1
|
Chakraborty S, Lyons LA, Winata F, Mateus-Pinilla N, Smith RL. Methods of active surveillance for hard ticks and associated tick-borne pathogens of public health importance in the contiguous United States: a comprehensive systematic review. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:675-689. [PMID: 40111123 DOI: 10.1093/jme/tjaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Tick-borne diseases in humans and animals have increased prevalence across the United States. To understand risk factors underlying tick-borne diseases it is useful to conduct regular surveillance and monitoring of ticks and the pathogens they carry, in a sustained and effective manner. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, this study aims to summarize the previously used methods for active surveillance of ticks and tick-borne pathogens, identify the existing knowledge gaps in ongoing surveillance, and highlight and guide the mechanisms required to inform those gaps for more effective and sustainable future surveillance efforts. After screening 2,500 unique studies between 1944 and 2018, we found 646 articles that performed active surveillance of hard ticks and/or their associated tick-borne pathogens of public health importance within the United States. An additional 103 articles were included for the 2019 to 2023 period. Active surveillance has been performed in ~42% of the counties (1944 to 2018) and ~23% of the counties (2019 to 2023) within the contiguous US, and states with the most coverage are in the Northeast, Upper Midwest, and along the West coast. The most reported tick was Ixodes scapularis (195 studies) and most commonly reported pathogen was Borrelia burgdorferi (143 studies). Overall, surveillance efforts have increased and become more diversified, and methods of tick and tick-borne pathogens testing have undergone changes, but those efforts are mainly concentrated in focal regions of a county. Future surveillance efforts should follow Centers for Disease Control and Prevention guidelines and target areas of United States with scarce reports of active surveillance and build collaborations and resources to increase surveillance.
Collapse
Affiliation(s)
- Sulagna Chakraborty
- Department of Veterinary Clinical Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Lee Ann Lyons
- Department of Pathobiology, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Fikriyah Winata
- Department of Geography, Texas A&M University, College Station, TX, USA
| | - Nohra Mateus-Pinilla
- Department of Pathobiology, University of Illinois Urbana Champaign, Urbana, IL, USA
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois Urbana Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Musnoff BL, Cuadera MKQ, Birney MR, Zipper L, Nicholson W, Ayres B, Cervantes K, Woell D, Occi JL. The first record of an established population of Amblyomma maculatum (Acari: Ixodidae) in New Jersey, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1081-1085. [PMID: 38712431 DOI: 10.1093/jme/tjae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Amblyomma maculatum Koch, the Gulf Coast tick, is expanding northward from its original range in the southeastern United States. In 2013, its most northern collection was in Delaware. Amblyomma maculatum has since been found in Connecticut, Illinois, and New York. It is the vector of the human pathogen Rickettsia parkeri, the causative agent of R. parkeri rickettsiosis. We report the first finding of an established population of A. maculatum in Salem County, NJ, with a R. parkeri infection prevalence rate of 23.8%. Our finding of A. maculatum is consistent with other recent findings in the northeastern United States in that specimens were found in open areas devoid of tree canopy. This discovery demonstrates the importance of tick surveillance in order to identify expanding tick populations and the pathogens they may transmit.
Collapse
Affiliation(s)
- Brandon L Musnoff
- Salem County Mosquito Control, 900 RT 45, Building #4, Woodstown, NJ 08098, USA
| | | | - Matthew R Birney
- New Jersey Department of Health, Communicable Disease Service, Trenton, NJ, USA
| | - Lara Zipper
- New Jersey Department of Health, Communicable Disease Service, Trenton, NJ, USA
| | - William Nicholson
- Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Mail Stop H17-3, Atlanta, GA 30333, USA
| | - Bryan Ayres
- Centers for Disease Control and Prevention, Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Mail Stop H17-3, Atlanta, GA 30333, USA
| | - Kim Cervantes
- New Jersey Department of Health, Communicable Disease Service, Trenton, NJ, USA
| | - Dana Woell
- New Jersey Department of Health, Public Health and Environmental Labs, 3 Schwarzkopf Drive, Ewing Twp., NJ 08628, USA
| | - James L Occi
- New Jersey Department of Health, Public Health and Environmental Labs, 3 Schwarzkopf Drive, Ewing Twp., NJ 08628, USA
| |
Collapse
|
3
|
Rodríguez-Escolar I, Hernández-Lambraño RE, Sánchez-Agudo JÁ, Collado-Cuadrado M, Savić S, Žekić Stosic M, Marcic D, Morchón R. Prediction and validation of potential transmission risk of Dirofilaria spp. infection in Serbia and its projection to 2080. Front Vet Sci 2024; 11:1352236. [PMID: 38634104 PMCID: PMC11022963 DOI: 10.3389/fvets.2024.1352236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Animal and human dirofilariosis is a vector-borne zoonotic disease, being one of the most important diseases in Europe. In Serbia, there are extensive studies reporting the presence of Dirofilaria immitis and D. repens, mainly in the north of the country, where the human population is concentrated and where there is a presence of culicid mosquitoes that transmit the disease. Ecological niche modeling (ENM) has proven to be a very good tool to predict the appearance of parasitosis in very diverse areas, with distant orography and climatologies at a local, continental, and global level. Taking these factors into account, the objective of this study was to develop an environmental model for Serbia that reflects the suitability of the ecological niche for the risk of infection with Dirofilaria spp. with which the predictive power of existing studies is improved. A wide set of variables related to the transmission of the parasite were used. The potential number of generations of D. immitis and the ecological niche modeling method (ENM) were used to estimate the potential distribution of suitable habitats for Culex pipiens. The highest probability of infection risk was located in the north of the country, and the lowest in the southern regions, where there is more orographic relief and less human activity. The model was corroborated with the location of D. immitis-infected dogs, with 89.28% of the country having a high probability of infection. In addition, it was observed that the percentage of territory with optimal habitat for Culex spp. will increase significantly between now and 2080. This new model can be used as a tool in the control and prevention of heartworm disease in Serbia, due to its high predictive power, and will serve to alert veterinary and health personnel of the presence of the disease in the animal and human population, respectively.
Collapse
Affiliation(s)
- Iván Rodríguez-Escolar
- Zoonotic Diseases and One Health Group, Biomedical Research Institute of Salamanca (IBSAL), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Ricardo Enrique Hernández-Lambraño
- Biodiversity, Human Diversity and Conservation Biology Group, University of Salamanca, Salamanca, Spain
- Center for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, Salamanca, Spain
| | - José Ángel Sánchez-Agudo
- Biodiversity, Human Diversity and Conservation Biology Group, University of Salamanca, Salamanca, Spain
- Center for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, Salamanca, Spain
| | - Manuel Collado-Cuadrado
- Zoonotic Diseases and One Health Group, Biomedical Research Institute of Salamanca (IBSAL), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Sara Savić
- Scientific Veterinary Institute "Novi Sad", University of Novi Sad, Novi Sad, Serbia
| | - Marina Žekić Stosic
- Scientific Veterinary Institute "Novi Sad", University of Novi Sad, Novi Sad, Serbia
| | - Doroteja Marcic
- Center for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, Salamanca, Spain
| | - Rodrigo Morchón
- Zoonotic Diseases and One Health Group, Biomedical Research Institute of Salamanca (IBSAL), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
- Center for Environmental Studies and Rural Dynamization (CEADIR), University of Salamanca, Salamanca, Spain
| |
Collapse
|
4
|
Chakraborty S, Kopsco H, Evans C, Mateus-Pinilla N, Smith R. Assessing knowledge gaps and empowering Extension workers in Illinois with information on ticks and tickborne diseases through KAP surveys. Heliyon 2024; 10:e25789. [PMID: 38352775 PMCID: PMC10862665 DOI: 10.1016/j.heliyon.2024.e25789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/19/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Tickborne diseases (TBDs) are increasingly prevalent in Illinois and the Upper Midwest region. People who work in occupations that require time outdoors in agricultural or natural settings, such as some Extension workers, are at risk of tick bites and TBDs. Additionally, Extension workers are often a primary source of information about ticks and TBDs in rural communities. However, there is limited information on the level of awareness about ticks and TBDs in the Extension community. The goals of this study were to sequentially i) determine the baseline awareness of Extension workers in Illinois about ticks and TBDs using a knowledge, attitudes, and practices (KAP) survey tool, ii) provide comprehensive training on ticks and TBDs to this demographic, and iii) measure the uptake of knowledge after the training intervention through a post-training survey. The study period was from June 2022 until May 2023. We received 233 pre-training and 93 paired post-training survey responses. Most survey respondents were Extension volunteers, identified as women, and were over 50 years old. Knowledge about ticks and TBDs varied. We identified several gaps in their current tick awareness, most importantly, in tick prevention measures, tick identification, and TBDs in general. TBD knowledge, attitude, and practice scores all significantly improved after training (p < 0.001), with a mean difference of 10.47, 1.49, and 2.64 points, respectively. Additionally, both Extension professionals (79.2 %) and Extension volunteers (66.7 %) were more likely to feel confident in engaging with their stakeholders on ticks and TBDs after participating in training. Poisson models revealed that higher attitude and practice scores and greater self-reported knowledge were the factors most significantly associated with higher TBD knowledge. We found that greater concern for ticks and TBD (attitudes) and adherence to science-based prevention and management methods (practices) were also associated with higher knowledge scores. To our knowledge, this is the first study in Illinois to capture Extension workers' awareness of ticks and TBDs. The results highlight Extension workers' interest in filling knowledge gaps through learning, and the importance of training Extension workers to disseminate reliable and updated information on ticks and TBDs to their constituents, a critical step in preventing TBDs.
Collapse
Affiliation(s)
- S. Chakraborty
- Program in Ecology, Evolution & Conservation Biology, University of Illinois, Urbana Champaign, 505 S Goodwin Avenue, Urbana, IL, 61801, USA
| | - H. Kopsco
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 10th floor Schermerhorn Ext., 1200 Amsterdam Ave, New York, NY, 10027, USA
- Prairie Research Institute, Illinois Natural History Survey, University of Illinois, Urbana Champaign, 1816 S Oak, Champaign, IL, 61820, USA
| | - C. Evans
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana Champaign, 354 State Highway 145 N, Simpson, IL, 62985, USA
| | - N. Mateus-Pinilla
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana Champaign, 354 State Highway 145 N, Simpson, IL, 62985, USA
- Prairie Research Institute, Illinois Natural History Survey, University of Illinois, Urbana Champaign, 1816 S Oak, Champaign, IL, 61820, USA
| | - R.L. Smith
- Department of Pathobiology, University of Illinois, Urbana Champaign, 2001 S Lincoln Ave, Urbana, IL, 61802, USA
| |
Collapse
|
5
|
Deshpande G, Beetch JE, Heller JG, Naqvi OH, Kuhn KG. Assessing the Influence of Climate Change and Environmental Factors on the Top Tick-Borne Diseases in the United States: A Systematic Review. Microorganisms 2023; 12:50. [PMID: 38257877 PMCID: PMC10821204 DOI: 10.3390/microorganisms12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In the United States (US), tick-borne diseases (TBDs) have more than doubled in the past fifteen years and are a major contributor to the overall burden of vector-borne diseases. The most common TBDs in the US-Lyme disease, rickettsioses (including Rocky Mountain spotted fever), and anaplasmosis-have gradually shifted in recent years, resulting in increased morbidity and mortality. In this systematic review, we examined climate change and other environmental factors that have influenced the epidemiology of these TBDs in the US while highlighting the opportunities for a One Health approach to mitigating their impact. We searched Medline Plus, PUBMED, and Google Scholar for studies focused on these three TBDs in the US from January 2018 to August 2023. Data selection and extraction were completed using Covidence, and the risk of bias was assessed with the ROBINS-I tool. The review included 84 papers covering multiple states across the US. We found that climate, seasonality and temporality, and land use are important environmental factors that impact the epidemiology and patterns of TBDs. The emerging trends, influenced by environmental factors, emphasize the need for region-specific research to aid in the prediction and prevention of TBDs.
Collapse
Affiliation(s)
| | | | | | | | - Katrin Gaardbo Kuhn
- Department of Biostatistics & Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.D.); (J.E.B.); (J.G.H.); (O.H.N.)
| |
Collapse
|
6
|
Kache PA, Bron GM, Zapata-Ramirez S, Tsao JI, Bartholomay LC, Paskewitz SM, Diuk-Wasser MA, Fernandez MDP. Evaluating spatial and temporal patterns of tick exposure in the United States using community science data submitted through a smartphone application. Ticks Tick Borne Dis 2023; 14:102163. [PMID: 37001417 DOI: 10.1016/j.ttbdis.2023.102163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
Research initiatives that engage the public (i.e., community science or citizen science) increasingly provide insights into tick exposures in the United States. However, these data have important caveats, particularly with respect to reported travel history and tick identification. Here, we assessed whether a smartphone application, The Tick App, provides reliable and novel insights into tick exposures across three domains - travel history, broad spatial and temporal patterns of species-specific encounters, and tick identification. During 2019-2021, we received 11,424 tick encounter submissions from across the United States, with nearly all generated in the Midwest and Northeast regions. Encounters were predominantly with human hosts (71%); although one-fourth of ticks were found on animals. Half of the encounters (51%) consisted of self-reported peri‑domestic exposures, while 37% consisted of self-reported recreational exposures. Using phone-based location services, we detected differences in travel history outside of the users' county of residence along an urbanicity gradient. Approximately 75% of users from large metropolitan and rural counties had travel out-of-county in the four days prior to tick detection, whereas an estimated 50-60% of users from smaller metropolitan areas did. Furthermore, we generated tick encounter maps for Dermacentor variabilis and Ixodes scapularis that partially accounted for travel history and overall mirrored previously published species distributions. Finally, we evaluated whether a streamlined three-question sequence (on tick size, feeding status, and color) would inform a simple algorithm to optimize image-based tick identification. Visual aides of tick coloration and size engaged and guided users towards species and life stage classification moderately well, with 56% of one-time submitters correctly selecting photos of D. variabilis adults and 76% of frequent-submitters correctly selecting photos of D. variabilis adults. Together, these results indicate the importance of bolstering the use of smartphone applications to engage community scientists and complement other active and passive tick surveillance systems.
Collapse
Affiliation(s)
- Pallavi A Kache
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York City, NY 10027, USA.
| | - Gebbiena M Bron
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53706, USA; Quantitative Veterinary Epidemiology, Wageningen University & Research, Droevendaalsesteeg 1, PB 6708, Lelystad, the Netherlands
| | - Sandra Zapata-Ramirez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York City, NY 10027, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Rd #13, East Lansing, MI 48824, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Dr, Madison, WI 53706, USA
| | - Maria A Diuk-Wasser
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York City, NY 10027, USA
| | - Maria Del Pilar Fernandez
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York City, NY 10027, USA; Paul G. Allen School for Global Animal Health, Washington State University, 1155 NE College Ave, Pullman, WA 99164, USA
| |
Collapse
|
7
|
Cuervo PF, Artigas P, Lorenzo-Morales J, Bargues MD, Mas-Coma S. Ecological Niche Modelling Approaches: Challenges and Applications in Vector-Borne Diseases. Trop Med Infect Dis 2023; 8:tropicalmed8040187. [PMID: 37104313 PMCID: PMC10141209 DOI: 10.3390/tropicalmed8040187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Vector-borne diseases (VBDs) pose a major threat to human and animal health, with more than 80% of the global population being at risk of acquiring at least one major VBD. Being profoundly affected by the ongoing climate change and anthropogenic disturbances, modelling approaches become an essential tool to assess and compare multiple scenarios (past, present and future), and further the geographic risk of transmission of VBDs. Ecological niche modelling (ENM) is rapidly becoming the gold-standard method for this task. The purpose of this overview is to provide an insight of the use of ENM to assess the geographic risk of transmission of VBDs. We have summarised some fundamental concepts and common approaches to ENM of VBDS, and then focused with a critical view on a number of crucial issues which are often disregarded when modelling the niches of VBDs. Furthermore, we have briefly presented what we consider the most relevant uses of ENM when dealing with VBDs. Niche modelling of VBDs is far from being simple, and there is still a long way to improve. Therefore, this overview is expected to be a useful benchmark for niche modelling of VBDs in future research.
Collapse
Affiliation(s)
- Pablo Fernando Cuervo
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
- Correspondence:
| | - Patricio Artigas
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| | - Jacob Lorenzo-Morales
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Av. Astrofísico Fco. Sánchez s/n, 38203 La Laguna, Canary Islands, Spain
| | - María Dolores Bargues
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| | - Santiago Mas-Coma
- Departamento de Parasitologia, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIII, C/Monforte de Lemos 3-5. Pabellón 11, Planta 0, 28029 Madrid, Madrid, Spain
| |
Collapse
|
8
|
Lippi CA, Canfield S, Espada C, Gaff HD, Ryan SJ. Estimating the distribution of Oryzomys palustris, a potential key host in expanding rickettsial tick-borne disease risk. Ecosphere 2023; 14:e4445. [PMID: 39211416 PMCID: PMC11359945 DOI: 10.1002/ecs2.4445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 03/18/2023] Open
Abstract
Increasingly, geographic approaches to assessing the risk of tick-borne diseases are being used to inform public health decision-making and surveillance efforts. The distributions of key tick species of medical importance are often modeled as a function of environmental factors, using niche modeling approaches to capture habitat suitability. However, this is often disconnected from the potential distribution of key host species, which may play an important role in the actual transmission cycle and risk potential in expanding tick-borne disease risk. Using species distribution modeling, we explore the potential geographic range of Oryzomys palustris, the marsh rice rat, which has been implicated as a potential reservoir host of Rickettsia parkeri, a pathogen transmitted by the Gulf Coast tick (Amblyomma maculatum) in the southeastern United States. Due to recent taxonomic reclassification of O. palustris subspecies, we reclassified geolocated collections records into the newer clade definitions. We modeled the distribution of the two updated clades in the region, establishing for the first time, range maps and distributions of these two clades. The predicted distribution of both clades indicates a largely Gulf and southeastern coastal distribution. Estimated suitable habitat for O. palustris extends into the southern portion of the Mid-Atlantic region, with a discontinuous, limited area of suitability in coastal California. Broader distribution predictions suggest potential incursions along the Mississippi River. We found considerable overlap of predicted O. palustris ranges with the distribution of A. maculatum, indicating the potential need for extended surveillance efforts in those overlapping areas and attention to the role of hosts in transmission cycles.
Collapse
Affiliation(s)
- Catherine A. Lippi
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Samuel Canfield
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Christina Espada
- Department of Biology, Old Dominion University, Norfolk, Virginia, USA
| | - Holly D. Gaff
- Department of Biology, Old Dominion University, Norfolk, Virginia, USA
| | - Sadie J. Ryan
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Kopsco HL, Gronemeyer P, Mateus-Pinilla N, Smith RL. Current and Future Habitat Suitability Models for Four Ticks of Medical Concern in Illinois, USA. INSECTS 2023; 14:213. [PMID: 36975898 PMCID: PMC10059838 DOI: 10.3390/insects14030213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The greater U.S. Midwest is on the leading edge of tick and tick-borne disease (TBD) expansion, with tick and TBD encroachment into Illinois occurring from both the northern and the southern regions. To assess the historical and future habitat suitability of four ticks of medical concern within the state, we fit individual and mean-weighted ensemble species distribution models for Ixodes scapularis, Amblyomma americanum, Dermacentor variabilis, and a newly invading species, Amblyomma maculatum using a variety of landscape and mean climate variables for the periods of 1970-2000, 2041-2060, and 2061-2080. Ensemble model projections for the historical climate were consistent with known distributions of each species but predicted the habitat suitability of A. maculatum to be much greater throughout Illinois than what known distributions demonstrate. The presence of forests and wetlands were the most important landcover classes predicting the occurrence of all tick species. As the climate warmed, the expected distribution of all species became strongly responsive to precipitation and temperature variables, particularly precipitation of the warmest quarter and mean diurnal range, as well as proximity to forest cover and water sources. The suitable habitat for I. scapularis, A. americanum, and A. maculatum was predicted to significantly narrow in the 2050 climate scenario and then increase more broadly statewide in the 2070 scenario but at reduced likelihoods. Predicting where ticks may invade and concentrate as the climate changes will be important to anticipate, prevent, and treat TBD in Illinois.
Collapse
Affiliation(s)
- Heather L. Kopsco
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Peg Gronemeyer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Nohra Mateus-Pinilla
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Rebecca L. Smith
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
- Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
10
|
Wimms C, Aljundi E, Halsey SJ. Regional dynamics of tick vectors of human disease. CURRENT OPINION IN INSECT SCIENCE 2023; 55:101006. [PMID: 36702303 DOI: 10.1016/j.cois.2023.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The expansion of tick-borne diseases challenges ecologists, epidemiologists, and public health professionals to understand the mechanisms underlying its emergence. The vast majority of tick-borne disease research emphasizes Ixodes spp. and Borrelia burgdorferi, with less known about other Ixodidae ticks that serve as vectors for an increasing number of pathogens of public health concern. Here, we review and discuss the current knowledge of tick and tick-borne pathogens in an undersurveilled region of the United States. We discuss how landscape shifts may potentially influence tick vector dynamics and expansion. We also discuss the impact of climate change on the phenology of ticks and subsequent disease transmission. Increased efforts in the Central Plains to conduct basic science will help understand the patterns of tick distribution and pathogen prevalence. It is crucial to develop intensive datasets that may be used to generate models that can aid in developing mitigation strategies.
Collapse
Affiliation(s)
- Chantelle Wimms
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Evan Aljundi
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Samniqueka J Halsey
- Applied Computational Ecology Lab, School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|