rates of vertical transmission. Therefore, these strategies will need to optimise vertical transmission of ISFs in order to establish persistently infected mosquito lines for sustainable arbovirus control. This review compares recent observations of vertical transmission of arboviral and insect-specific flaviviruses and potential determinants of transovarial transmission rates to understand how the vertical transmission of ISFs may be optimised for effective arboviral control.
Collapse
Affiliation(s)
- Alyssa J Peterson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia
- Australian Infectious Diseases Research Centre, Brisbane, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Nag DK, Efner KJ. Transovarial Transmission of Cell-Fusing Agent Virus in Naturally Infected Aedes aegypti Mosquitoes. Viruses 2024; 16:1116. [PMID: 39066278 PMCID: PMC11281400 DOI: 10.3390/v16071116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquito-borne arboviruses include several pathogens that are responsible for many diseases of significant public health burden. Mosquitoes also host many insect-specific viruses that cannot replicate in vertebrate cells. These insect-specific viruses persist in nature predominantly via vertical transmission (VT), and they exhibit high VT rates (VTRs). Cell-fusing agent virus (CFAV), an insect-specific orthoflavivirus, shows high VTRs in naturally infected mosquitoes but not in artificially infected mosquitoes. To determine whether the high VTRs are due to transovarial transmission, we investigated VT and ovary infection patterns in naturally CFAV-infected Aedes aegypti (Bangkok) mosquitoes. VT was monitored by detecting CFAV among the progeny by reverse-transcription polymerase chain reaction and ovary infection was determined by in situ hybridization using a virus-specific probe. We showed that in CFAV-positive mosquitoes, ovarian follicles were infected, suggesting that VT occurs by transovarial transmission in naturally infected mosquitoes. Additionally, mosquitoes harbored dormant, non-replicative CFAV that remained below the detection level. These results suggested that CFAV persists via VT in nature and has the potential to remain dormant in diapausing mosquitoes during unfavorable conditions. Understanding this VT mechanism is crucial for comprehending the persistence of insect-specific viruses (and potentially dual-host arboviruses) in their natural environment.
Collapse
Affiliation(s)
- Dilip K. Nag
- Griffin Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
| | | |
Collapse
|
3
|
Nag DK, Efner K. Cell fusing agent virus rarely transmits vertically in artificially infected laboratory-colonized Aedes aegypti mosquitoes. Parasit Vectors 2024; 17:177. [PMID: 38575981 PMCID: PMC10996217 DOI: 10.1186/s13071-024-06232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/03/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Vertical transmission (VT) of arboviruses (arthropod-borne viruses) can serve as an essential link in the transmission cycle during adverse environmental conditions. The extent of VT among mosquito-borne arboviruses can vary significantly among different virus families and even among different viruses within the same genus. For example, orthobunyaviruses exhibit a higher VT rate than orthoflaviviruses and alphaviruses. Mosquitoes are also the natural hosts of a large number of insect-specific viruses (ISV) that belong to several virus families, including Bunyaviridae, Flaviviridae, and Togaviridae. Cell fusing agent virus (CFAV), an insect-specific orthoflavivirus, displays higher VT rates than other dual-host orthoflaviviruses, such as Zika and dengue viruses. High VT rates require establishment of stabilized infections in the germinal tissues of female vectors. To delve deeper into understanding the mechanisms governing these differences in VT rates and the establishment of stabilized infections, the ovary infection patterns and VT of Zika virus (ZIKV) and CFAV were compared. METHODS Laboratory colonized Aedes aegypti females were infected with either ZIKV or CFAV by intrathoracic injection. Ovary infection patterns were monitored by in situ hybridization using virus-specific probes, and VT was determined by detecting the presence of the virus among the progeny, using a reverse-transcription quantitative polymerase chain reaction (PCR) assay. RESULTS Both ZIKV and CFAV infect mosquito ovaries after intrathoracic injection. Infections then become widespread following a non-infectious blood meal. VT rates of ZIKV are similar to previously reported results (3.33%). CFAV, on the contrary transmits vertically very rarely. VT was not observed in the first gonotrophic cycle following intrathoracic injection, and only rarely in the second gonotrophic cycle. VT of CFAV is mosquito population independent, since similar results were obtained with Aedes aegypti collected from two different geographic locations. CONCLUSIONS Although CFAV infects mosquito ovaries, the occurrence of VT remains infrequent in artificially infected Ae. aegypti, despite the observation of high VT rates in field-collected mosquitoes. These results suggest that infections of insect-specific viruses are stabilized in mosquitoes by some as yet unidentified mechanisms.
Collapse
Affiliation(s)
- Dilip K Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA.
| | - Kathryn Efner
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| |
Collapse
|
4
|
Janjoter S, Kataria D, Yadav M, Dahiya N, Sehrawat N. Transovarial transmission of mosquito-borne viruses: a systematic review. Front Cell Infect Microbiol 2024; 13:1304938. [PMID: 38235494 PMCID: PMC10791847 DOI: 10.3389/fcimb.2023.1304938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Background A number of mosquito-borne viruses (MBVs), such as dengue virus (DENV), zika virus (ZIKV), chikungunya (CHIKV), West Nile virus (WNV), and yellow fever virus (YFV) exert adverse health impacts on the global population. Aedes aegypti and Aedes albopictus are the prime vectors responsible for the transmission of these viruses. The viruses have acquired a number of routes for successful transmission, including horizontal and vertical transmission. Transovarial transmission is a subset/type of vertical transmission adopted by mosquitoes for the transmission of viruses from females to their offspring through eggs/ovaries. It provides a mechanism for these MBVs to persist and maintain their lineage during adverse climatic conditions of extremely hot and cold temperatures, during the dry season, or in the absence of susceptible vertebrate host when horizontal transmission is not possible. Methods The publications discussed in this systematic review were searched for using the PubMed, Scopus, and Web of Science databases, and websites such as those of the World Health Organization (WHO) and the European Centre for Disease Prevention and Control, using the search terms "transovarial transmission" and "mosquito-borne viruses" from 16 May 2023 to 20 September 2023. Results A total of 2,391 articles were searched, of which 123 were chosen for full text evaluation, and 60 were then included in the study after screening and removing duplicates. Conclusion The present systematic review focuses on understanding the above diseases, their pathogenesis, epidemiology and host-parasite interactions. The factors affecting transovarial transmission, potential implications, mosquito antiviral defense mechanism, and the control strategies for these mosquito-borne viral diseases (MBVDs) are also be included in this review.
Collapse
Affiliation(s)
| | | | | | | | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
5
|
Suzuki Y, Suzuki T, Miura F, Reyes JIL, Asin ICA, Mitsunari W, Uddin MM, Sekii Y, Watanabe K. No detectable fitness cost of infection by cell-fusing agent virus in Aedes aegypti mosquitoes. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231373. [PMID: 38204783 PMCID: PMC10776230 DOI: 10.1098/rsos.231373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
Aedes mosquitoes are well-known vectors of arthropod-borne viruses (arboviruses). Mosquitoes are more frequently infected with insect-specific viruses (ISVs) that cannot infect vertebrates. Some ISVs interfere with arbovirus replication in mosquito vectors, which has gained attention for potential use against arbovirus transmission. Cell-fusing agent virus (CFAV), a widespread ISV, can reduce arbovirus dissemination in Ae. aegypti. However, vectorial capacity is largely governed by other parameters than pathogen load, including mosquito survival and biting behaviour. Understanding how ISVs impact these mosquito fitness-related traits is critical to assess the potential risk of using ISVs as biological agents. Here, we examined the effects of CFAV infection on Ae. aegypti mosquito fitness. We found no significant reduction in mosquito survival, blood-feeding behaviour and reproduction, suggesting that Ae. aegypti is tolerant to CFAV. The only detectable effect was a slight increase in human attraction of CFAV-infected females in one out of eight trials. Viral tolerance is beneficial for introducing CFAV into natural mosquito populations, whereas the potential increase in biting activity must be further investigated. Our results provide the first insight into the link between ISVs and Aedes mosquito fitness and highlight the importance of considering all aspects of vectorial capacity for arbovirus control using ISVs.
Collapse
Affiliation(s)
- Yasutsugu Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Takahiro Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jerica Isabel L. Reyes
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Irish Coleen A. Asin
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Wataru Mitsunari
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Faculty of Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Mohammad Mosleh Uddin
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
- Department of Biochemistry and Molecular Biology (BMB), Faculty of Life Science, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, Bangladesh
| | - Yu Sekii
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama, Ehime, Japan
| |
Collapse
|
6
|
Wan-Norafikah O, Hasani NAH, Nabila AB, Najibah I, Nurjuani AHH, Masliana M, Aliah-Diyanah S, Alia-Yasmin Z, Yasmin-Zafirah I, Farah-Farhani A, Azahari AH, Faiqah-Nadhirah M, Nurul-Azira MS. Profiling Insecticide Susceptibility of Aedes Albopictus From Hot Springs in Selangor, Malaysia. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2023; 39:183-191. [PMID: 37796735 DOI: 10.2987/23-7125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The present study establishes insecticide susceptibility profiles of Aedes albopictus adult populations from 4 hot springs in Selangor, Malaysia, against 7 pyrethroids through an adult mosquito susceptibility bioassay. All Ae. albopictus populations were subjected to a 1-h exposure to each pyrethroid following the World Health Organization. The mortalities were recorded at 60 min of exposure to bifenthrin, 30 min for other pyrethroids, and 24 h posttreatment for all pyrethroids. Complete mortalities were observed upon exposures to the pyrethroids under 60 min and at 24 h posttreatment, excluding permethrin 0.25%, alpha-cypermethrin 0.05%, and bifenthrin 0.2%. These findings indicated that permethrin, deltamethrin, lambda-cyhalothrin, cyfluthrin, and etofenprox possess the recommended pyrethroid adulticide active ingredients that could be applied in vector control programs at these hot springs in the future. Nevertheless, the application of pyrethroids should be carefully monitored in rotation with other insecticide classes, including organophosphates and carbamates to avoid the development of insecticide resistance among mosquito vectors towards all insecticides. Although there were no reported cases of Aedes-borne pathogens at these hot springs to date, the current study results could still assist the Malaysian health authorities in determining approaches to control Aedes populations in these hot springs, if required in the future.
Collapse
|
7
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
8
|
Heinig-Hartberger M, Hellhammer F, Zöller DDJA, Dornbusch S, Bergmann S, Vocadlova K, Junglen S, Stern M, Lee KZ, Becker SC. Culex Y Virus: A Native Virus of Culex Species Characterized In Vivo. Viruses 2023; 15:235. [PMID: 36680275 PMCID: PMC9863036 DOI: 10.3390/v15010235] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Mosquitoes are vectors of various pathogens that cause diseases in humans and animals. To prevent the outbreak of mosquito-borne diseases, it is essential to control vector populations, as treatment or vaccination for mosquito-borne diseases are often unavailable. Insect-specific viruses (ISVs) have previously been described as being potentially helpful against arboviral disease outbreaks. In this study, we present the first in vivo characterization of the ISV Culex Y virus (CYV). CYV was first isolated from free-living Culex pipiens mosquitoes in 2010; then, it was found in several mosquito cell lines in a further study in 2018. For mammalian cells, we were able to confirm that CYV does not replicate as it was previously described. Additionally, we found that CYV does not replicate in honey bees or locusts. However, we detected replication in the Culex pipiens biotype molestus, Aedes albopictus, and Drosophila melanogaster, thus indicating dipteran specificity. We detected significantly higher mortality in Culex pipiens biotype molestus males and Drosophila melanogaster, but not in Aedes albopictus and female Culex pipiens biotype molestus. CYV could not be transmitted transovarially to offspring, but we detected venereal transmission as well as CYV in mosquitos' saliva, indicating that an oral route of infection would also be possible. CYV's dipteran specificity, transmission routes, and killing effect with respect to Culex males may be used as powerful tools with which to destabilize arbovirus vector populations in the future.
Collapse
Affiliation(s)
- Mareike Heinig-Hartberger
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Katerina Vocadlova
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
9
|
Colmant AMG, Charrel RN, Coutard B. Jingmenviruses: Ubiquitous, understudied, segmented flavi-like viruses. Front Microbiol 2022; 13:997058. [PMID: 36299728 PMCID: PMC9589506 DOI: 10.3389/fmicb.2022.997058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
Jingmenviruses are a group of viruses identified recently, in 2014, and currently classified by the International Committee on Taxonomy of Viruses as unclassified Flaviviridae. These viruses closely related to flaviviruses are unique due to the segmented nature of their genome. The prototype jingmenvirus, Jingmen tick virus (JMTV), was discovered in Rhipicephalus microplus ticks collected from China in 2010. Jingmenviruses genomes are composed of four to five segments, encoding for up to seven structural proteins and two non-structural proteins, both of which display strong similarities with flaviviral non-structural proteins (NS2B/NS3 and NS5). Jingmenviruses are currently separated into two phylogenetic clades. One clade includes tick- and vertebrate-associated jingmenviruses, which have been detected in ticks and mosquitoes, as well as in humans, cattle, monkeys, bats, rodents, sheep, and tortoises. In addition to these molecular and serological detections, over a hundred human patients tested positive for jingmenviruses after developing febrile illness and flu-like symptoms in China and Serbia. The second phylogenetic clade includes insect-associated jingmenvirus sequences, which have been detected in a wide range of insect species, as well as in crustaceans, plants, and fungi. In addition to being found in various types of hosts, jingmenviruses are endemic, as they have been detected in a wide range of environments, all over the world. Taken together, all of these elements show that jingmenviruses correspond exactly to the definition of emerging viruses at risk of causing a pandemic, since they are already endemic, have a close association with arthropods, are found in animals in close contact with humans, and have caused sporadic cases of febrile illness in multiple patients. Despite these arguments, the vast majority of published data is from metagenomics studies and many aspects of jingmenvirus replication remain to be elucidated, such as their tropism, cycle of transmission, structure, and mechanisms of replication and restriction or epidemiology. It is therefore crucial to prioritize jingmenvirus research in the years to come, to be prepared for their emergence as human or veterinary pathogens.
Collapse
|
10
|
Vertical and Horizontal Transmission of Cell Fusing Agent Virus in Aedes aegypti. Appl Environ Microbiol 2022; 88:e0106222. [PMID: 36036577 PMCID: PMC9499017 DOI: 10.1128/aem.01062-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell fusing agent virus (CFAV) is an insect-specific flavivirus (ISF) found in Aedes aegypti mosquitoes. ISFs have demonstrated the ability to modulate the infection or transmission of arboviruses such as dengue, West Nile, and Zika viruses. It is thought that vertical transmission is the main route for ISF maintenance in nature. This has been observed with CFAV, but there is evidence of horizontal and venereal transmission in other ISFs. Understanding the route of transmission can inform strategies to spread ISFs to vector populations as a method of controlling pathogenic arboviruses. We crossed individually reared male and female mosquitoes from both a naturally occurring CFAV-positive Ae. aegypti colony and its negative counterpart to provide information on maternal, paternal, and horizontal transmission. RT-PCR was used to detect CFAV in individual female pupal exuviae and was 89% sensitive, but only 42% in male pupal exuviae. This is a possible way to screen individuals for infection without destroying the adults. Female-to-male horizontal transmission was not observed during this study. However, there was a 31% transmission rate from mating pairs of CFAV-positive males to negative female mosquitoes. Maternal vertical transmission was observed with a filial infection rate of 93%. The rate of paternal transmission was 85% when the female remained negative, 61% when the female acquired CFAV horizontally, and 76% overall. Maternal and paternal transmission of CFAV could allow the introduction of this virus into wild Ae. aegypti populations through male or female mosquito releases, and thus provides a potential strategy for ISF-derived arbovirus control. IMPORTANCE Insect-specific flaviviruses (ISFs), are a group of nonpathogenic flaviviruses that only infect insects. ISFs can have a high prevalence in mosquito populations, but their transmission routes are not well understood. The results of this study confirm maternal transmission of cell fusing agent virus (CFAV) and demonstrate that paternal transmission is also highly efficient. Horizontal transmission of CFAV was also observed, aided by evaluation of the pupal infection status before mating with an infected individual. This technique of detecting infection in discarded pupae exuviae has not been evaluated previously and will be a useful tool for others in the field of studying viral transmission in mosquitoes. Identifying these routes of transmission provides information about how CFAV could be maintained in wild populations of mosquitoes and can aid future studies focusing on interactions of CFAV with their hosts and other viruses that infect mosquitoes.
Collapse
|
11
|
Li Z, Ji C, Cheng J, Åbrink M, Shen T, Kuang X, Shang Z, Wu J. Aedes albopictus salivary proteins adenosine deaminase and 34k2 interact with human mast cell specific proteases tryptase and chymase. Bioengineered 2022; 13:13752-13766. [PMID: 35746853 PMCID: PMC9275959 DOI: 10.1080/21655979.2022.2081652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When mosquitoes probe to feed blood, they inoculate a mixture of salivary molecules into vertebrate hosts’ skin causing acute inflammatory reactions where mast cell-derived mediators are involved. Mosquito saliva contains many proteins with largely unknown biological functions. Here, two Aedes albopictus salivary proteins – adenosine deaminase (alADA) and al34k2 – were investigated for their immunological impact on mast cells and two mast cell-specific proteases, the tryptase and the chymase. Mouse bone marrow-derived mast cells were challenged with increased concentrations of recombinant alADA or al34k2 for 1, 3, and 6 h, and to measure mast cell activation, the activity levels of β-hexosaminidase and tryptase and secretion of IL-6 were evaluated. In addition, a direct interaction between alADA or al34k2 with tryptase or chymase was investigated. Results show that bone marrow-derived mast cells challenged with 10 μg/ml of alADA secreted significant levels of β-hexosaminidase, tryptase, and IL-6. Furthermore, both al34k2 and alADA are cut by human tryptase and chymase. Interestingly, al34k2 dose-dependently enhance enzymatic activity of both tryptase and chymase. In contrast, while alADA enhances the enzymatic activity of tryptase, chymase activity was inhibited. Our finding suggests that alADA and al34k2 via interaction with mast cell-specific proteases tryptase and chymase modulate mast cell-driven immune response in the local skin microenvironment. alADA- and al34k2-mediated modulation of tryptase and chymase may also recruit more inflammatory cells and induce vascular leakage, which may contribute to the inflammatory responses at the mosquito bite site.
Collapse
Affiliation(s)
- Zhiqiang Li
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Cejuan Ji
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China.,Department of Medical Technology, Guiyang Healthcare Vocational University, Guiyang, Guizhou, China
| | - Jinzhi Cheng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tao Shen
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaoyuan Kuang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhengling Shang
- Department of Immunology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiahong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, College of Basic Medicine, Guizhou Medical University, Department of Medical Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|