1
|
Jargin SV. Scientific Papers and Patents on Substances with Unproven Effects. Part 2. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 13:160-173. [PMID: 31424374 PMCID: PMC7011683 DOI: 10.2174/1872211313666190819124752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/03/2022]
Abstract
Several examples are discussed in this review, where substances without proven effects were proposed for practical use within the scope of evidence-based medicines. The following is discussed here: generalizations of the hormesis concept and its use in support of homeopathy; phytoestrogens and soy products potentially having feminizing effects; glycosaminoglycans for the treatment of osteoarthritis and possibilities of their replacement by diet modifications; flavonoids recommended for the treatment of chronic venous insufficiency and varicose veins; acetylcysteine as a mucolytic agent and its questionable efficiency especially by an oral intake; stem cells and cell therapies. In conclusion, placebo therapies can be beneficial and ethically justifiable but it is not a sufficient reason to publish biased information. Importantly, placebo must be devoid of adverse effects, otherwise, it is named pseudo-placebo. Therapeutic methods with unproven effects should be tested in high-quality research shielded from the funding bias. Some issues discussed in this review are not entirely clear, and the arguments provided here can initiate a constructive discussion.
Collapse
Affiliation(s)
- Sergei V. Jargin
- Peoples’ Friendship University of Russia, Clementovski per 6-82, Moscow115184, Russia
| |
Collapse
|
2
|
Jargin SV. Soy and phytoestrogens: possible side effects. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2014; 12:Doc18. [PMID: 25587246 PMCID: PMC4270274 DOI: 10.3205/000203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/13/2014] [Indexed: 12/15/2022]
Abstract
Phytoestrogens are present in certain edible plants being most abundant in soy; they are structurally and functionally analogous to the estrogens. Phytoestrogens have been applied for compensation of hormone deficiency in the menopause. At the same time, soy products are used in infant food and other foodstuffs. Furthermore, soy is applied as animal fodder, so that residual phytoestrogens and their active metabolites such as equol can remain in meat and influence the hormonal balance of the consumers. There have been only singular reports on modified gender-related behavior or feminization in humans in consequence of soy consumption. In animals, the intake of phytoestrogens was reported to impact fertility, sexual development and behavior. Feminizing effects in humans can be subtle and identifiable only statistically in large populations.
Collapse
|
3
|
Phytoestrogens β -sitosterol and genistein have limited effects on reproductive endpoints in a female fish, Betta splendens. BIOMED RESEARCH INTERNATIONAL 2014; 2014:681396. [PMID: 24707495 PMCID: PMC3953504 DOI: 10.1155/2014/681396] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/08/2014] [Accepted: 01/12/2014] [Indexed: 01/25/2023]
Abstract
Phytoestrogens are produced by plants and may cause endocrine disruption in vertebrates. The present study hypothesizes that phytoestrogen exposure of female Siamese fighting fish (Betta splendens) may disrupt endogenous steroid levels, change agonistic behavior expression, and potentially also disrupt oocyte development. However, only the pharmacologic dose of β-sitosterol had a significant effect on opercular flaring behavior, while we did not find significant effects of β-sitosterol or genistein on steroids or gonads. These findings are in direct contrast with previous studies on the effects of phytoestrogens in female fish. Results of the current study support previous work showing that the effects of phytoestrogen exposure may be less acute in mature female B. splendens than in other fish.
Collapse
|
4
|
Abstract
Ovarian function in adults is controlled by hormones circulating in the body. The primary hormone responsible for cyclicity in animals and humans is estrogen. Estrogen is mostly produced in the ovary and enters the circulation where it then signals the brain for a response. The parts of the brain that controls reproductive hormones are the hypothalamus and anterior pituitary. Estrogen stimulates the hypothalamus to produce gonadotropin releasing hormone, which in turn signals the anterior pituitary to produce follicle stimulating hormone and luteinizing hormone. These hormones enter the circulation and signal the ovary to ovulate. Substances with estrogenic activity can potentially interfere with this signaling if levels of activity are sufficient to cause a response. Soy foods contain estrogenic substances called phytoestrogens. The predominant phytoestrogens found in soy are genistein and daidzein. The female reproductive system is dependent on hormones for proper function and phytoestrogens at very high levels can interfere with this process. This paper summarizes the literature on adult soy consumption and its effect on ovarian function.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
5
|
Jefferson WN, Williams CJ. Circulating levels of genistein in the neonate, apart from dose and route, predict future adverse female reproductive outcomes. Reprod Toxicol 2010; 31:272-9. [PMID: 20955782 DOI: 10.1016/j.reprotox.2010.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/16/2022]
Abstract
Developmental exposure to estrogenic compounds can disrupt sexual differentiation and adult reproductive function in many animals including humans. Phytoestrogens (plant estrogens) in the diet comprise a significant source of estrogenic exposure to humans, particularly in infants who are fed soy-based infant formula. Animal models have been developed to test the effects of phytoestrogen exposure on the developing fetus and neonate. Here we review studies quantifying the amount of phytoestrogen exposure in human adults and infants and discuss the few available epidemiological studies that have addressed long-term consequences of developmental phytoestrogen exposure. We then describe in detail rodent models of developmental exposure to the most prevalent phytoestrogen in soy products, genistein, and the effects of this exposure on female reproductive function. These models have used various dosing strategies to mimic the phytoestrogen levels in human populations. Serum circulating levels of genistein following each of the models and their correlation to reproductive outcomes are also discussed. Taken together, the studies clearly demonstrate that environmentally relevant doses of genistein have significant negative impacts on ovarian differentiation, estrous cyclicity, and fertility in the rodent model. Additional studies of reproductive function in human populations exposed to high levels of phytoestrogens during development are warranted.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, United States.
| | | |
Collapse
|
6
|
Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 2010; 31:519-30. [PMID: 20609373 PMCID: PMC2964437 DOI: 10.1016/j.yfrne.2010.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/11/2010] [Accepted: 06/25/2010] [Indexed: 11/21/2022]
Abstract
The potential adverse effects of Bisphenol A (BPA), a synthetic xenoestrogen, have long been debated. Although standard toxicology tests have revealed no harmful effects, recent research highlighted what was missed so far: BPA-induced alterations in the nervous system. Since 2004, our laboratory has been investigating one of the central effects of BPA, which is interference with gonadal steroid-induced synaptogenesis and the resulting loss of spine synapses. We have shown in both rats and nonhuman primates that BPA completely negates the ∼ 70-100% increase in the number of hippocampal and prefrontal spine synapses induced by both estrogens and androgens. Synaptic loss of this magnitude may have significant consequences, potentially causing cognitive decline, depression, and schizophrenia, to mention those that our laboratory has shown to be associated with synaptic loss. Finally, we discuss why children may particularly be vulnerable to BPA, which represents future direction of research in our laboratory.
Collapse
|
7
|
Tang WY, Newbold R, Mardilovich K, Jefferson W, Cheng RYS, Medvedovic M, Ho SM. Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 2008; 149:5922-31. [PMID: 18669593 PMCID: PMC2613067 DOI: 10.1210/en.2008-0682] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neonatal exposure of CD-1 mice to diethylstilbestrol (DES) or genistein (GEN) induces uterine adenocarcinoma in aging animals. Uterine carcinogenesis in this model is ovarian dependent because its evolution is blocked by prepubertal ovariectomy. This study seeks to discover novel uterine genes whose expression is altered by such early endocrine disruption via an epigenetic mechanism. Neonatal mice were treated with 1 or 1000 microg/kg DES, 50 mg/kg GEN, or oil (control) on d 1-5. One group of treated mice was killed before puberty on d 19. Others were ovariectomized or left intact, and killed at 6 and 18 months of age. Methylation-sensitive restriction fingerprinting was performed to identify differentially methylated sequences associated with neonatal exposure to DES/GEN. Among 14 candidates, nucleosomal binding protein 1 (Nsbp1), the gene for a nucleosome-core-particle binding protein, was selected for further study because of its central role in chromatin remodeling. In uteri of immature control mice, Nsbp1 promoter CpG island (CGI) was minimally methylated. Once control mice reached puberty, the Nsbp1 CGI became hypermethylated, and gene expression declined further. In contrast, in neonatal DES/GEN-treated mice, the Nsbp1 CGI stayed anomalously hypomethylated, and the gene exhibited persistent overexpression throughout life. However, if neonatal DES/GEN-treated mice were ovariectomized before puberty, the CGI remained minimally to moderately methylated, and gene expression was subdued except in the group treated with 1000 microg/kg DES. Thus, the life reprogramming of uterine Nsbp1 expression by neonatal DES/GEN exposure appears to be mediated by an epigenetic mechanism that interacts with ovarian hormones in adulthood.
Collapse
Affiliation(s)
- Wan-Yee Tang
- Department of Environmental Health, Kettering Complex, Room 128, 3223 Eden Avenue, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, Ohio 45267-0056, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Jefferson WN, Padilla-Banks E, Goulding EH, Lao SPC, Newbold RR, Williams CJ. Neonatal exposure to genistein disrupts ability of female mouse reproductive tract to support preimplantation embryo development and implantation. Biol Reprod 2008; 80:425-31. [PMID: 19005167 DOI: 10.1095/biolreprod.108.073171] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Female mice treated neonatally with the phytoestrogen genistein (50 mg/kg/day) have multioocyte follicles, lack regular estrous cyclicity, and are infertile even after superovulation. To determine the cause of their infertility, we examined oocyte developmental competence and timing of embryo loss. Eggs obtained by superovulation of genistein-treated or control females were equally capable of being fertilized in vitro and cultured to the blastocyst stage. However, if eggs were fertilized in vivo, retrieved at the pronucleus stage, and cultured, there was a significant reduction in the percentage of embryos from genistein-treated females reaching the blastocyst stage. When these blastocysts were transferred to pseudopregnant recipients, the number of live pups produced was similar to that in controls. Preimplantation embryo development in vivo was examined by flushing embryos from the oviduct and/or uterus. Similar numbers of one-cell and two-cell embryos were obtained from genistein-treated and control females. However, significantly fewer embryos (<50%) were obtained from genistein-treated females on postcoital Days 3 and 4. To determine if neonatal genistein treatment altered the ability of the uterus to support implantation, blastocysts from control donors were transferred to control and genistein-treated pseudopregnant recipients. These experiments demonstrated that genistein-treated females are not capable of supporting normal implantation of control embryos. Taken together, these results suggest that oocytes from mice treated neonatally with genistein are developmentally competent; however, the oviductal environment and the uterus have abnormalities that contribute to the observed reproductive failure.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
9
|
Efird JT, Holly EA, Cordier S, Mueller BA, Lubin F, Filippini G, Peris-Bonet R, McCredie M, Arslan A, Bracci P, Preston-Martin S. Beauty product-related exposures and childhood brain tumors in seven countries: results from the SEARCH International Brain Tumor Study. J Neurooncol 2005; 72:133-47. [PMID: 15925993 DOI: 10.1007/s11060-004-3121-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Data from 1218 cases of childhood brain tumors (CBT) diagnosed between 1976 and 1994 and 2223 matched controls from the general population were included in an analysis of maternal beauty product exposure and beauty-related employment in 9 centers in 7 countries. A 50% increased odds ratio (OR) [95% confidence interval (CI) = 1.0-2.1] for CBT was observed among children of mothers who were exposed via personal use of and/or possible ambient contact with beauty products during the 5 years preceding the index child's birth compared with children of mothers never exposed to beauty products during this time period. Overall maternal personal use of hair-coloring agents in the month before or during the pregnancy of the index child's birth was not associated with CBT (OR = 1.0, CI = 0.83-1.3) or with astroglial (OR = 1.1, CI = 0.85-1.4), PNET (OR = 1.0, CI = 0.71-1.5) and other glial subtypes (OR = 1.0, CI = 0.62-1.0). Similarly, no statistically increased ORs or discernable pattern of risk estimates were observed for period of use or for number of applications per year for maternal personal use of hair-coloring agents overall or by histologic type. Among children born on or after 1980, increased ORs for CBT were associated with maternal non-work-related exposure to any beauty products (OR = 2.6, CI = 1.2-5.9), hair-dyes (OR = 11, CI = 1.2-90), and hair sprays (OR = 3.4, CI = 1.0-11). No overall increased OR for CBT was observed among children of mothers employed in beauty-related jobs during the 5 years preceding the index child's birth compared with those who reported no beauty-related employment. In general, other specific beauty product-related exposures were not associated with increased ORs for CBT. Data from our study provide little evidence of an increased risk for CBT with mothers' exposures to beauty products.
Collapse
Affiliation(s)
- J T Efird
- John A. Burns School of Medicine, University of Hawaii at Manoa, 1960 East-West Road, Room D-103, Honolulu, Hawaii, 96822-2319, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Anderson DP, Nordheim EV, Boesch C. Environmental factors influencing the seasonality of estrus in chimpanzees. Primates 2005; 47:43-50. [PMID: 16151605 DOI: 10.1007/s10329-005-0143-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Accepted: 01/22/2005] [Indexed: 10/25/2022]
Abstract
Although the energetics of the estrous cycle in primates is not well understood, evidence suggests that energy and nutrient acquisition influence ovulation and the timing of conception. Energy for estrus has to compete with energy allocated for cellular maintenance, thermoregulation, movement for food, and predation avoidance. While some chimpanzee (Pan troglodytes) populations do not have a seasonal birth period, evidence suggests that there is seasonality in the number of estrous females. Similarly, the onset of postpartum cycles has been reported to be seasonal. We used 33 months of data from the Taï National Park, Côte d'Ivoire, to examine how the number of estrous females in a given month was influenced by the abundance and distribution of food, diet, rainfall and temperature. In a second analysis, we examined if there was a seasonal effect on first estrous swellings in adolescent females and postpartum adult females. Results demonstrated that the number of females in estrous in a given month was positively related to food abundance and percent foraging time spent eating insects, and negatively related to mean rainfall in the two preceding months and the mean high temperature. The timing of first estrous swellings of postpartum females and prepartum young females was positively related to the food abundance, and negatively related to mean high temperature. These results showed that environmental conditions can seasonally limit the energetically demanding estrus cycle. The presence of estrous females increases gregariousness in chimpanzee communities, and this study identified environmental factors that affect estrus directly and hence social grouping indirectly.
Collapse
Affiliation(s)
- Dean P Anderson
- Department of Zoology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin 53704, USA.
| | | | | |
Collapse
|
11
|
Wang H, Tranguch S, Xie H, Hanley G, Das SK, Dey SK. Variation in commercial rodent diets induces disparate molecular and physiological changes in the mouse uterus. Proc Natl Acad Sci U S A 2005; 102:9960-5. [PMID: 15987781 PMCID: PMC1174983 DOI: 10.1073/pnas.0501632102] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although ovarian estrogen, estradiol-17beta, is a key modulator of normal reproductive functions, natural and synthetic compounds with estrogen-like activities can further influence reproductive functions. Plant-derived phytoestrogens specifically have received much attention because of associated health benefits. However, a comprehensive understanding of the beneficial and/or detrimental impacts of phytoestrogen consumption through commercial rodent diets on uterine biology and early pregnancy at the molecular level remains largely unexplored. Using multiple approaches, we demonstrate here that exposure of adult female mice to a commercial rodent diet with higher phytoestrogen levels facilitates uterine growth in the presence or absence of ovarian estrogen, alters uterine expression of estrogen-responsive genes, and advances the timing of implantation compared with a diet with lower phytoestrogen levels. The finding that variability in phytoestrogen content in commercial rodent diets, both within and between brands, influences experimental results stresses the importance of this investigation and raises caution for investigators using rodents as animal models.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
12
|
The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. J Neurosci 2002. [PMID: 12388618 DOI: 10.1523/jneurosci.22-20-09104.2002] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We used estrogen-deficient aromatase knock-out (ArKO) mice to determine whether estrogens contribute to the development of the brain and behavior in females. Female mice of three different genotypes [i.e., wild type (WT), heterozygous (HET), and homozygous (ArKO)] were ovariectomized in adulthood and subsequently tested for odor preferences (choice: intact male vs estrous female) in a Y-maze. When treated with testosterone, ArKO females spent significantly less time sniffing odors (both volatile and nonvolatile) from either male or female stimuli compared with WT and HET females. When given direct access to anesthetized stimulus animals or when given a choice between odor and visual cues from both stimulus animals, ArKO females continued to spend less time investigating the stimuli compared with WT and HET females. These defects in olfactory investigation of ArKO females were partially corrected with estradiol treatment in adulthood. Estradiol-treated ArKO females no longer differed from WT and HET females in the time spent investigating either nonvolatile odors or the anogenital region of anesthetized animals. However, ArKO females still investigated volatile odors and/or visual cues less than WT and HET females. Sexual receptivity was severely impaired in ArKO females after treatments with estradiol and progesterone that successfully induced receptivity in WT and HET females. Furthermore, ArKO females showed diminished levels of male sexual behaviors, whereas WT and HET females readily mounted an estrous female. Together, these findings demonstrate that estrogen is required for normal female development. The concept that the female brain develops in the absence of any hormonal stimulation should therefore be reconsidered.
Collapse
|
13
|
Abstract
Environmental oestrogens have been implicated in the pathogenesis of hormonally treated cancers (such as breast and prostate cancer), male infertility, and abnormalities of the male and female reproductive tracts. They may be derived from plants (phytoestrogens), pharmaceuticals, or other synthetic compounds not originally intended to have oestrogenic activity (including soy based infant formulas). This review will discuss the evidence from both animal studies and humans for an effect of these ubiquitous compounds on the development of the human female genital tract, in addition to prolonging the menstrual cycle, alleviating symptoms of the menopause, and protecting against the development of endometrial carcinoma.
Collapse
Affiliation(s)
- J L Burton
- Section of Oncology and Pathology, Division of Genomic Medicine, University of Sheffield Medical School, Beech Hill Road, S10 2RX, UK.
| | | |
Collapse
|