1
|
Redifer CA, Wichman LG, Rathert-Williams AR, Freetly HC, Meyer AM. Late gestational nutrient restriction in primiparous beef females: nutrient partitioning among the dam, fetus, and colostrum during gestation. J Anim Sci 2023; 101:skad195. [PMID: 37314299 PMCID: PMC10400126 DOI: 10.1093/jas/skad195] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/09/2023] [Indexed: 06/15/2023] Open
Abstract
Fall-calving primiparous crossbred beef females [body weight (BW): 451 ± 28 (SD) kg; body condition score (BCS): 5.4 ± 0.7] were allocated by fetal sex and expected calving date to receive either 100% (control; CON; n = 13) or 70% (nutrient restricted; NR; n = 13) of metabolizable energy and metabolizable protein requirements for maintenance, pregnancy, and growth from day 160 of gestation to calving. Heifers were individually-fed chopped poor quality hay and supplemented to meet targeted nutritional planes based on estimated hay intakes. Dam BW, BCS, backfat, and metabolic status were determined pre-treatment, every 21 d (BW and metabolic status) or 42 d (BCS and backfat) during gestation, and post-calving. At birth, calf BW and size were measured, and total colostrum from the most full rear quarter was collected pre-suckling. Data were analyzed with nutritional plane, treatment initiation date, and calf sex (when P < 0.25) as fixed effects. Gestational metabolites included day and nutritional plane × day as repeated measures. During late gestation, CON dams gained (P < 0.01) maternal (non-gravid) BW and maintained (P ≥ 0.17) BCS and backfat, while NR dams lost (P < 0.01) maternal BW, BCS, and backfat. Circulating glucose, urea N, and triglycerides were less (P ≤ 0.05) in NR dams than CON at most late gestational timepoints after treatment initiation. Circulating non-esterified fatty acids were greater (P < 0.01) in NR dams than CON. Post-calving, NR dams weighed 63.6 kg less (P < 0.01) and were 2.0 BCS less (P < 0.01) than CON. At 1 h post-calving, NR dams had less (P = 0.01) plasma glucose and tended to have less (P = 0.08) plasma triglycerides than CON. Nutrient restriction did not affect (P ≥ 0.27) gestation length, calf birth weight, or calf size at birth. Colostrum yield was 40% less (P = 0.04) in NR dams than CON. Protein and immunoglobulin concentrations were greater (P ≤ 0.04), but free glucose and urea N concentrations were less (P ≤ 0.03), in colostrum of NR dams than CON. Colostrum total lactose, free glucose, and urea N were less (P ≤ 0.03) in NR dams than CON, but total protein, triglycerides, and immunoglobulins were not affected (P ≥ 0.55). In summary, beef heifers experiencing late gestational nutrient restriction prioritized partitioning nutrients to fetal growth and colostrum production over maternal growth. During undernutrition, fetal and colostral nutrient demands were largely compensated for by catabolism of maternal tissue stores.
Collapse
Affiliation(s)
- Colby A Redifer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lindsey G Wichman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | - Harvey C Freetly
- USDA, ARS, Roman L Hruska US Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Wichman LG, Redifer CA, Meyer AM. Maternal nutrient restriction during late gestation reduces vigor and alters blood chemistry and hematology in neonatal beef calves. J Anim Sci 2023; 101:skad342. [PMID: 37788576 PMCID: PMC10648570 DOI: 10.1093/jas/skad342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Fall-calving primiparous beef females [body weight: 451 ± 28 (SD) kg; body condition score: 5.4 ± 0.7] were individually-fed either 100% (control; CON; n = 13) or 70% (nutrient restricted; NR; n = 13) of metabolizable energy and metabolizable protein requirements for maintenance, pregnancy, and growth from day 160 of gestation to parturition. Calves were reared naturally by their dams and monitored for latency times from birth to first sternal recumbency, attempt to stand, and stand; vigor scores were assigned at 2, 5, 10, and 20 min of age. Rectal temperatures and jugular blood were obtained at 0 (pre-suckling), 6, 12, 24, and 48 h of age, and blood chemistry, hematology, cortisol, and insulin were determined. Data were analyzed with fixed effects of late gestational nutritional plane (single data point) or nutritional plane, hour, and their interaction (data over time, repeated measures). Calving date was a fixed effect; calf sex was included when P < 0.25. We previously reported that late gestational nutritional plane did not affect gestation length or calf size at birth, but calving assistance and fetal malpresentation occurred more often in NR. Nutritional plane did not affect (P = 0.65) duration of parturition, but calves born to NR dams had slower times to attempt to stand (P = 0.09), slower times to stand (P = 0.02), and poorer 20 min vigor scores (P = 0.05). Serum immunoglobulin G and A concentrations at 48 h were greater (P ≤ 0.03) for NR calves. Rectal temperature of NR calves was less (P = 0.02) at 0 h, but greater (P = 0.04) at 24 h compared with CON. Circulating glucose, non-esterified fatty acids, triglycerides, cortisol, and insulin were not affected by nutritional plane (P ≥ 0.18). Total protein and globulin from 6 to 48 h were greater (P ≤ 0.02) in NR calves. Calves from NR dams had greater (P ≤ 0.08) gamma-glutamyl transferase at 6, 12, and 48 h. Serum aspartate aminotransferase was greater (P ≤ 0.07) from 0 to 24 h and creatine kinase was greater (P ≤ 0.04) from 6 to 24 h in NR calves. At 0 h, potassium was greater (P = 0.03) in NR calves. Calves born to CON had greater chloride (P = 0.08; main effect), sodium (P ≤ 0.09) from 0 to 48 h, and anion gap (P = 0.02) at 6 h. Hematocrit from 6 to 24 h and red blood cells and hemoglobin at 6 and 12 h were greater (P ≤ 0.09) in CON calves. These data indicate that nutrient restriction during late gestation resulted in less vigorous calves with more indicators of trauma in early life.
Collapse
Affiliation(s)
- Lindsey G Wichman
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Colby A Redifer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Zhang Y, Otomaru K, Oshima K, Goto Y, Oshima I, Muroya S, Sano M, Roh S, Gotoh T. Maternal Nutrition During Gestation Alters Histochemical Properties, and mRNA and microRNA Expression in Adipose Tissue of Wagyu Fetuses. Front Endocrinol (Lausanne) 2021; 12:797680. [PMID: 35178028 PMCID: PMC8844027 DOI: 10.3389/fendo.2021.797680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022] Open
Abstract
We hypothesized that maternal low or high nutrition would give unique effects to morphological and molecular dynamics in adipose tissue of fetus of fatty breed Wagyu (Japanese Black) cattle which produce highly marbled beef. This study aimed to determine the effects of maternal energy intake in Wagyu cows, during gestation on fetal adipose tissue development, histochemical properties, and gene and microRNA (miRNA) expression. Cows were allocated to one of two nutritional energy groups: 120% (HIGH) or 60% nutritional requirements of (LOW). Fetuses (n = 6 per treatment) were removed from pregnant cows by cesarean section at fetal age 260 ± 8 days and euthanized. Subcutaneous adipose tissue (SAT), thoracic cavity visceral adipose tissue (TVAT), and perirenal adipose tissue (PAT) were collected for analysis. In histochemical analysis, in SAT and PAT, HIGH fetuses had greater diameter of adipocytes than LOW fetuses (P<0.05). Only in SAT, LOW fetuses had more Leptin (LEP) mRNA and tended to have more Peroxisome Proliferator-Activated Receptor gamma (PPARG) CCAAT-enhancer-binding proteins alpha (CEBPA) and Glucose transporter (GLUT) 4 mRNA(P<0.10). In all SAT, TVAT, and PAT, LOW fetuses had higher levels of the brown adipose tissue (BAT) biomarkers Uncoupling Protein (UCP) 1 and PPARG coactivator (PGC) 1α mRNA than HIGH fetuses (P<0.08). Meanwhile, in the other adipose tissue, LOW fetuses had lower PPARG, CEBPA, and Zinc Finger Protein (ZFP) 423 (in TVAT and PAT), FASN (in TVAT), LEP and GLUT4 mRNA (in PAT; P<0.10). In particular, in TVAT and PAT, LOW fetuses exhibited lower expression of WAT biomarkers (PPARG and ZFP423). Differential expression of various miRNAs related to adipogenesis between the LOW and HIGH fetuses was detected in an adipose tissue-specific manner (P<0.10). Based on adipose tissue-specific effects of maternal nutrition, these findings suggested that poor maternal nutrition in Wagyu cattle increased BAT development in SAT, TVAT and PAT, while elevated maternal nutrition stimulated fetal SAT development compared with that of TVAT and PAT.
Collapse
Affiliation(s)
- Yi Zhang
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazunaga Oshima
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Yuji Goto
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), Oda, Japan
| | - Ichiro Oshima
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Susumu Muroya
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Mitsue Sano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone, Japan
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takafumi Gotoh
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
- Kuju Agricultural Research Center, Kyushu University, Taketa, Japan
- *Correspondence: Takafumi Gotoh,
| |
Collapse
|
4
|
Maresca S, Valiente SL, Rodriguez AM, Pavan E, Quintans G, Long NM. Late-gestation protein restriction negatively impacts muscle growth and glucose regulation in steer progeny. Domest Anim Endocrinol 2019; 69:13-18. [PMID: 31103887 DOI: 10.1016/j.domaniend.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 11/29/2022]
Abstract
The objective of this study was to determine whether the amount of protein provided to cows during late gestation would affect postnatal growth and lead to changes in glucose and insulin concentrations. At 129 d of gestation, 10 mature multiparous Angus cows were stratified by body weight (BW) and body condition score (BCS) and allotted to either low protein level (LP, 6% crude protein [CP]) or high protein level (HP, 12% CP) groups. After calving, cows were managed together on improved pastures, which provided forage in excess of requirements until weaning. Male calves were maintained as a group after weaning on native range until 23 mo of age when individual steers were placed in single pens and fed a finishing diet for 84 d. The 12th rib fat thickness and longissimus muscle area were measured during finishing phase by ultrasound. Twenty days before the end of the finishing phase, steers were subjected to an intravenous glucose tolerance test. Steers were harvested and carcass characteristics collected. Cows' BW and BCS were similar at the initiation of treatment. During treatment HP dams gained 21 kg, whereas LP dams lost 7 kg (P = 0.04). Protein nutrition during late gestation did not influence calf birth weight, BW at weaning, adjusted 205 d BW, or average daily gain during lactation (P > 0.10). Longissimus muscle area measure by ultrasound was greater (P = 0.02) in HP steers at the beginning and end of finishing phase. Fat thickness of the 12th rib was not different (P > 0.10) between treatments. Glucose concentration after intravenous administration decreased (P = 0.002) in LP compared with HP steers. Peak of serum insulin concentration was greater (P = 0.04) and serum insulin concentration tended to decrease (P = 0.08) more rapidly in LP compared with HP steers after glucose infusion. At harvest, hot carcass weight was similar between treatments, but dressing percentage was increased (P = 0.05) in HP compared with LP steers. These data demonstrate that a lower protein nutrition level of dams during late gestation affect carcass characteristics and alter glucose regulation enhancing insulin secretion in steer progeny.
Collapse
Affiliation(s)
- S Maresca
- Cuenca del Salado Experimental Station, Instituto Nacional de Tecnología Agropecuaria, Rauch 7203, Argentina.
| | - S L Valiente
- Cuenca del Salado Experimental Station, Instituto Nacional de Tecnología Agropecuaria, Rauch 7203, Argentina
| | - A M Rodriguez
- Cuenca del Salado Experimental Station, Instituto Nacional de Tecnología Agropecuaria, Rauch 7203, Argentina
| | - E Pavan
- Balcarce Experimental Station, Instituto Nacional de Tecnología Agropecuaria, Balcarce 2266, Argentina
| | - G Quintans
- Instituto Nacional de Investigación Agropecuaria, Treinta y Tres 33000, Uruguay
| | - N M Long
- Department of Animal and Veterinary Sciences, Clemson University, Clemson 29634, USA
| |
Collapse
|
5
|
Mulliniks JT, Cope ER, McFarlane ZD, Hobbs JD, Waterman RC. Drivers of grazing livestock efficiency: how physiology, metabolism, experience and adaptability influence productivity. J Anim Sci 2016. [DOI: 10.2527/jas.2015-0711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
6
|
|
7
|
Mulliniks JT, Sawyer JE, Harrelson FW, Mathis CP, Cox SH, Löest CA, Petersen MK. Effect of late gestation bodyweight change and condition score on progeny feedlot performance. ANIMAL PRODUCTION SCIENCE 2016. [DOI: 10.1071/an15025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inadequate nutrient intake during late gestation can cause cow bodyweight (BW) loss and influence cow reproductive performance and subsequent productivity of steer progeny. Therefore, a 7-year study with a 3 × 3 arrangement of treatments was conducted at Corona Range and Livestock Research Centre, Corona, New Mexico to evaluate the effects of cow BW change and body condition score (BCS) during late gestation on subsequent cow pregnancy rates, progeny steer feedlot performance, and health. Cows were retrospectively classified to 1 of 3 BW change groups: (1) cows that lost BW during late gestation (LOSS; mean –26 ± 2 kg); (2) cows that maintained BW during late gestation (MAIN; mean –1 ± 1 kg); or (3) cows that gained BW during late gestation (GAIN; mean 25 ± 2 kg). Cows were also classified to 1 of 3 BCS groups: BCS of 4 (mean BCS = 4.0 ± 0.02; range 4.0–4.5), 5 (mean BCS = 5.0 ± 0.02; range 5.0–5.5), or 6 (mean BCS = 6.0 ± 0.02; range 6.0–6.5). After weaning each year, steers were preconditioned for 45 days and were received and treated as custom-fed commercial cattle at a feedlot in mid-November. Calf weaning BW, initial feedlot BW, final BW, and hot carcass weight were unaffected (P ≥ 0.22) by dam’s prepartum BW change or BCS. However, steers from GAIN and MAIN tended (P = 0.06) to have increased ADG in the feedlot. Twelfth-rib fat thickness, longissimus muscle area, and days on feed were not influenced (P ≥ 0.18) by late gestation BW change or BCS. Calves from BCS 6 cows tended (P = 0.10) to have greater yield grades at harvest in the feedlot. Percentage of steers grading Choice or greater was increased (P < 0.01) in steers from LOSS cows and cows in BCS 4 during late gestation compared with other groups. These data suggest that modest nutrient restriction during late gestation can have a minimal effect on growth and performance of steer progeny from birth through the finishing phase.
Collapse
|
8
|
Long NM, Prado-Cooper MJ, Krehbiel CR, Wettemann RP. Effects of nutrient restriction of bovine dams during early gestation on postnatal growth and regulation of plasma glucose1. J Anim Sci 2010; 88:3262-8. [DOI: 10.2527/jas.2010-3214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
Long NM, Prado-Cooper MJ, Krehbiel CR, DeSilva U, Wettemann RP. Effects of nutrient restriction of bovine dams during early gestation on postnatal growth, carcass and organ characteristics, and gene expression in adipose tissue and muscle. J Anim Sci 2010; 88:3251-61. [PMID: 20525929 DOI: 10.2527/jas.2009-2512] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Angus x Hereford heifers (15 mo and artificially inseminated to a single sire) were used to evaluate the effect of prenatal nutritional restriction on postnatal growth and development. At d 32 of gestation, dams were stratified by BW and BCS and allotted to a low-nutrition [55% of NRC (1996) requirements, n = 10] or moderate-nutrition [100% of NRC (1996) requirements, n = 10] diet. After 83 d of feeding, dams were commingled and received a diet in excess of requirements. Dams were allowed to calve naturally, and birth weights and growth of calves were recorded. Bulls were castrated at birth. Steers (16 mo of age, 5 per treatment) received a high-concentrate diet ad libitum to a constant age (88 ± 1 wk). Steers were slaughtered and weights of the empty body and organs were recorded. Samples of organs, muscle (complexus), and perirenal and subcutaneous adipose tissue were stored at -80 degrees C, and then DNA and protein concentrations were quantified and expression of genes associated with fatty acid metabolism and glucose uptake were measured in adipose and muscle tissue. Dams had similar (P > 0.33) BW and BCS at the beginning of the experiment. At the end of restriction, dams on the low-nutrition diet weighed less (P ≤ 0.01) and had less BCS (P < 0.001) than those on the moderate-nutrition diet. Length of gestation was 274 ± 2 d for dams in the low-nutrition treatment and 278 ± 2 d (P = 0.05) for dams in the moderate-nutrition treatment. Nutrient restriction during gestation did not influence birth weight or postnatal growth of calves. Lungs and trachea of steers whose dams were fed the low-nutrition diet weighed less (P = 0.05) at slaughter than those of steers whose dams were fed the moderate-nutrition diet; weights of other organs were not influenced by treatment. Complexus muscle from steers whose dams were fed the low-nutrition diet had a greater (P = 0.04) concentration of DNA and larger muscle fiber area compared with steers whose dams were fed the moderate-nutrition diet. Abundance of mRNA for fatty acid binding protein 4, fatty acid translocase, and glucose transporter 4 was less in perirenal adipose tissue of steers whose dams were fed the low-nutrition diet compared with those whose dams were fed the moderate-nutrition diet. Nutritional restriction of dams during early gestation did not alter postnatal calf growth. However, concentrations of DNA in muscle tissue and muscle fiber area were greater in steers from dams exposed to restricted nutrient intake during early gestation.
Collapse
Affiliation(s)
- N M Long
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Stillwater, OK 74078-0425, USA
| | | | | | | | | |
Collapse
|
10
|
Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species. Animal 2010; 4:1093-109. [DOI: 10.1017/s1751731110000601] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
11
|
Stalker LA, Adams DC, Klopfenstein TJ, Feuz DM, Funston RN. Effects of pre- and postpartum nutrition on reproduction in spring calving cows and calf feedlot performance. J Anim Sci 2006; 84:2582-9. [PMID: 16908664 PMCID: PMC7109832 DOI: 10.2527/jas.2005-640] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Crossbred, spring-calving cows (yr 1, n = 136; yr 2, n = 113; yr 3, n = 113) were used in a 3-yr experiment to evaluate the influence of supplemental protein prepartum and grazing subirrigated meadow postpartum on pregnancy rates and calf feedlot performance. A 2 × 2 factorial arrangement of treatments was used in a switchback design. From December 1 to February 28, cows grazed dormant upland range in 8 pastures (32 ± 2 ha each). The equivalent of 0.45 kg of supplement/cow per d (42% CP) was provided to half of the cows on a pasture basis 3 d/wk. For 30 d before the beginning of breeding (May 1 to May 31), half of the cows grazed a common subirrigated meadow (58 ha), and the remainder was fed grass hay in a drylot. Cow BW and BCS were monitored throughout the year, and steer calf performance was determined until slaughter. Feeding supplement prepartum improved (P = 0.01 to P < 0.001) BCS precalving (5.1 vs. 4.7) and prebreeding (5.1 vs. 4.9) and increased (P = 0.02) the percentage of live calves at weaning (98.5 vs. 93.6%) but did not affect (P = 0.46) pregnancy rate (93 vs. 90%). Calves born to dams fed supplement prepartum had similar (P = 0.29) birth weight (37 vs. 36 kg) but greater (P = 0.02) weaning weight (218 vs. 211 kg). However, steer feedlot DMI (8.53 vs. 8.48 kg), ADG (1.6 vs. 1.6 kg), and carcass weight (369 vs. 363 kg) were not affected (P = 0.23 to P = 0.89) by prepartum supplementation. Allowing cows to graze subirrigated meadow postpartum improved (P < 0.001) BCS prebreeding (5.2 vs. 4.9) but did not affect (P = 0.88) pregnancy rate (92 vs. 91%). Allowing cows to graze subirrigated meadow increased (P = 0.01) calf weaning weight (218 vs. 211 kg) but not (P = 0.62 to P = 0.91) feedlot DMI (8.4 vs. 8.3 kg), ADG (1.6 vs. 1.6 kg), or carcass weight (363 vs. 362 kg) of their steer calves. Increased percentage of live calves at weaning as a result of feeding supplemental protein increased net returns at weaning and after finishing in the feedlot. Net returns were increased by allowing cows to graze subirrigated meadow postpartum regardless of whether calves were marketed at weaning or after finishing in the feedlot.
Collapse
Affiliation(s)
- L A Stalker
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | | | | | | | | |
Collapse
|
12
|
Parker KL, Barboza PS, Stephenson TR. PROTEIN CONSERVATION IN FEMALE CARIBOU (RANGIFER TARANDUS): EFFECTS OF DECREASING DIET QUALITY DURING WINTER. J Mammal 2005. [DOI: 10.1644/1545-1542(2005)86[610:pcifcr]2.0.co;2] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Chapter 12 Ontogeny and metabolism of brown adipose tissue in livestock species. BIOLOGY OF GROWING ANIMALS 2005. [DOI: 10.1016/s1877-1823(09)70019-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Smith SB, Carstens GE, Randel RD, Mersmann HJ, Lunt DK. Brown adipose tissue development and metabolism in ruminants1. J Anim Sci 2004; 82:942-54. [PMID: 15032453 DOI: 10.2527/2004.823942x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT adipocytes did not. Similarly, BAT from neonatal lambs (Exp. 5; n = 6 per group) was depleted of lipid in response to cold exposure, although UCP1 gene expression persisted. In Exp. 4, NE stimulated lipogenesis from palmitate in BAT incubated in vitro. Lipogenesis from palmitate was higher in Angus than in Brahman BAT, and increased with both warm and cold exposure. These studies suggest that BAT from Brahman calves may be exhausted of lipid shortly after birth during times of cold exposure.
Collapse
Affiliation(s)
- S B Smith
- Department of Animal Science, Texas A&M University, College Station 77843, USA.
| | | | | | | | | |
Collapse
|