1
|
Hoglund ER, Walker HA, Hussain K, Bao DL, Ni H, Mamun A, Baxter J, Caldwell JD, Khan A, Pantelides ST, Hopkins PE, Hachtel JA. Nonequivalent Atomic Vibrations at Interfaces in a Polar Superlattice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402925. [PMID: 38717326 DOI: 10.1002/adma.202402925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 06/15/2024]
Abstract
In heterostructures made from polar materials, e.g., AlN-GaN-AlN, the nonequivalence of the two interfaces is long recognized as a critical aspect of their electronic properties; in that, they host different 2D carrier gases. Interfaces play an important role in the vibrational properties of materials, where interface states enhance thermal conductivity and can generate unique infrared-optical activity. The nonequivalence of the corresponding interface atomic vibrations, however, is not investigated so far due to a lack of experimental techniques with both high spatial and high spectral resolution. Herein, the nonequivalence of AlN-(Al0.65Ga0.35)N and (Al0.65Ga0.35)N-AlN interface vibrations is experimentally demonstrated using monochromated electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM-EELS) and density-functional-theory (DFT) calculations are employed to gain insights in the physical origins of observations. It is demonstrated that STEM-EELS possesses sensitivity to the displacement vector of the vibrational modes as well as the frequency, which is as critical to understanding vibrations as polarization in optical spectroscopies. The combination enables direct mapping of the nonequivalent interface phonons between materials with different phonon polarizations. The results demonstrate the capacity to carefully assess the vibrational properties of complex heterostructures where interface states dominate the functional properties.
Collapse
Affiliation(s)
- Eric R Hoglund
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Harrison A Walker
- Department of Physics and, Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Kamal Hussain
- Department of Electrical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - De-Liang Bao
- Department of Physics and, Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
| | - Haoyang Ni
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA
| | - Abdullah Mamun
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jefferey Baxter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Joshua D Caldwell
- Department of Mechanical Engineering and Electrical Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Asif Khan
- Department of Electrical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Sokrates T Pantelides
- Department of Physics and, Astronomy, Vanderbilt University, Nashville, TN, 37235, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Patrick E Hopkins
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
2
|
Bézard M, Si Hadj Mohand I, Ruggierio L, Le Roux A, Auad Y, Baroux P, Tizei LHG, Checoury X, Kociak M. High-Efficiency Coupling of Free Electrons to Sub-λ 3 Modal Volume, High-Q Photonic Cavities. ACS NANO 2024; 18:10417-10426. [PMID: 38557059 DOI: 10.1021/acsnano.3c11211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We report on the design, realization, and experimental investigation by spatially resolved monochromated electron energy loss spectroscopy (EELS) of high-quality-factor cavities with modal volumes smaller than λ3, with λ being the free-space wavelength of light. The cavities are based on a slot defect in a 2D photonic crystal slab made up of silicon. They are optimized for high coupling of electrons accelerated to 100 kV to quasi-transverse electrical modes polarized along the slot direction. We studied the cavities in two geometries and took advantage of the deep sub-optical wavelength spatial resolution of the electron microscope and high spectral resolution of the monochromator to comprehensively describe the optical excitations of the slab. The first geometry, for which the cavities have been designed, corresponds to an electron beam traveling along the slot direction. The second consists of the electron beam traveling perpendicular to the slab. In both cases, a large series of modes is identified. The dielectric slot mode energies are measured to be in the 0.8-0.85 eV range, as per design, and surrounded by two bands of dielectric and air modes of the photonic structure. The dielectric even slot modes, to which the cavity mode belongs, are highly coupled to the electrons with up to 3.2% probability of creating a slot photon per incident electron. Although the experimental spectral resolution (around 30 meV) alone does not allow to disentangle cavity photons from other slot photons, the excellent agreement between the experiments and finite-difference time-domain simulations allows us to deduce that among the photons created in the slot, around 30% are stored in the cavity mode. A systematic study of the energy and coupling strength as a function of the photonic band gap parameters permits us to foresee an increase of coupling strength by fine-tuning phase-matching. Our work demonstrates free electron coupling to high-quality-factor cavities with low mode densities and sub-λ3 modal volumes, making it an excellent candidate for applications such as quantum nano-optics with free electrons.
Collapse
Affiliation(s)
- Malo Bézard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Imene Si Hadj Mohand
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Luigi Ruggierio
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Arthur Le Roux
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Yves Auad
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Paul Baroux
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Luiz H G Tizei
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Xavier Checoury
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Mathieu Kociak
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
3
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Segui S, Gervasoni JL, Arista NR, Mišković ZL. Energy loss of charged particles in anisotropic 2D materials using the oscillator model. Micron 2023; 174:103521. [PMID: 37657167 DOI: 10.1016/j.micron.2023.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 09/03/2023]
Abstract
We apply the oscillator model to study the energy loss processes of external charged particles interacting with a 2D material characterized by an anisotropic conductivity tensor. We model the material as a monolayer of harmonic oscillators, with anisotropic electronic vibration modes. We focus on the cases of parallel and perpendicular trajectories of the external particle, and we obtain analytical expressions for the stopping power and total energy loss in terms of reduced variables. This allows us to analyze in detail the interaction and to adapt the model to the considered material using adequate values for the physical parameters involved.
Collapse
Affiliation(s)
- Silvina Segui
- Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática, Astronomía, Física y Computación (FAMAF), Universidad Nacional de Córdoba, 5000 Córdoba, Argentina.
| | - Juana L Gervasoni
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, and Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 S.C. de Bariloche, Argentina
| | - Néstor R Arista
- Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, and Instituto Balseiro, Universidad Nacional de Cuyo, Av. Bustillo 9500, 8400 S.C. de Bariloche, Argentina
| | - Zoran L Mišković
- Department of Applied Mathematics and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
| |
Collapse
|
5
|
Castellanos-Reyes JÁ, Zeiger P, Bergman A, Kepaptsoglou D, Ramasse QM, Idrobo JC, Rusz J. Simulations of Magnon Diffuse Scattering in bcc Fe: The Impact of Temperature on Magnon Detection in STEM. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:646. [PMID: 37613290 DOI: 10.1093/micmic/ozad067.316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
| | - Paul Zeiger
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Anders Bergman
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Demie Kepaptsoglou
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, United Kingdom
- Department of Physics, University of York, York, United Kingdom
| | - Quentin M Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury, United Kingdom
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Juan Carlos Idrobo
- Materials Science and Engineering Department, University of Washington, Seattle, Washington, USA
| | - Ján Rusz
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Marks GA, Blankespoor D, Miskovic ZL. Launching Plasmons in a Two-Dimensional Material Traversed by a Fast Charged Particle. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1150. [PMID: 36770155 PMCID: PMC9921502 DOI: 10.3390/ma16031150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
We use a dielectric-response formalism to compute the induced charge density and the induced potential in a conductive two-dimensional (2D) material, traversed by a charged particle that moves on a perpendicular trajectory with constant velocity. By analyzing the electric force on the material via the Maxwell stress tensor, we showed that the polarization of the material can be decomposed into a conservative part related to the dynamic image force, and a dissipative part describing the energy and momentum transfer to the material, which is ultimately responsible for launching the plasma oscillation waves in the material. After showing that the launching dynamics is fully determined by the Loss function of the material, we used a conductivity model suitable for the terahertz to the midinfrared frequency range, which includes both the intraband and interband electron transitions in the material, to compute the real-space and time animations of the propagating plasma waves in the plane of the material. Finally, we used a stationary phase analysis to show that the plasmon wave crests go into an overdamped regime at large propagation distances, which are comparable to the distances where retardation effects are expected to emerge due to hybridization of the plasmon dispersion with the light line at long wavelengths.
Collapse
Affiliation(s)
- Gareth Arturo Marks
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Devin Blankespoor
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zoran L. Miskovic
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
7
|
Mousavi M. SS, Pofelski A, Teimoori H, Botton GA. Alignment-invariant signal reality reconstruction in hyperspectral imaging using a deep convolutional neural network architecture. Sci Rep 2022; 12:17462. [PMID: 36261495 PMCID: PMC9581942 DOI: 10.1038/s41598-022-22264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/12/2022] [Indexed: 01/12/2023] Open
Abstract
The energy resolution in hyperspectral imaging techniques has always been an important matter in data interpretation. In many cases, spectral information is distorted by elements such as instruments' broad optical transfer function, and electronic high frequency noises. In the past decades, advances in artificial intelligence methods have provided robust tools to better study sophisticated system artifacts in spectral data and take steps towards removing these artifacts from the experimentally obtained data. This study evaluates the capability of a recently developed deep convolutional neural network script, EELSpecNet, in restoring the reality of a spectral data. The particular strength of the deep neural networks is to remove multiple instrumental artifacts such as random energy jitters of the source, signal convolution by the optical transfer function and high frequency noise at once using a single training data set. Here, EELSpecNet performance in reducing noise, and restoring the original reality of the spectra is evaluated for near zero-loss electron energy loss spectroscopy signals in Scanning Transmission Electron Microscopy. EELSpecNet demonstrates to be more efficient and more robust than the currently widely used Bayesian statistical method, even in harsh conditions (e.g. high signal broadening, intense high frequency noise).
Collapse
Affiliation(s)
- S. Shayan Mousavi M.
- grid.25073.330000 0004 1936 8227McMaster University, Materials Science and Engineering, Hamilton, L8S 4L8 Canada
| | - Alexandre Pofelski
- grid.202665.50000 0001 2188 4229Brookhaven National Laboratory, Upton, NY 11973 USA
| | - Hassan Teimoori
- grid.25073.330000 0004 1936 8227McMaster University, Walter G. Booth School of Engineering Practice and Technology, Hamilton, L8S 4M1 Canada
| | - Gianluigi A. Botton
- grid.25073.330000 0004 1936 8227McMaster University, Materials Science and Engineering, Hamilton, L8S 4L8 Canada ,grid.423571.60000 0004 0443 7584Canadian Light Source, Saskatoon, S7N 2V3 Canada
| |
Collapse
|