1
|
EPA and DHA as markers of nutraceutical treatment response in major depressive disorder. Eur J Nutr 2019; 59:2439-2447. [DOI: 10.1007/s00394-019-02090-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
|
2
|
Omega-3 Polyunsaturated Fatty Acids in Youths with Attention Deficit Hyperactivity Disorder: a Systematic Review and Meta-Analysis of Clinical Trials and Biological Studies. Neuropsychopharmacology 2018; 43:534-545. [PMID: 28741625 PMCID: PMC5669464 DOI: 10.1038/npp.2017.160] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/03/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022]
Abstract
The role of omega-3 polyunsaturated fatty acids (omega-3 or n-3 PUFAs) in the pathogenesis and treatment of children and adolescents with attention deficit hyperactivity disorder (ADHD) is unclear. A systematic review followed by meta-analysis was conducted on: (1) randomized controlled trials (RCTs) assessing the effects of n-3 PUFAs on clinical symptoms and cognition in children and adolescent with ADHD; and (2) case-control studies assessing the levels of n-3 PUFAs in blood and buccal tissues of children and adolescents with ADHD. In seven RCTs, totalling n=534 randomized youth with ADHD, n-3 PUFAs supplementation improves ADHD clinical symptom scores (g=0.38, p<0.0001); and in three RCTs, totalling n=214 randomized youth with ADHD, n-3 PUFAs supplementation improves cognitive measures associated with attention (g=1.09, p=0.001). Moreover, children and adolescents with ADHD have lower levels of DHA (seven studies, n=412, g=-0.76, p=0.0002), EPA (seven studies, n=468, g=-0.38, p=0.0008), and total n-3 PUFAs (six studies, n=396, g=-0.58, p=0.0001). In summary, there is evidence that n-3 PUFAs supplementation monotherapy improves clinical symptoms and cognitive performances in children and adolescents with ADHD, and that these youth have a deficiency in n-3 PUFAs levels. Our findings provide further support to the rationale for using n-3 PUFAs as a treatment option for ADHD.
Collapse
|
3
|
Liu YY, Zhou XY, Yang LN, Wang HY, Zhang YQ, Pu JC, Liu LX, Gui SW, Zeng L, Chen JJ, Zhou CJ, Xie P. Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats. PLoS One 2017; 12:e0176725. [PMID: 28453574 PMCID: PMC5409051 DOI: 10.1371/journal.pone.0176725] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/15/2017] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder is a serious mental disorder with high morbidity and mortality. The role of social stress in the development of depression remains unclear. Here, we used the social defeat stress paradigm to induce depression-like behavior in rats, then evaluated the behavior of the rats and measured metabolic changes in the prefrontal cortex using gas chromatography-mass spectrometry. Within the first week after the social defeat procedure, the sucrose preference test (SPT), open field test (OFT), elevated plus maze (EPM) and forced swim test (FST) were conducted to examine the depressive-like and anxiety-like behaviors. For our metabolite analysis, multivariate statistics were applied to observe the distribution of all samples and to differentiate the socially defeated group from the control group. Ingenuity pathway analysis was used to find the potential relationships among the differential metabolites. In the OFT and EPM, there were no significant differences between the two experimental groups. In the SPT and FST, socially defeated rats showed less sucrose intake and longer immobility time compared with control rats. Metabolic profiling identified 25 significant variables with good predictability. Ingenuity pathways analysis revealed that “Hereditary Disorder, Neurological Disease, Lipid Metabolism” was the most significantly altered network. Stress-induced alterations of low molecular weight metabolites were observed in the prefrontal cortex of rats. Particularly, lipid metabolism, amino acid metabolism, and energy metabolism were significantly perturbed. The results of this study suggest that repeated social defeat can lead to metabolic changes and depression-like behavior in rats.
Collapse
Affiliation(s)
- Yi-Yun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xin-Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li-Ning Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yu-Qing Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jun-Cai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Si-Wen Gui
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jian-Jun Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Chan-Juan Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
4
|
Short-Term Stability of Whole Blood Polyunsaturated Fatty Acid Content on Filter Paper During Storage at -28 °C. Lipids 2016; 51:193-8. [PMID: 26749585 DOI: 10.1007/s11745-015-4111-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/01/2015] [Indexed: 01/30/2023]
Abstract
Finger or heel-pricked blood sampling for fatty acid analysis is suitable especially in newborn infants where blood sampling is difficult and phlebotomy for research can be unethical. The aim of this study was to evaluate dried blood long chain polyunsaturated fatty acids (LC-PUFA) stability during storage at -28 °C. We collected 12 blood cord samples that were analyzed immediately after blood drawing, with and without drying the blood on filter paper. Dried samples were then analyzed 7 days and 1, 3, and 6 months after collection. Butylated hydroxytoluene was added to all samples. Fatty acid composition and (13)C enrichment were measured by gas chromatography and by gas chromatography-isotope ratio mass spectrometry, respectively. The fatty acid composition, expressed in mol%, of the major LC-PUFA at day 7 was not statistically different from time 0, however lower values were found by the first month of storage. The (13)C enrichment of 20:4n-6 and 22:6n-3 did not differ during the whole study period. LC-PUFA analysis from dried umbilical cord blood in neonates should be performed within a week, major losses of LC-PUFA occur afterwards. However, fatty acids obtained from dried blood maintain their (13)C enrichment value for up to 6 months and thus these samples are suitable for natural abundance isotopic studies.
Collapse
|
5
|
Khan MZ, He L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 2015; 113:639-651. [PMID: 26005184 DOI: 10.1016/j.neuropharm.2015.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 01/15/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are found in abundance in the nervous system. They perform significant functions for example boosting synaptogenesis, neurogenesis, inducing antinociception, stimulating gene expression and neuronal activity, preventing apoptosis and neuroinflammation. G-protein-coupled receptor 40 (GPR40), also called free fatty acid receptor 1 (FFA1), is ubiquitously expressed in various regions of the human brain including the olfactory bulb, midbrain, medulla oblongata, hippocampus, hypothalamus, cerebral cortex, cerebellum and in the spinal cord. GPR40, when binding with polyunsaturated fatty acids (PUFAs) has shown promising therapeutic potential. This review presents current knowledge regarding the pharmacological properties of GPR40 and addresses its functions in brain, with a focus on neurodevelopment & neurogenesis. Furthermore, the demonstration of GPR40 involvement in several neuropathological conditions such as apoptosis, inflammatory pain, Alzheimer's disease and Parkinson's disease. Although the results are encouraging, further research is needed to clarify their role in the treatment of inflammatory pain, Alzheimer's disease and Parkinson's disease. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Stonehouse W. Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients 2014; 6:2730-58. [PMID: 25054550 PMCID: PMC4113767 DOI: 10.3390/nu6072730] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 11/16/2022] Open
Abstract
Long-chain (LC) omega-3 PUFA derived from marine sources may play an important role in cognitive performance throughout all life stages. Docosahexaenoic acid (DHA), the dominant omega-3 in the brain, is a major component of neuronal cell membranes and affects various neurological pathways and processess. Despite its critical role in brain function, human’s capacity to synthesize DHA de novo is limited and its consumption through the diet is important. However, many individuals do not or rarely consume seafood. The aim of this review is to critically evaluate the current evidence from randomised controlled trials (RCT) in healthy school-aged children, younger and older adults to determine whether consumption of LC omega-3 PUFA improves cognitive performance and to make recommendations for future research. Current evidence suggests that consumption of LC omega-3 PUFA, particularly DHA, may enhance cognitive performance relating to learning, cognitive development, memory and speed of performing cognitive tasks. Those who habitually consume diets low in DHA, children with low literacy ability and malnourished and older adults with age-related cognitive decline and mild cognitive impairment seem to benefit most. However, study design limitations in many RCTs hamper firm conclusions. The measurement of a uniform biomarker, e.g., % DHA in red blood cells, is essential to establish baseline DHA-status, to determine targets for cognitive performance and to facilitate dosage recommendations. It is recommended that future studies be at least 16 weeks in duration, account for potential interaction effects of gender, age and apolipoprotein E genotype, include vegan/vegetarian populations, include measures of speed of cognitive performance and include brain imaging technologies as supportive information on working mechanisms of LC omega-3 PUFA.
Collapse
Affiliation(s)
- Welma Stonehouse
- CSIRO Food and Nutrition Flagship, P.O. Box 10041, Adelaide BC, South Australia 5000, Australia.
| |
Collapse
|
7
|
Content of trans fatty acids in human cheek epithelium: comparison with serum and adipose tissue. BIOMED RESEARCH INTERNATIONAL 2013; 2013:276174. [PMID: 24222900 PMCID: PMC3816018 DOI: 10.1155/2013/276174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/25/2022]
Abstract
Studies pertaining to trans fatty acids (TFA), which have been implicated in development of chronic diseases, are more relevant in developing countries where nutrition transition is changing traditional habits and practices. Measuring TFA is an arduous task because of the need for fat biopsies. This study identifies a tissue, which can be easily accessed for analytical measurement of trans fatty acid. In this cross-sectional study, fatty acid in adipose tissue, cheek epithelium, and blood samples were assessed by gas chromatography. Spearman correlation coefficient was computed to study the correlation of fatty acid distribution among the three tissues. The correlation coefficient of total trans fatty acid between cheek epithelium and serum was 0.30 (P < 0.02) and between cheek epithelium and adipose tissue was 0.33 (P < 0.019). This study is the first to report trans fatty acid profile in cheek epithelium giving scope for utilizing the cheek epithelium as a tissue for objective assessment of trans fatty acid intake.
Collapse
|
8
|
Grindel A, Staps F, Kuhnt K. Cheek cell fatty acids reflect n-3 PUFA in blood fractions during linseed oil supplementation: a controlled human intervention study. Lipids Health Dis 2013; 12:173. [PMID: 24229084 PMCID: PMC3842671 DOI: 10.1186/1476-511x-12-173] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/05/2013] [Indexed: 11/10/2022] Open
Abstract
Background Adequate biomarkers for the dietary supply of fatty acids (FA) are FA of adipose tissue and blood fractions. In human studies, invasive sample collection is unpleasant for subjects. In contrast, cheek cell sampling can be considered as a non-invasive alternative to investigate FA status. The aim of this study was to analyze whether cheek cell FA composition reflect the supplementation of alpha-linolenic acid (ALA) using a linseed oil mixture compared to olive oil supplementation. Additionally, it was investigated if cheek cell FA composition correlates with the FA composition of plasma, red blood cells (RBC) and peripheral blood mononuclear cells (PBMC) before and during both interventions. Methods During a 10-week randomized, controlled, double-blind human intervention study, 38 subjects provided cheek cell and blood samples. After a two-week run-in period, the test group (n = 23) received 17 g/d of an ALA-rich linseed oil mixture, while the control group (n = 15) received 17 g/d of an omega-3 (n-3) polyunsaturated FA (PUFA)-free olive oil. Cheek cells and blood were collected on days 0, 7 and 56 of the 8-week intervention period. Results Compared to olive oil, the linseed oil intervention increased ALA and also the endogenously converted long-chain n-3 metabolites eicosatetraenoic-, eicosapentaenoic- and docosapentaenoic acid in cheek cells (P ≤ 0.05). Docosahexaenoic acid remained unchanged. Reflecting the treatment, the n-6/n-3 ratio decreased in the test group. In general, cheek cell FA reflected the changes of FA in blood fractions. Independent of treatment, significant correlations (P ≤ 0.05) of n-6 PUFA and n-3 PUFA between cheek cells and plasma, RBC and PBMC were found, except for linoleic acid and ALA. Conclusions The changes in FA composition of cheek cells confirmed that ALA from linseed oil increased endogenously derived n-3 PUFA in cheek cell lipids. These changes in cheek cells and their correlation to the respective FA in blood fractions indicate the cheek cell FA profile as an adequate non-invasive biomarker for short-term n-3 PUFA intake and metabolism. Therefore, cheek cell FA can be used in human intervention studies or large-scale epidemiological studies, especially for assessment of the n-3 PUFA status. Trial registration ClinicalTrials.gov, IDNCT01317290
Collapse
Affiliation(s)
| | | | - Katrin Kuhnt
- Department of Nutritional Physiology, Institute of Nutrition, Friedrich Schiller University, Dornburger Straße 24, Jena 07743, Germany.
| |
Collapse
|
9
|
A meta-analytic review of polyunsaturated fatty acid compositions in patients with depression. Biol Psychiatry 2010; 68:140-7. [PMID: 20452573 DOI: 10.1016/j.biopsych.2010.03.018] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/21/2023]
Abstract
BACKGROUND On the basis of evidence from studies showing the antidepressant effects of omega-3 polyunsaturated fatty acids and the inverse relation between fish consumption and the prevalence of depression, the phospholipid hypothesis seems promising in ascertaining the etiology and treatment of depression. Although several studies have shown lower levels of omega-3 (n-3) polyunsaturated fatty acids in depressive patients, the results of individual polyunsaturated fatty acids, including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and the omega-6 (n-6) polyunsaturated fatty acid arachidonic acid (AA), were inconsistent. METHODS We conducted the meta-analyses of 14 studies comparing the levels of polyunsaturated fatty acids between depressive patients and control subjects. The effect size of each study was synthesized by using a random effects model. RESULTS Compared with control subjects, the levels of EPA, DHA, and total n-3 polyunsaturated fatty acids were significantly lower in depressive patients. There was no significant change in AA or total n-6 polyunsaturated fatty acids. CONCLUSIONS The results showed lower levels of EPA, DHA, and total n-3 polyunsaturated fatty acids in patients with depression, thus implying that n-3 polyunsaturated fatty acids play a role in the pathogenesis of depression. Our findings provide further support to the phospholipid hypothesis of depression and a rationale for using n-3 polyunsaturated fatty acids as an alternative treatment for depression. With these results, future studies examining specific roles of DHA and EPA in different clusters of depressive symptoms are warranted.
Collapse
|
10
|
Kirby A, Woodward A, Jackson S, Wang Y, Crawford MA. The association of fatty acid deficiency symptoms (FADS) with actual essential fatty acid status in cheek cells. Prostaglandins Leukot Essent Fatty Acids 2010; 83:1-8. [PMID: 20356721 DOI: 10.1016/j.plefa.2010.02.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 11/25/2022]
Abstract
Seven clinical symptoms have been utilised in several studies as a means of potentially identifying children with a deficiency in essential polyunsaturated fatty acids (PUFAs). The purpose of this study was to investigate whether there was any correlation between parental reports of the frequency of these seven 'fatty acid deficiency symptoms' (FADS) with actual levels of fatty acids in buccal cell samples of 450 children aged 8-10 years old. Additionally, the relationship between FADS and cognitive test performance, ratings of attention and behaviour and other somatic complaints were explored. The severity of reported FADS was not related to the levels of omega-6 or omega-3 in buccal cell samples. There was a relationship between parental reports of child behaviour and reported FADS; with high FADS being related to higher ratings of behaviour problems. Using FADS as a marker of PUFA deficiency may not be appropriate especially when assessing typically developing children.
Collapse
Affiliation(s)
- A Kirby
- The Dyscovery Centre, Allt-yr-yn Campus, University of Wales, Newport NP20 5DA, UK
| | | | | | | | | |
Collapse
|
11
|
Differences in fatty acid composition between cerebral brain lobes in juvenile pigs after fish oil feeding. Br J Nutr 2008; 100:794-800. [PMID: 18315890 DOI: 10.1017/s0007114508943737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Very long-chain n-3 PUFA from fish are suggested to play a role in the development of the brain. Fish oil feeding results in higher proportions of n-3 PUFA in the brains of newborn piglets. However, the effect of fish oil on the fatty acid composition of specific cerebral brain lobes in juvenile pigs is largely uninvestigated. This study examined the effect of a fish oil diet on the fatty acid composition of the frontal, parietal, temporal and occipital brain lobes in juvenile pigs (7 weeks old). Pigs were randomly allocated to a semipurified pig diet containing either 4% (w/w) fish oil (n 19) or 4% (w/w) high-oleic acid sunflower oil (HOSF diet, n 18) for a period of 8 weeks. The fish oil diet resulted in significantly higher proportions (%) of DHA in the frontal (10.6 (SD1.2)), parietal (10.2 (SD1.5)) and occipital brain lobes (9.9 (SD 1.3)), but not in the temporal lobe (7.7 (SD1.6)), compared with pigs fed the HOSF diet (frontal lobe, 7.5 (SD1.0); parietal lobe, 8.1 (SD 1.3); occipital lobe, 7.3 (SD1.2), temporal lobe, 6.6 (SD1.2). Moreover, the proportion of DHA was significantly lower in the temporal lobe compared with the frontal, parietal and occipital brain lobes in pigs fed a fish oil diet. In conclusion, the brains of juvenile pigs appear to be responsive to dietary fish oil, although the temporal brain lobe is less responsive compared with the other three brain lobes. The functional consequences of these differences are a challenging focus for future investigation.
Collapse
|
12
|
Yamashima T. A putative link of PUFA, GPR40 and adult-born hippocampal neurons for memory. Prog Neurobiol 2007; 84:105-15. [PMID: 18191887 DOI: 10.1016/j.pneurobio.2007.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/01/2007] [Accepted: 11/14/2007] [Indexed: 11/24/2022]
Abstract
Long chain polyunsaturated fatty acids (PUFA) such as docosahexaenoic and arachidonic acids, which are enriched in the brain, are important for multiple aspects of neuronal development and function including neurite outgrowth, signal transduction and membrane fluidity. Recent studies show that PUFA are capable of improving hippocampal long-term potentiation, learning ability of aged rats, and cognitive function of humans with memory deficits, although the underlying mechanisms are unknown. There have been several reports studying physiological roles of G-protein coupled receptor 40 (GPR40) in the pancreas, but no studies have focused on the function of GPR40 in the brain. As GPR40 was recently identified in neurons throughout the brain, it is probable that certain PUFA may act, as endogenous ligands, on GPR40 at their cell surface. However, the effects of PUFA upon neuronal functions are still not clearly understood. Here, although circumferential, a combination of in vitro and in vivo data is introduced to consider the effects of docosahexaenoic and arachidonic acids on brain functions. GPR40 was found in the newborn neurons of the normal and postischemic hippocampi of adult macaque monkeys, while the positive effects of PUFA upon Ca(2+) mobilization and cognitive functions were demonstrated in both GPR40 gene-transfected PC12 cells and human subjects with memory deficits. The purpose of this review is to propose a putative link among PUFA, GPR40, and hippocampal newborn neurons by discussing whether PUFA can improve memory functions through GPR40 activation of adult-born neurons. At present, little is known about PUFA requirements that make possible neurogenesis in the adult hippocampus. However, the idea that 'PUFA-GPR40 interaction might be crucial for adult neurogenesis and/or memory' should be examined in detail using various experimental paradigms.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
13
|
Sala-Vila A, Castellote AI, Campoy C, Rivero M, Rodriguez-Palmero M, López-Sabater MC. The source of long-chain PUFA in formula supplements does not affect the fatty acid composition of plasma lipids in full-term infants. J Nutr 2004; 134:868-73. [PMID: 15051839 DOI: 10.1093/jn/134.4.868] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Supplementation of formulas for full-term infants with long-chain (LC) PUFA [arachidonic acid (AA) and docosahexaenoic acid (DHA)] at levels resembling human milk is recommended because they provide biochemical and functional benefits to the neonate. The objective of this work was to determine whether the source of dietary LC-PUFA affects the bioavailability in full-term infants. Treatment groups were as follows: full-term infants were fed from birth to 3 mo breast-milk (n = 11, 0.4 and 0.3 g/100 g total fatty acids as AA and DHA, respectively), formula containing LC-PUFA in the form of egg phospholipids (n = 12), or a formula supplemented with LC-PUFA in the form of triglycerides synthesized by single cells of algal and fungal microorganisms (n = 12). Both formulas provided 0.4 and 0.1 g/100 g total fatty acids as AA and DHA, respectively. We compared the fatty acid compositions of the main plasma lipid fractions (phospholipids, triglycerides, and cholesteryl esters) at birth and 3 mo. At 3 mo, lower levels of nervonic acid (NA), docosapentaenoic (DPA) acid, and DHA were found in all plasma lipid fractions from infants fed formula compared with those in the human milk-fed infants, irrespective of the source of the formula supplement (P < 0.02). These data demonstrate that the form of dietary LC-PUFA (triglycerides or phospholipids) does not influence their bioavailability. Similarly, absorption of LC-PUFA depends mainly on the lipid composition of the diet fed. These results suggest that the levels of NA, DPA, and DHA in formulas for full-term infants should be increased.
Collapse
Affiliation(s)
- Aleix Sala-Vila
- Department Nutrició i Bromatologia, Centre de Referència en Tecnologia dels Aliments (CeRTA), Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
A novel in vivo fatty acid method has been developed to quantify and image brain metabolism of nutritionally essential polyunsaturated fatty acids (PUFAs). In unanesthetized rodents, a radiolabeled PUFA is injected intravenously, and its rate of incorporation into brain phospholipids is determined by chemical analysis or quantitative autoradiography. Results indicate that about 5% of brain arachidonic acid (20:4 n-6) and of docosahexaenoic acid (22:6 n-3) acid are lost daily by metabolism and are replaced from dietary sources through the plasma. Calculated turnover rates of PUFAs in brain phospholipids, due to deesterification by phospholipase A(2) (PLA(2)) followed by reesterification, are very rapid, consistent with active roles of PUFAs in signal transduction and other processes. Turnover rates of arachidonate and docosahexaenoate are independent of each other and probably are regulated by independent sets of enzymes. Brain incorporation of radiolabeled arachidonate can be imaged in response to drugs that bind to receptors coupled to PLA(2) through G proteins, thus measuring PLA(2)-initiated signal transduction. The in vivo fatty method is being extended for human studies using positron emission tomography.
Collapse
Affiliation(s)
- Stanley I Rapoport
- National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Ding ST, Lapillonne A, Heird WC, Mersmann HJ. Dietary fat has minimal effects on fatty acid metabolism transcript concentrations in pigs. J Anim Sci 2003; 81:423-31. [PMID: 12643486 DOI: 10.2527/2003.812423x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Young, crossbred pigs were fed either a low-fat, corn-based diet; a high-fat, tallow-based diet with a considerable saturated fatty acid (FA) content; or a high-fat, fish oil-based diet with a considerable polyunsaturated FA content, for 14 d. There were six pigs per dietary group (approximately 4-wk-old with a body weight of 6.16 kg). The plasma and adipose tissue FA composition reflected the composition of the diet to a large extent, but also reflected de novo FA synthesis coupled with chain elongation and desaturation. The liver and skeletal muscle FA composition reflected the diet and endogenous synthesis, but the indications for preferential incorporation or exclusion of specific FA were greater in these tissues than in plasma or adipose tissue. An important transcription factor for adipocyte differentiation and other aspects of lipid metabolism is adipocyte determination and differentiation-dependent factor 1 (ADD1). Liver ADD1 messenger RNA (mRNA) tended to be decreased (P = 0.06) in the fish oil-fed group, as well as in the combined high-fat-fed groups (tallow + fish oil) compared to the low-fat-fed group (P = 0.06). The muscle acyl-CoA oxidase mRNA tended to be increased in the tallow-fed group and decreased in fish oil-fed groups (P = 0.06). The muscle carnitine palmitoyltransferase mRNA tended to be elevated in both fat-fed groups (P = 0.07). None of the adipose tissue mRNA were changed by the diet (P > 0.20). The observations suggest there are major differences between rodents and pigs in modulation of transcripts associated with lipid metabolism by the dietary FA composition or concentration. Also, in porcine adipose tissue, as well as in liver and skeletal muscle, these transcripts are rather refractory to modification by dietary FA.
Collapse
Affiliation(s)
- S T Ding
- USDA, ARS, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030-2600, USA
| | | | | | | |
Collapse
|