1
|
Ali AS, Iqbal A, Kamalanathan T, Gnanaprakasam AR, Shajahan S, Alsadeq MH, Marzooqi MMA, Hamdan M, Al-Deeb MA. The southern house mosquito Culex quinquefasciatus in Abu Dhabi, UAE, is developing resistance to deltamethrin insecticide. Sci Rep 2025; 15:3411. [PMID: 39870794 PMCID: PMC11772883 DOI: 10.1038/s41598-025-87843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025] Open
Abstract
Culex quinquefasciatus is a widely spread mosquito species that poses a significant public health threat in many countries. This insect vector is present in the United Arab Emirates (UAE), yet no studies have been conducted on its resistance to any insecticide group. Research shows that controlling mosquitoes is crucial to eliminating mosquito-borne diseases, but when these vectors develop insecticide resistance, the situation can escalate dangerously out of control. This study aimed to identify a knockdown resistance (kdr) mutation L1014F using molecular tools. Additionally, it aimed to assess deltamethrin resistance using the Centers for Disease Control and Prevention (CDC) bottle bioassay. We screened Cx. quinquefasciatus adults (N = 174) for the presence of the mutation using allele-specific PCR (AS-PCR) and DNA sequencing. We detected the mutation and found the kdr allele in all the sampled locations. Furthermore, the CDC bottle bioassay revealed deltamethrin resistance from only one sampling location. To our knowledge, this is the first report of insecticide resistance in Cx. quinquefasciatus in the UAE. Our findings show the need for continued insecticide resistance monitoring for effective mosquito control in the UAE.
Collapse
Affiliation(s)
- Amgd Sayed Ali
- Biology Department, UAE University, P.O. Box 15551, Al Ain, UAE
| | - Asim Iqbal
- Pest Control Department, Abu Dhabi Public Health Center (ADPHC), P.O. Box 5674, Abu Dhabi, UAE
| | | | | | - Sabu Shajahan
- Pest Control Department, Abu Dhabi Public Health Center (ADPHC), P.O. Box 5674, Abu Dhabi, UAE
| | - Mohammad Hamad Alsadeq
- Pest Control Department, Abu Dhabi Public Health Center (ADPHC), P.O. Box 5674, Abu Dhabi, UAE
| | | | - Mohamad Hamdan
- Biology Department, UAE University, P.O. Box 15551, Al Ain, UAE
| | | |
Collapse
|
2
|
Congiu I, Cugini E, Smedile D, Romiti F, Iurescia M, Donati V, De Liberato C, Battisti A. Evaluation of Protocols for DNA Extraction from Individual Culex pipiens to Assess Pyrethroid Resistance Using Genotyping Real-Time Polymerase Chain Reaction. Methods Protoc 2024; 7:106. [PMID: 39728626 DOI: 10.3390/mps7060106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Culex pipiens is a major vector of pathogens, including West Nile and Usutu viruses, that poses a significant public health risk. Monitoring pyrethroid resistance in mosquito populations is essential for effective vector control. This study aims to evaluate four DNA extraction protocols-QIAsymphony, DNAzol® Direct reagent, PrepMan® Ultra Sample Preparation Reagent (USPR), and Chelex® 100-to identify an optimal method to extract DNA from individual Culex pipiens, as part of a high-throughput surveillance of pyrethroid resistance using Real-Time Genotyping PCR. The target is the L1014F mutation in the voltage-sensitive sodium channel (VSSC) gene, which confers knockdown (kdr) resistance to pyrethroids. Mosquitoes were collected from wintering and summer habitats in Lazio and Tuscany, Italy, and DNA was extracted using the four methods. The quality, quantity, extraction time, and cost of the DNA were compared among the various methods. The PrepMan® USPR protocol was the most efficient, providing high-quality DNA with a 260/280 purity ratio within the optimal range at the lowest cost and in a short time. This method also demonstrated the highest amplification success rate (77%) in subsequent real-time PCR assays, making it the preferred protocol for large-scale genotyping studies.
Collapse
Affiliation(s)
- Ilaria Congiu
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Elisa Cugini
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Daniele Smedile
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Federico Romiti
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Manuela Iurescia
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Valentina Donati
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Claudio De Liberato
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| | - Antonio Battisti
- General Diagnostic Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", 00178 Rome, Italy
| |
Collapse
|
3
|
Hafez AM. First comprehensive report of the resistance of Culex quinquefasciatus Say (Diptera: Culicidae) to commonly used insecticides in Riyadh, Saudi Arabia. Heliyon 2022; 9:e12709. [PMID: 36647349 PMCID: PMC9840124 DOI: 10.1016/j.heliyon.2022.e12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The mosquito Culex quinquefasciatus is a vector of various pathogens including West Nile virus, Saint Louis encephalitis virus, and Western equine encephalitis virus. Insecticides are the main tools for Cx. quinquefasciatus control, but this overreliance on chemical tools has led to the development of resistance to many insecticides in this important insect vector. The resistance of eight field populations of Cx. quinquefasciatus to 10 commonly used insecticides was evaluated. Based on the resistance ratios (RRs), the adults of Cx. quinquefasciatus field populations displayed susceptibility to the organophosphates (OPs) except Al-Masanie adults which exhibited low resistance to fenitrothion (RR50 = 3.62). Conversely, the mosquitoes exhibited susceptibility, low resistance, and moderate resistance to the pyrethroids alpha-cypermethrin (RR = 0.59-2.56), bifenthrin (RR = 0.59-2.19), deltamethrin (RR = 0.60-7.07), cypermethrin (RR = 0.60-2.66), and cyfluthrin (RR = 0.58-2.39). At the larval stage, Cx. quinquefasciatus field populations displayed susceptibility to low resistance to the OPs chlorpyrifos (RR = 0.03-1.75), malathion (RR = 0.19-3.42), fenitrothion (RR = 0.11-2.78), and pirimiphos-methyl (RR = 0.08-1.15). Although these results in Cx. quinquefasciatus field populations indicated that the OPs and pyrethroids maintained high efficacy in controlling this species in the geographical area of this study, these findings should be utilized wisely to avoid any potential negative effects on human health and environmental safety attributable to the application of these broad-spectrum conventional insecticides. However, these findings provide a solid basis for decision-making for Cx. quinquefasciatus integrated vector management programs.
Collapse
|
4
|
Subahar R, Aulia AP, Yulhasri Y, Felim RR, Susanto L, Winita R, El Bayani GF, Adugna T. Assessment of susceptible Culex quinquefasciatus larvae in Indonesia to different insecticides through metabolic enzymes and the histopathological midgut. Heliyon 2022; 8:e12234. [PMID: 36590519 PMCID: PMC9798163 DOI: 10.1016/j.heliyon.2022.e12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Filariasis and virus diseases that are transmitted by Culex quinquefasciatus are still a global health problem. Control of mosquito vectors with synthetic insecticides causes resistance to these mosquitoes to insecticides so that detection of susceptibility of the mosquito larval stage to insecticides is important for evaluating mosquito control programs. The aim of this study was to evaluate the susceptibility of wild-caught Cx. quinquefasciatus larvae in Jakarta, Indonesia, following exposure to temephos, malathion, cypermethrin, and deltamethrin; this was done by examining the detoxifying enzyme activities and histological damage to the larval midgut. Cx. quinquefasciatus larvae were collected from five fields in Jakarta and exposed for 24 h to temephos (1.25, 6.25, 31.25, and 156.25 ppm), malathion (0.5 ppm), cypermethrin (0.25 ppm), and deltamethrin (0.35 ppm). The larvae were then examined for acetylcholinesterase (AChE), glutathione S-transferase (GST), and oxidase activities using biochemical methods. Histological damage to the larval midgut was examined using routine histopathological methods and transmission electron microscopy (TEM). After 24 h, temephos and deltamethrin led to 100% mortality in the Cx. quinquefasciatus larvae. Temephos and malathion significantly inhibited the activity of AChE, while cypermethrin and deltamethrin significantly inhibited oxidase activity. Histologically, all insecticides damaged the larval midgut, as indicated by irregularities in the epithelial cell (ECs), microvilli (Mv), food boluses (FBs), peritrophic membranes (PMs), and cracked epithelial layers (Ep). The TEM findings confirmed that temephos and cypermethrin damage to the midgut ECs included damage to the cell membrane, nucleus, nucleoli, mitochondria, and other cell organelles. Overall, Cx. quinquefasciatus larvae in Jakarta were completely susceptible to temephos and deltamethrin. Synthetic insecticides may kill Cx. quinquefasciatus larvae through their actions on the metabolic enzyme activities and histopathological midgut.
Collapse
Affiliation(s)
- Rizal Subahar
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Corresponding author.
| | - Annisa Putri Aulia
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Yulhasri Yulhasri
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Ris Raihan Felim
- Medical Doctor Program, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Lisawati Susanto
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Rawina Winita
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Gulshan Fahmi El Bayani
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | | |
Collapse
|
5
|
Sy ND, Wheeler SS, Reed M, Haas-Stapleton E, Reyes T, Bear-Johnson M, Kluh S, Cummings RF, Su T, Xiong Y, Shi Q, Gan J. Pyrethroid insecticides in urban catch basins: A potential secondary contamination source for urban aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120220. [PMID: 36152708 DOI: 10.1016/j.envpol.2022.120220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Pesticide contamination is a threat to many aquatic habitats, and runoff from residential homes is a major contributor of these chemicals in urban surface streams and estuaries. Improved understanding of their fate and transport can help identify areas of concern for monitoring and management. In many urban areas, runoff water congregates in numerous underground catch basins before draining into the open environment; however, at present essentially no information is available on pesticide presence in these systems. In this study, we collected water samples from a large number of underground urban catch basins in different regions of California during the active pest management season to determine the occurrence and profile of the widely used pyrethroid insecticides. Detectable levels of pyrethroids were found in 98% of the samples, and the detection frequency of individual pyrethroids ranged from no detection for fenpropathrin to 97% for bifenthrin. In the aqueous phase, total pyrethroid concentrations ranged from 3 to 726 ng/L, with a median value of 32 ng/L. Pyrethroids were found to be enriched on suspended solids, with total concentrations ranging from 42 to 93,600 ng/g and a median value of 2,350 ng/g. In approximately 89% of the samples, whole water concentrations of bifenthrin were predicted to have toxic units >1 for sensitive aquatic invertebrates. The high detection frequency of bifenthrin and overall pyrethroid concentrations, especially for particle-bound residues, suggest that underground urban catch basins constitute an important secondary source for extended and widespread contamination of downstream surface waters by pesticides such as pyrethroids in urban regions.
Collapse
Affiliation(s)
- Nathan D Sy
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| | - Sarah S Wheeler
- Sacramento-Yolo Mosquito & Vector Control District, Elk Grove, CA, 95624, USA
| | - Marcia Reed
- Sacramento-Yolo Mosquito & Vector Control District, Elk Grove, CA, 95624, USA
| | | | - Trinidad Reyes
- Madera County Mosquito & Vector Control District, Madera, CA, 93637, USA
| | - Mir Bear-Johnson
- Delta Mosquito & Vector Control District, Visalia, CA, 93291, USA
| | - Susanne Kluh
- Greater Los Angeles County Vector Control District, Santa Fe Springs, CA, 90670, USA
| | - Robert F Cummings
- Orange County Mosquito & Vector Control District, Garden Grove, CA, 92843, USA
| | - Tianyun Su
- West Valley Mosquito & Vector Control District, Ontario, CA, 91761, USA
| | - Yaxin Xiong
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Qingyang Shi
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
6
|
Wang L, Soto A, Remue L, Rosales Rosas AL, De Coninck L, Verwimp S, Bouckaert J, Vanwinkel M, Matthijnssens J, Delang L. First Report of Mutations Associated With Pyrethroid (L1014F) and Organophosphate (G119S) Resistance in Belgian Culex (Diptera: Culicidae) Mosquitoes. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:2072-2079. [PMID: 36130161 DOI: 10.1093/jme/tjac138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.
Collapse
Affiliation(s)
- Lanjiao Wang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Alina Soto
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Laure Remue
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Ana Lucia Rosales Rosas
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Sam Verwimp
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Johanna Bouckaert
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Mathias Vanwinkel
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Leen Delang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
7
|
Chamnanya S, Yanola J, Nachaiwieng W, Lumjuan N, Walton C, Somboon P. Novel real-time PCR assay detects widespread distribution of knock down resistance (kdr) mutations associated with pyrethroid resistance in the mosquito, Culex quinquefasciatus, in Thailand. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105172. [PMID: 35973764 DOI: 10.1016/j.pestbp.2022.105172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Susceptibility to pyrethroids in the mosquito Culex quinquefasciatus, the major vector of lymphatic filariasis, is being seriously threatened worldwide. Knockdown resistance (kdr), caused by mutations in the voltage gated sodium channel (VGSC) gene, particularly the L1014F mutation, is an important resistance mechanism. Our aim was to develop a real-time PCR with melt curve analysis to evaluate the distribution of the L1014F mutation in Cx. quinquefasciatus throughout Thailand and to determine the polymorphism pattern of a VGSC gene fragment spanning the L1014F mutation. A total of 3760 females from 18 localities across five regions of Thailand were bio-assayed by exposure to 0.05% deltamethrin WHO papers, showing mortality rates ranging from 2.4% to 83.0%. Genotyping of 753 dead and surviving mosquitoes using our novel real-time PCR assay with melt curve analysis and tetra-primer allele-specific PCR revealed the mutant F1014 allele is closely associated with the deltamethrin resistance phenotype. The L1014F mutation was found at high frequency throughout Thailand, particularly in the North. However, some survivors were homozygous for wild type L1014 allele, which were further sequenced for the IIP-IIS6 region of VGSC gene. The haplotype network of phenotypically characterized individuals indicated the presence of other possible kdr alleles/resistance mechanisms at play including two novel mutations, V978E and D992E. The finding of new putative kdr alleles and widespread distribution of the F1014 allele emphasizes the significant role of kdr mutations in pyrethroid resistance in Thai Cx. quinquefasciatus populations. Monitoring kdr variations and phenotypic resistance is critical for managing resistance in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Saowanee Chamnanya
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jintana Yanola
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Nongkran Lumjuan
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Catherine Walton
- Department of Earth and Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
8
|
Zhou G, Li Y, Jeang B, Wang X, Cummings RF, Zhong D, Yan G. Emerging Mosquito Resistance to Piperonyl Butoxide-Synergized Pyrethroid Insecticide and Its Mechanism. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:638-647. [PMID: 35050361 PMCID: PMC8924976 DOI: 10.1093/jme/tjab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Piperonyl butoxide (PBO)-synergized pyrethroid products are widely available for the control of pyrethroid-resistant mosquitoes. To date, no study has examined mosquito resistance after pre-exposure to PBO and subsequent enzymatic activity when exposed to PBO-synergized insecticides. We used Culex quinquefasciatus Say (Diptera: Culicidae), an important vector of arboviruses and lymphatic filariasis, as a model to examine the insecticide resistance mechanisms of mosquitoes to PBO-synergized pyrethroid using modified World Health Organization tube bioassays and biochemical analysis of metabolic enzyme expressions pre- and post-PBO exposure. Mosquito eggs and larvae were collected from three cities in Orange County in July 2020 and reared in insectary, and F0 adults were used in this study. A JHB susceptible strain was used as a control. Mosquito mortalities and metabolic enzyme expressions were examined in mosquitoes with/without pre-exposure to different PBO concentrations and exposure durations. Except for malathion, wild strain Cx quinquefasciatus mosquitoes were resistant to all insecticides tested, including PBO-synergized pyrethroids (mortality range 3.7 ± 4.7% to 66.7 ± 7.7%). Wild strain mosquitoes had elevated levels of carboxylesterase (COE, 3.8-fold) and monooxygenase (P450, 2.1-fold) but not glutathione S-transferase (GST) compared to susceptible mosquitoes. When wild strain mosquitoes were pre-exposed to 4% PBO, the 50% lethal concentration of deltamethrin was reduced from 0.22% to 0.10%, compared to 0.02% for a susceptible strain. The knockdown resistance gene mutation (L1014F) rate was 62% in wild strain mosquitoes. PBO pre-exposure suppressed P450 enzyme expression levels by 25~34% and GST by 11%, but had no impact on COE enzyme expression. Even with an optimal PBO concentration (7%) and exposure duration (3h), wild strain mosquitoes had significantly higher P450 enzyme expression levels after PBO exposure compared to the susceptible laboratory strain. These results further demonstrate other studies that PBO alone may not be enough to control highly pyrethroid-resistant mosquitoes due to multiple resistance mechanisms. Mosquito resistance to PBO-synergized insecticide should be closely monitored through a routine resistance management program for effective control of mosquitoes and the pathogens they transmit.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, CA, USA
| | - Yiji Li
- Program in Public Health, University of California, Irvine, CA, USA
| | - Brook Jeang
- Program in Public Health, University of California, Irvine, CA, USA
| | - Xiaoming Wang
- Program in Public Health, University of California, Irvine, CA, USA
| | - Robert F Cummings
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA
| |
Collapse
|
9
|
Azarm A, Nasrabadi M, Shahidi F, Dehghan A, Nikpoor F, Zahraie-Ramazani A, Molaeezadeh SM, Bozorgomid F, Tashakori G, Vatandoost H. Insecticide Resistance in the West Nile Encephalitis, Japanese Encephalitis, Avian Malaria and Lymphatic Elephantiasis Vector, Culex pipiens complex (Diptera: Culicidae) in Iran. J Arthropod Borne Dis 2021; 15:349-357. [PMID: 36644301 PMCID: PMC9810576 DOI: 10.18502/jad.v15i4.10499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/22/2021] [Indexed: 01/18/2023] Open
Abstract
Background Culex pipiens complex is considered as a vector of some important diseases such as West Nile fever, equine encephalitis, Rift valley fever, St. Louis encephalitis, Elephanthiasis and avian malaria in the world. The main measure for vector control is using insecticides. High use of insecticides caused resistance in the populations. The aim of this study was to review the status of insecticide resistance in the vector. Methods Insecticide resistance in this species was found by the available papers and map of the data for carbamates, organochlorine, organophosphates, pyrethroids, microbial and insect growth regulator insecticides were done. An intensive search of scientific literature was done in "PubMed", "Web of Knowledge", "Scopus", "Google Scholar", "SID", and related resources. Results Results showed that a wide variety of resistance to different insecticides in the country. Due to importance of this species in transmission of diseases. Discussion resistance management strategies should be further considered to prevent from in secticide resistance and replacement of novel approach for vector control.
Collapse
Affiliation(s)
- Amrollah Azarm
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasrabadi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shahidi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Awat Dehghan
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Nikpoor
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Zahraie-Ramazani
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyede Maryam Molaeezadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Faramarz Bozorgomid
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Tashakori
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Department of Environmental Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Hassan Vatandoost, E-mail: ,
| |
Collapse
|
10
|
Buckner EA, Williams KF, Ramirez S, Darrisaw C, Carrillo JM, Latham MD, Lesser CR. A Field Efficacy Evaluation of In2Care Mosquito Traps in Comparison with Routine Integrated Vector Management at Reducing Aedes aegypti. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2021; 37:242-249. [PMID: 34817613 DOI: 10.2987/21-7038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aedes aegypti is the predominant vector of dengue, chikungunya, and Zika viruses. This mosquito is difficult to control with conventional methods due to its container-inhabiting behavior and resistance to insecticides. Autodissemination of pyriproxyfen (PPF), a potent larvicide, has shown promise as an additional tool to control Aedes species in small-scale field trials. However, few large-scale field evaluations have been conducted. We undertook a 6-month-long large-scale field study to compare the effectiveness and operational feasibility of using In2Care Mosquito Traps (In2Care Traps, commercially available Aedes traps with PPF and Beauveria bassiana) compared to an integrated vector management (IVM) strategy consisting of source reduction, larviciding, and adulticiding for controlling Ae. aegypti eggs, larvae, and adults. We found that while the difference between treatments was only statistically significant for eggs and larvae (P < 0.05 for eggs and larvae and P > 0.05 for adults), the use of In2Care Traps alone resulted in 60%, 57%, and 57% fewer eggs, larvae, and adults, respectively, collected from that site compared to the IVM site. However, In2Care Trap deployment and maintenance were more time consuming and labor intensive than the IVM strategy. Thus, using In2Care Traps alone as a control method for large areas (e.g., >20 ha) may be less practical for control programs with the capacity to conduct ground and aerial larviciding and adulticiding. Based on our study results, we conclude that In2Care Traps are effective at suppressing Ae. aegypti and have the most potential for use in areas without sophisticated control programs and within IVM programs to target hotspots with high population levels and/or risk of Aedes-borne pathogen transmission.
Collapse
|
11
|
Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California. Sci Rep 2021; 11:12667. [PMID: 34135430 PMCID: PMC8209202 DOI: 10.1038/s41598-021-92190-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
An extensive network of storm water conveyance systems in urban areas, often referred to as the "underground storm drain system" (USDS), serves as significant production habitats for mosquitoes. Knowledge of whether USDS habitats are suitable for newly introduced dengue vectors Aedes aegypti and Ae. albopictus will help guide surveillance and control efforts. To determine whether the USDS functions as a suitable larval habitat for Culex, Ae. aegypti and Ae. albopictus in southern California, we examined mosquito habitat utilization and larval survivorship using laboratory microcosm studies. The data showed that USDS constituted 4.1% of sampled larval habitats for Ae. aegypti and Ae. albopictus, and 22.0% for Cx. quinquefasciatus. Furthermore, USDS water collected in the summer completely inhibited Aedes larval development, but yielded a 15.0% pupation rate for Cx. quinquefasciatus. Food supplementation in the microcosms suggests that nutrient deficiency, toxins and other factors in the USDS water led to low success or complete failure of larval development. These results suggest that USDS habitats are currently not major productive larval habitats for Aedes mosquitoes in southern California. Our findings prompt inclusion of assessments of pupal productivity in USDS habitats and adult mosquito resting sites in the mosquito surveillance program.
Collapse
|
12
|
Lee HJ, Longnecker M, Calkins TL, Renfro AD, Fredregill CL, Debboun M, Pietrantonio PV. Detection of the Nav channel kdr-like mutation and modeling of factors affecting survivorship of Culex quinquefasciatus mosquitoes from six areas of Harris County (Houston), Texas, after permethrin field-cage tests. PLoS Negl Trop Dis 2020; 14:e0008860. [PMID: 33211688 PMCID: PMC7714350 DOI: 10.1371/journal.pntd.0008860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/03/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
Culex quinquefasciatus is one of the most important mosquito vectors of arboviruses. Currently, the fastest approach to control disease transmission is the application of synthetic adulticide insecticides. However, in highly populated urban centers the development of insecticide resistance in mosquito populations could impair insecticide efficacy and therefore, disease control. To assess the effect of resistance on vector control, females of Cx. quinquefasciatus collected from six mosquito control operational areas in Harris County, Texas, were treated in field cage tests at three different distances with the pyrethroid Permanone® 31-66 applied at the operational rate. Females were analyzed by sequencing and/or diagnostic PCR using de novo designed primers for detecting the kdr-like mutation in the voltage-gated sodium channel (L982F; TTA to TTT) (house fly kdr canonical mutation L1014F). Females from the Cx. quinquefasciatus susceptible Sebring strain and those from the six operational areas placed at 30.4 m from the treatment source were killed in the tests, while 14% of field-collected mosquitoes survived at 60.8 m, and 35% at 91.2 m from the source. The diagnostic PCR had a with 97.5% accuracy to detect the kdr-like mutation. Pyrethroid resistant mosquitoes carrying the L982F mutation were broadly distributed in Harris County at high frequency. Among mosquitoes analyzed (n = 1,028), the kdr-kdr genotype was prevalent (81.2%), the kdr-s genotype was 18%, and s-s mosquitoes were less than 1% (n = 8). A logistic regression model estimated an equal probability of survival for the genotypes kdr-kdr and kdr-s in all areas analyzed. Altogether, our results point to a high-risk situation for the pyrethroid-based arboviral disease control in Harris County.
Collapse
Affiliation(s)
- Han-Jung Lee
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Longnecker
- Department of Statistics, Texas A&M University, College Station, Texas, United States of America
| | - Travis L. Calkins
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Andrew D. Renfro
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Chris L. Fredregill
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Texas, United States of America
| | - Mustapha Debboun
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Texas, United States of America
| | - Patricia V. Pietrantonio
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
13
|
Lucas KJ, Bales RB, McCoy K, Weldon C. Oxidase, Esterase, and KDR-Associated Pyrethroid Resistance in Culex quinquefasciatus Field Collections of Collier County, Florida. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2020; 36:22-32. [PMID: 32497474 DOI: 10.2987/19-6850.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In several insect species, resistance to pyrethroids and DDT (dichlorodiphenyltrichloroethane) is linked to point mutations in the voltage-gated sodium channel (VGSC) gene. Pyrethroid-based insecticides prolong the opening of sodium channels, causing paralysis known as a "knockdown" effect before mortality occurs. Point mutations in the VGSC gene result in decreased pyrethroid binding and reduced sensitivity to the insecticide-this resistance mechanism is known as knockdown resistance (kdr) as insects do not die but recover from paralysis with time. In Culex mosquito species loss of target site sensitivity to pyrethroids is linked to a number of substitutions, one of which is leucine (L) to phenylalanine (F) at residue 1014 (L1014F) in the VGSC gene. Here we report the identification of kdr-associated pyrethroid resistance and developing resistance in Cx. quinquefasciatus field collections from Collier County, FL. Evaluation of position 1014 of the VGSC in Cx. quinquefasciatus collections from 7 locations in Collier County, FL, revealed a wide range of genotypes from one part of the district to the other. Centers for Disease Control and Prevention bottle bioassay, linear regression analysis, and cage trial evaluations suggest that the L1014F mutation plays a role, at least in part, to the pyrethroid resistance status of Cx. quinquefasciatus collected in Collier County, FL. Furthermore, we identified resistance attributed to both oxidase and esterase activity, indicating that multiple mechanisms are responsible for pyrethroid resistance in Collier County Cx. quinquefasciatus.
Collapse
|