1
|
Peng Y, Song H, Jin T, Yang R, Shi J. Distribution characteristics of potentially toxic metal(loid)s in the soil and in tea plant (Camellia sinensis). Sci Rep 2024; 14:14741. [PMID: 38926601 PMCID: PMC11208595 DOI: 10.1038/s41598-024-65674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Potentially toxic metal(loid) assessment of tea and tea garden soil is a vital guarantee of tea safety and is very necessary. This study analyzed the distribution of seven potentially toxic metal(loid)s in different organs of the tea plants and soil at various depths in the Yangai tea farm of Guiyang City, Guizhou Province, China. Although soil potentially toxic metal(loid) in the study area is safe, there should be attention to the health risks of Cu, Ni, As, and Pb in the later stages of tea garden management. Soil As and Pb are primarily from anthropogenic sources, soil Zn is mainly affected by natural sources and human activities, and soil with other potentially toxic metal(loid) is predominantly from natural sources. Tea plants might be the enrichment of Zn and the exclusion or tolerance of As, Cu, Ni, and Pb. The tea plant has a strong ability for absorbing Cd and preferentially storing it in its roots, stems, and mature leaves. Although the Cd and other potentially toxic metal(loid)s content of tea in Guizhou Province is generally within the range of edible safety, with the increase of tea planting years, it is essential to take corresponding measures to prevent the potential health risks of Cd and other potentially toxic metal(loid)s in tea.
Collapse
Affiliation(s)
- Yishu Peng
- College of Tea Science, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, People's Republic of China.
- College of Resources and Environmental Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, People's Republic of China.
| | - Haijie Song
- College of Tea Science, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, People's Republic of China
| | - Tao Jin
- Institute of Mountain Resources of Guizhou Province, Guizhou Academy of Sciences, Guiyang, 550001, People's Republic of China
| | - Ruidong Yang
- College of Resources and Environmental Engineering, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, People's Republic of China.
| | - Jing Shi
- College of Tea Science, Guizhou University, Huaxi District, Guiyang, 550025, Guizhou, People's Republic of China
| |
Collapse
|
2
|
Girolametti F, Annibaldi A, Illuminati S, Damiani E, Carloni P, Truzzi C. Essential and Potentially Toxic Elements (PTEs) Content in European Tea ( Camellia sinensis) Leaves: Risk Assessment for Consumers. Molecules 2023; 28:molecules28093802. [PMID: 37175212 PMCID: PMC10179902 DOI: 10.3390/molecules28093802] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Tea (Camellia sinensis) is the second most consumed beverage worldwide, playing a key role in the human diet. Tea is considered a healthy drink, as its consumption has been linked to a lower risk of cardiovascular disease-related events and death, stroke, metabolic syndrome and obesity. However, several studies have shown that C. sinensis is a hyperaccumulator of Al and other elements that are considered potentially toxic. In the present study, the contents of 15 elements (both essential and toxic) were determined for the first time in tea leaves collected in tea gardens located in six different European countries and processed to provide black and green tea. The results showed that Al was the major toxic element detected, followed by Ni, Cr, Pb, As, Cd, Ag, and Hg. Essential elements were detected in the order of Mn, Fe, Zn, Cu, Co, and Se. Statistically significant correlations (p < 0.05) were found in the distribution of some elements, highlighting mechanisms of synergic or antagonist interaction. Multivariate analysis revealed that geographical origin was the main driver in clustering the samples, while the different treatment processes (black or green) did not significantly affect the contents of elements in the leaves. The estimation of potential non-carcinogenic risk revealed no risk for the consumption of European teas for consumers in terms of potentially toxic elements.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
3
|
Edussuriya R, Hettithanthri O, Rajapaksha AU, Jayasinghe C, Vithanage M. Intake of fluoride and other Hofmeister ions from black tea consumption in CKDu prevalent areas, Sri Lanka. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:41900-41909. [PMID: 36639586 DOI: 10.1007/s11356-022-25076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
Dietary exposure of selected Hofmeister ions-fluoride, chloride, sulfate, phosphate, sodium, potassium, magnesium, and calcium from black tea consumption in chronic kidney disease of unknown etiology (CKDu) prevalent areas in Sri Lanka-were assessed in order to understand exposure and risk. Black tea samples (n = 25) were collected from CKDu prevalent areas and control areas (n = 15). Total fluoride content in alkali fused digested black tea samples was determined. The available Hofmeister ions in tea infusions prepared using deionized water and the groundwater collected by CKDu endemic areas were compared. Dietary exposure was calculated by chronic daily intake data. Total fluoride concentrations ranged from 80 to 269 mg/kg in tea collected from the CKDu endemic regions and 62.5-123.5 mg/kg in non-endemic regions. The fluoride content in infusions ranged from 1.45 to 2.04 mg/L in CKDu endemic areas and 1.11-1.38 mg/L in control samples. The infusions prepared with local groundwater from the CKDu endemic areas showed an elevated level of fluoride 95% than that of the infusion prepared using same tea with deionized water. Aggregated chronic daily intake value from tea and groundwater exceeds the estimated adequate daily intake value of fluoride. The hazard quotient (HQ) values of fluoride in 5 min and 120 min tea infusions were 1.60 and 2.20, respectively, and indicate an adverse health risk. Potassium content in tea infusions collected from CKDu endemic areas is higher than in the control. Even though these values are less than the adequate intake, it may pose an impairment on a weak kidney. Chronic daily intake of Hofmeister ions, i.e., fluoride and potassium from black tea consumed in CKDu endemic areas may induce a risk for CKDu.
Collapse
Affiliation(s)
- Randima Edussuriya
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Department of Food Science and Technology, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - Oshadi Hettithanthri
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chamila Jayasinghe
- Department of Food Science and Technology, Faculty of Livestock, Fisheries and Nutrition, Wayamba University of Sri Lanka, Makandura, Gonawila, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
4
|
Zhuang Z, Mi Z, Kong L, Wang Q, Schweiger AH, Wan Y, Li H. Accumulation of potentially toxic elements in Chinese tea (Camellia sinensis): Towards source apportionment and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158018. [PMID: 35987241 DOI: 10.1016/j.scitotenv.2022.158018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Tea (Camellia sinensis) is a popular beverage that is consumed globally. However, a better understanding of potentially toxic elements (PTEs) content in tea leaves and infusion is necessary to minimize risk on human health. Therefore, 249 tea samples (grown in different areas) covering six types of tea were collected in China to investigate the PTEs contents, identify their potential source and assess the health risk associated with drinking tea. PTE contents in tea leaves across six tea types were ND-0.900 (Cd), 0.005-2.133 (As), ND-5.679 (Pb), ND-13.86 (Cr), 1.601-22.93 (Ni), ND-2.048 (Se), 0.109-622.4 (F), 13.02-269.9 (Rb), 1.845-50.88 (Sr), and 2.796-53.23 (Ba) mg/kg. The result of tea infusion showed that 14.3 %-44.1 % (green tea), 14.5 %-46.7 % (black tea), 10.5 %-25.3 % (dark tea), 13.6 %-34.2 % (oolong tea), 16.9 %-40.7 % (yellow tea), and 19.9 %-35.1 % (white tea) of F were released. All tea types, except green tea, exhibited comparatively low leachability of Cd, As, Pb and Cr in tea infusion. The source apportionment revealed that PTEs in tea leaves mainly originated from soil parental materials, while industrial activities, fertilizer application, and manufacturing processes may contribute to exogenous Se, Cd, As, and Cr accumulation. Health risk assessment indicated that F in tea infusion dominated the health risk. Humans may be exposed to a higher health risk by drinking green tea compared to that of other tea types. Nevertheless, the long-term tea consumption is less likely to contribute to pronounced non-carcinogenic and carcinogenic risks. This study confirmed that tea consumption is an important and direct pathway of PTEs uptake in humans. The health risk associated with drinking tea should be of concern.
Collapse
Affiliation(s)
- Zhong Zhuang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zidong Mi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lingxuan Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Andreas H Schweiger
- Institute of Landscape and Plant Ecology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|
5
|
Szmagara A, Krzyszczak A, Stefaniak EA. Determination of fluoride content in teas and herbal products popular in Poland. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:717-727. [PMID: 36406606 PMCID: PMC9672222 DOI: 10.1007/s40201-022-00811-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/15/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Fluoride level, due to its narrow therapeutical range, must be constantly monitored in beverages, especially in daily-consumed plant infusions. Fluoride is important for prevention of tooth decay and osteoporosis, but its excess leads to fluorosis. Since tea can selectively absorb fluorides from soils, the question arises if a long-term consumption can pose an adverse effect on human health. METHODS Infusions of 33 popular teas (black, green, white, earl grey, pu-erh), tea-like products (rooibos, yerba mate) and herbs (chamomile, mint, nettle, purges, yarrow) available in the Polish market were analyzed with respect to a fluoride level by means of a validated ion-selective electrode method, which is proven to be fast and reliable. RESULTS Significantly different fluoride concentrations in infusions were observed, with black tea on top, where extraction of fluoride is the highest (average 2.65 mg F-/L, range 0.718-6.029 mg/L). Two-fold higher fluoride contents were measured in infusions made from black tea bags than from leaves (average 3.398 mg/L and 1.529 mg/L, respectively). Green teas released comparable amounts of fluoride as black teas, while in herbal extracts the fluoride content was negligible. CONCLUSIONS The rank with respect to the fluoride concentration in an infusion is as follows: black tea > green tea > earl grey > pu-erh > white tea>>>rooibos, yerba mate, herbal products. Increasing of brewing time results in an increased fluoride content, but the overall content of fluoride in the analyzed infusions of teas and herbs was not high enough to cause a risk of fluorosis, even if left to brew up to 15 min.
Collapse
Affiliation(s)
- Agnieszka Szmagara
- Department of Chemistry, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Agnieszka Krzyszczak
- Department of Chemistry, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Elżbieta Anna Stefaniak
- Department of Chemistry, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| |
Collapse
|
6
|
Li S, Zheng M, Yang X, Zhang J, Xu J, Yu J. Effect of nonylphenol on the colonic mucosa in rats and intervention with zinc-selenium green tea ( Camellia sinensis). Toxicol Res (Camb) 2021; 11:122-133. [PMID: 35237417 PMCID: PMC8882797 DOI: 10.1093/toxres/tfab119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/23/2021] [Accepted: 11/24/2021] [Indexed: 12/31/2022] Open
Abstract
To investigate the effect of nonylphenol (NP) exposure on the colonic mucosa in rats, and the protective effects of Guizhou zinc-selenium tea (Zn-Se tea) on the damage induced by NP, sixty Sprague-Dawley rats were randomly divided into 6 groups (n = 10 in each group): control group (corn oil), and rats gavaged with NP at the doses of 0.4 mg/kg/d (Low NP group), 4 mg/kg/d (Medium NP group), 40 mg/kg/d (High NP group), and 40 mg/kg NP combined with green tea group at the doses of 0.2 g/ml (NP + GT group) and 0.2 g/ml Zn-Se tea group (NP + ZST group). NP at 40 mg/kg/d was administered to the tea groups for 3 months, followed by NP + green tea and NP + Zn-Se tea for 4 months, and the rest of the groups were gavaged for 7 months. With the increase of NP concentration, NP accumulation in colon gradually increased (P < 0.05), colonic villi shortened, tight junctions between cells widened, intestinal integrity was impaired, and goblet cells, intraepithelial lymphocytes and mast cells were significantly lower in NP high-dose group than in control group (P < 0.05). Meanwhile, the protein expression of Caspase-1, IL-1β and Pro-IL-1β in NP high-dose group was significantly higher than that in control group (P < 0.05). Zn-Se tea increased the number of goblet cells in colon and decreased the accumulation of NP in colon (P < 0.05); Zn-Se tea and common green tea decreased the expression of Caspase-1 and Pro-IL-1β protein (P < 0.05). NP exposure can destroy intestinal morphology, reduce the number of intestinal immune cells, reduce intestinal immunity and increase the release of inflammatory factors; Guizhou Zn-Se tea has a certain protective effect on colon damage caused by NP.
Collapse
Affiliation(s)
| | | | - Xuefeng Yang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou 563000, China
| | - Jianling Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Jie Xu
- Correspondence address. School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China. Tel: +86851-28642732; Fax: 0851-28642444; E-mail: or . Correspondence may also be addressed to Tel: +86851-28642732; Fax: 0851-28642444; E-mail:
| | - Jie Yu
- Correspondence address. School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China. Tel: +86851-28642732; Fax: 0851-28642444; E-mail: or . Correspondence may also be addressed to Tel: +86851-28642732; Fax: 0851-28642444; E-mail:
| |
Collapse
|
7
|
Assessment of antioxidant and cytotoxicity activities against A-549 lung cancer cell line by synthesized reduced graphene oxide nanoparticles mediated by Camellia sinensis. 3 Biotech 2021; 11:494. [PMID: 34881157 DOI: 10.1007/s13205-021-03015-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 09/20/2021] [Indexed: 10/19/2022] Open
Abstract
Camellia sinensis (green tea leaves) which acts as a reducing agent was used for the reduction of graphene oxide (GO) to obtain reduced graphene oxide (RGO). Anionic surfactant SDS was used to enhance the stability of synthesized reduced graphene oxide nanoparticles. Characterized reduced graphene oxide nanoparticle grain size was calculated to be 3.92 nm from the X-ray diffraction method, whereas zeta potential was measured - 35.23 ± 5.45 mV at room temperature. Antioxidant and cell cytotoxicity against A-549 lung carcinoma cells were also studied. Phytochemical content of Camellia sinensis imparts feasible DPPH activity of 85.98 ± 2.49% against RGO, whereas ABTS scavenging activity was found to be 88.87 ± 1.74% followed by measurement of the total phenolic content of 842 ± 13.33 µg/gm. RGO at concentration 400 µg/ml showed an optimum level of hemolysis at pH 7.4 (4.92 ± 1.20%) than pH 5.6 (11.15 ± 0.03%). Cytotoxicity activity studied by MTT assay of RGO on A-549 lung carcinomas cells was compared with drug doxorubicin. The bandgap energy of RGO was calculated to be 3.97 eV from absorption data, hence reveals the generation of oxidative stress in the A-549 lung cancer cell line. Thus, the surfactant and phytochemicals found in Camellia sinensis enhanced the stability of RGO, thereby providing enough energy to destabilize the target cells without affecting healthy cells, hence suggests its role in therapeutics application. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03015-z.
Collapse
|
8
|
Chen X, Man GCW, Hung SW, Zhang T, Fung LWY, Cheung CW, Chung JPW, Li TC, Wang CC. Therapeutic effects of green tea on endometriosis. Crit Rev Food Sci Nutr 2021:1-14. [PMID: 34620005 DOI: 10.1080/10408398.2021.1986465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endometriosis is a chronic disorder characterized by the presence of endometrial glands and stroma outside the uterine cavity. It affects 8%-10% of women in their reproductive years, and represents a major clinical problem with deleterious social, sexual and reproductive consequences. Current treatment options include pain relief, hormonal intervention and surgical removal. However, these treatments are deemed unsatisfactory owing to varying success, significant side effects and high recurrence rates. Green tea and its major bioactive component, (-)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly anti-angiogenic, anti-proliferation, anti-metastasis, and apoptosis induction. In recent years, preclinical studies have proposed the use of green tea to inhibit the growth of endometriosis. Herein, the aim of this review is to summarize the potential therapeutic effects of green tea on molecular and cellular mechanism through inflammation, oxidative stress, invasion and adhesion, apoptosis and angiogenesis in endometriosis.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen University, Shenzhen, China.,Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Gene Chi Wai Man
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.,Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Linda Wen Ying Fung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Chun Wai Cheung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.,Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong.,Li Ka Shing Institute of Health Sciences; School of Biomedical Sciences; Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
9
|
In vitro assessment of major and trace element bioaccessibility in tea samples. Talanta 2021; 225:122083. [PMID: 33592795 DOI: 10.1016/j.talanta.2021.122083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/22/2022]
Abstract
Bioaccessibility of trace elements (Li, Be, Ti, Ga, Cu, Ag, Hg, Cd, Cs, Pt, Tl, Pb, As, Cr, Co, Ni, V, Se, Sn and Sb) and major elements (Rb, Ba, Al, Fe, Zn, Si, Ca, Mg, Mn, Mo, Sr, P and K) in tea infusions has been assessed using an in vitro dialyzability protocol. Gastric simulation (using pepsin solution) and intestinal simulation (using pancreatin and bile salts) were used to perform the in vitro digestion. ICP-MS, ICP-OES and FAES were used for elements determination in digested tea leaves, their infusions and the dialyzate fractions from tea infusions. Microwaves assisted acid digestion was used for the total element determination in tea leaves, while tea infusions were prepared by brewing tea leaves for 5 min in boiling water. The LODs for elements determined in tea leaves were in the range of 0.11-656 ng g-1 and 0.02-145.6 μg g-1 for trace and major elements, respectively. For elements' determination in tea infusions, the LODs were ranged between 0.23 and 399.9 ng L-1 for trace elements and 0.2-1248 μg L-1 for major elements. The LODs for the elements in the dialyzable fraction varied from 0.018 to 142 μg L-1. The accuracy of the total element determination was evaluated using certified reference materials (Tea Leaves INCT-TL-1 and Rye Grass). The analytical recoveries were also assessed for analyzed elements in digested tea leaves (95-114%) and their infusions (92-115%), showing good recoveries. Among the studied elements, K was the most abundant element in tea leaves and tea infusions in almost all samples, followed by Ca, Mg, and P. Zn, Cs, and K showed the highest dialyzability percentages up to 84%, 76%, and 54%, respectively, followed by Si and Ca and K that show moderate to high dialyzability percentages. The accuracy of the dialysis process was evaluated using a mass-balance study.
Collapse
|
10
|
Lee H, Kim JH, Park HJ, Kang JC. Toxic effects of dietary copper and EGCG on bioaccumulation, antioxidant enzyme and immune response of Korean bullhead, Pseudobagrus fulvidraco. FISH & SHELLFISH IMMUNOLOGY 2021; 111:119-126. [PMID: 33503474 DOI: 10.1016/j.fsi.2021.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
There are few reports of dietary Cu (copper) toxicity to Korean bullhead, Pseudobagrus fulvidraco, and little is known about recovery from dietary Cu exposure. In this study, P. fulvidraco (mean length 16.9 ± 1.38 cm, and mean weight 53.2 ± 1.22 g) were exposed for 4 weeks to dietary Cu concentration of 0 (control), 700, 900, and 1100 mg Cu kg-1 dry feed to establish maximum tolerable levels of dietary Cu. All fish were then fed the dietary EGCG (Epigallocatechin gallate) concentration of 100 and 500 mg EGCG kg-1 dry feed for a further 2 weeks to assess recovery. We were measured bioaccumulation (in the intestine, liver, and gill tissue), antioxidant enzymes (SOD and CAT) and immune responses (lysozyme and phagocytosis). The Cu exposure induced a significant accumulation in the intestine, liver, and gill tissues and the highest accumulation was observed in intestinal tissues (17-34 fold), but dietary EGCG exposure decreased (about 0.8-fold) Cu concentration in each tissue (ANOVA, P < 0.05). In antioxidant enzymes, SOD and CAT significantly increased by approximately 1.6-fold by dietary Cu exposure in the liver and gill tissue, respectively, but dietary EGCG exposure decreased SOD and CAT by about 1.1-fold, respectively (ANOVA, P < 0.05). For immune responses, lysozyme and phagocytosis in the blood significantly were decreased by approximately 1.5-fold, respectively, by dietary Cu exposure, but dietary EGCG exposure increased lysozyme and phagocytosis by about 1.1-fold, respectively (ANOVA, P < 0.05). During recovery period, bioaccumulation, antioxidant enzymes (SOD and CAT activity), and immune response (lysozyme and phagocytosis activity) tended to alleviate the significant changes by Cu exposure, and the tendency to return normal state was observed in high level of EGCG. The result of this study indicate that Cu exposure to P. fulvidraco affects bioaccumulation, antioxidant enzymes, and immune responses, and high level of EGCG were effective to alleviate the toxic effects of Cu exposure.
Collapse
Affiliation(s)
- Huisu Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Jun-Hwan Kim
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Taean, Republic of Korea; Department of Aquatic Life and Medical Science, Sun Moon University, Assn-si, Republic of Korea
| | - Hee-Ju Park
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, Republic of Korea
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 608-737, Republic of Korea.
| |
Collapse
|
11
|
Ren T, Zheng P, Zhang K, Liao J, Xiong F, Shen Q, Ma Y, Fang W, Zhu X. Effects of GABA on the polyphenol accumulation and antioxidant activities in tea plants (Camellia sinensis L.) under heat-stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 159:363-371. [PMID: 33434784 DOI: 10.1016/j.plaphy.2021.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Polyphenols are important active components in tea plants, which have strong biological activity and antioxidant activity. A certain degree of stress or exogenous substances can significantly increase the content of polyphenols in plants. γ-Aminobutyric acid (GABA), a natural functional amino acid, was used to study whether exogenous GABA can increase the content of polyphenols and enhance antioxidant activity in tea plants under heat-stress conditions. The results showed that the content of GABA was positively correlated with the content of polyphenols (r = 0.649), especially with the content of total catechins (r = 0.837). Most of the related genes encoding flavonoid metabolism (PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, F3'5'H, DFR, LAR, ANS, ANR and FLS) as well as enzyme activities (PAL, C4H and 4CL) were upregulated. In addition, the activities of antioxidant enzymes were induced under heat-stress conditions. However, 3-mercaptopropionic acid (3-MPA), an inhibitor of GABA synthesis, exhibited opposite results under heat-stress conditions compared with GABA treatment. These results indicated that GABA plays a key role in the accumulation of polyphenols and the upregulation of the antioxidant system in tea plants under heat-stress conditions.
Collapse
Affiliation(s)
- Taiyu Ren
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Zheng
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Kexin Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jieren Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiang Shen
- Institute of Tea Sciences, Guizhou Provincial Academy of Agricultural Sciences, Guiyang, 417100, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Peng CY, Xu XF, Ren YF, Niu HL, Yang YQ, Hou RY, Wan XC, Cai HM. Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: a systematic review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:379-387. [PMID: 32623727 DOI: 10.1002/jsfa.10640] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Tea is the one of the most popular non-alcoholic caffeinated beverages in the world. Tea is produced from the tea plant (Camellia sinensis (L.) O. Kuntze), which is known to accumulate fluoride. This article systematically analyzes the literature concerning fluoride absorption, transportation and fluoride tolerance mechanisms in tea plants. Fluoride bioavailability and exposure levels in tea infusions are also reviewed. The circulation of fluoride within the tea plantation ecosystems is in a positive equilibrium, with greater amounts of fluoride introduced to tea orchards than removed. Water extractable fluoride and magnesium chloride (MgCl2 ) extractable fluoride in plantation soil are the main sources of absorption by tea plant root via active trans-membrane transport and anion channels. Most fluoride is readily transported through the xylem as F- /F-Al complexes to leaf cell walls and vacuole. The findings indicate that tea plants employ cell wall accumulation, vacuole compartmentalization, and F-Al complexes to co-detoxify fluoride and aluminum, a possible tolerance mechanism through which tea tolerates higher levels of fluoride than most plants. Furthermore, dietary and endogenous factors influence fluoride bioavailability and should be considered when exposure levels of fluoride in commercially available dried tea leaves are interpreted. The relevant current challenges and future perspectives are also discussed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuan-Yi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, P. R. China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, P. R. China
| | - Xue-Feng Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, P. R. China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, P. R. China
| | - Yin-Feng Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, P. R. China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, P. R. China
| | - Hui-Liang Niu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, P. R. China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, P. R. China
| | - Yun-Qiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, P. R. China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, P. R. China
| | - Ru-Yan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, P. R. China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, P. R. China
| | - Xiao-Chun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, P. R. China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, P. R. China
| | - Hui-Mei Cai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, P. R. China
- Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, P. R. China
- Anhui Province Key Lab of Analysis and Detection for Food Safety, Hefei, P. R. China
| |
Collapse
|
13
|
Darweesh RS, El-Elimat T, Zayed A, Khamis TN, Babaresh WM, Arafat T, Al Sharie AH. The effect of grape seed and green tea extracts on the pharmacokinetics of imatinib and its main metabolite, N-desmethyl imatinib, in rats. BMC Pharmacol Toxicol 2020; 21:77. [PMID: 33198812 PMCID: PMC7670682 DOI: 10.1186/s40360-020-00456-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/31/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Imatinib is mainly metabolized by CYP3A4 and to a lesser extent by other isoenzymes, with N-desmethyl imatinib being its major equipotent metabolite. Being a CYP3A4 substrate, imatinib co-administration with CYP3A4 modulators would change its pharmacokinetic profile. The cancer chemoprevention potential and anticancer efficacy of many herbal products such as grape seed (GS) and green tea (GT) extracts had led to an increase in their concomitant use with anticancer agents. GS and GT extracts were demonstrated to be potent inhibitors of CYP3A4. The aim of this study is to investigate the effect of standardized GS and/or GT extracts at two different doses on the pharmacokinetics of imatinib and its metabolite, N-desmethyl imatinib, in SD-rats. METHODS Standardized GS and/or GT extracts were administered orally once daily for 21 days, at low (l) and high (h) doses, 50 and 100 mg/kg, respectively, before the administration of a single intragastric dose of imatinib. Plasma samples were collected and analyzed for imatinib and N-desmethyl imatinib concentrations using LC-MS/MS method, then their non-compartmental pharmacokinetic parameters were determined. RESULTS h-GS dose significantly decreased imatinib's Cmax and the [Formula: see text] by 61.1 and 72.2%, respectively. Similar effects on N-desmethyl imatinib's exposure were observed as well, in addition to a significant increase in its clearance by 3.7-fold. l-GT caused a significant decrease in imatinib's Cmax and [Formula: see text] by 53.6 and 63.5%, respectively, with more significant effects on N-desmethyl imatinib's exposure, which exhibited a significant decrease by 79.2 and 81.1%, respectively. h-GT showed similar effects as those of l-GT on the kinetics of imatinib and its metabolite. However, when these extracts were co-administered at low doses, no significant effects were shown on the pharmacokinetics of imatinib and its metabolite. Nevertheless, increasing the dose caused a significant decrease in Cmax of N-desmethyl imatinib by 71.5%. CONCLUSIONS These results demonstrated that the pharmacokinetics of imatinib and N-desmethyl imatinib had been significantly affected by GS and/or GT extracts, which could be partially explained by the inhibition of CYP3A-mediated metabolism. However, the involvement of other kinetic pathways such as other isoenzymes, efflux and uptake transporters could be involved and should be characterized.
Collapse
Affiliation(s)
- Ruba S Darweesh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Aref Zayed
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tareq N Khamis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Wahby M Babaresh
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Tawfiq Arafat
- Jordan Center for Pharmaceutical Research (JCPR), Amman, 11195, Jordan
| | - Ahmed H Al Sharie
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
14
|
Soliman MA, Abdou FS, Mohamed NM. Novel neutron activation analysis scheme for determination of trace elements in medicinal plants infusion. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07194-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Snoussi A, Chouaibi M, Bouzouita N, Hamdi S. Microencapsulation of catechin using water-in-oil-in-water (W1/O/W2) double emulsions: Study of release kinetics, rheological, and thermodynamic properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Coia H, Ma N, Hou Y, Permaul E, Berry DL, Cruz MI, Pannkuk E, Girgis M, Zhu Z, Lee Y, Rodriquez O, Cheema A, Chung FL. Theaphenon E prevents fatty liver disease and increases CD4+ T cell survival in mice fed a high-fat diet. Clin Nutr 2020; 40:110-119. [PMID: 32439267 DOI: 10.1016/j.clnu.2020.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 04/24/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Obesity is a major cause of non-alcoholic fatty liver disease (NAFLD). NAFLD is an epidemic affecting nearly 34% of the adult population in the US. As a chronic inflammatory disease, NAFLD influences the immune system by dysregulating T-cell activity. Remedies for the adverse effects on the immune system are urgently needed. We studied Theaphenon E (TE), a standardized formulation of green tea extract, on the adverse effects of NAFLD in C57BL/6J mice fed a high fat diet (HFD). METHODS Mice received HFD, low fat diet (LFD) or HFD+2% TE for 35 weeks. Hepatic lipid accumulation, cell proliferation, apoptosis and CD4+T lymphocytes were measured throughout the bioassay. The hepatic composition of fatty acids was determined. The effects of epigallocatechin gallate (EGCG) metabolites on lipid accumulation in mouse and primary human liver cells were studied. RESULTS Unlike mice receiving HFD, mice on HFD+2% TE maintained normal liver to body weight ratios with low levels of alanine and aspartate aminotransferase (ALT and AST). Hepatic lipid accumulation was observed in HFD mice, accompanied by increased proliferation, reduced apoptosis and loss of CD4+ T lymphocytes. TE significantly inhibited lipid accumulation, decreased proliferation, induced apoptosis and increased CD4+ T cell survival in HFD mice. It was found that the EGCG metabolite EGC-M3 reduced lipid accumulation in mouse and human hepatocytes. Linoleic acid showed the largest increase (2.5-fold) in livers of mice on a HFD and this increase was significantly suppressed by TE. CONCLUSIONS Livers of HFD-fed mice showed lipid accumulation, increased proliferation, reduced apoptosis, elevated linoleic acid and loss of CD4+ T cells. TE effectively ameliorated all of these adverse effects.
Collapse
Affiliation(s)
- Heidi Coia
- Department of Biochemistry & Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Ning Ma
- Department of Biochemistry & Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA.
| | - Yanqi Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Eva Permaul
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Deborah L Berry
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Evan Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Michael Girgis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Zizhao Zhu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Yichen Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Olga Rodriquez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Amrita Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| | - Fung-Lung Chung
- Department of Biochemistry & Molecular Biology, Georgetown University Medical Center, Washington, DC 20057, USA; Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
17
|
Suroowan S, Mahomoodally MF. Herbal Medicine of the 21st Century: A Focus on the Chemistry, Pharmacokinetics and Toxicity of Five Widely Advocated Phytotherapies. Curr Top Med Chem 2020; 19:2718-2738. [PMID: 31721714 DOI: 10.2174/1568026619666191112121330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022]
Abstract
Widely advocated for their health benefits worldwide, herbal medicines (HMs) have evolved into a billion dollar generating industry. Much is known regarding their wellness inducing properties, prophylactic and therapeutic benefits for the relief of both minor to chronic ailment conditions given their long-standing use among various cultures worldwide. On the other hand, their equally meaningful chemistry, pharmacokinetic profile in humans, interaction and toxicity profile have been poorly researched and documented. Consequently, this review is an attempt to highlight the health benefits, pharmacokinetics, interaction, and toxicity profile of five globally famous HMs. A systematic literature search was conducted by browsing major scientific databases such as Bentham Science, SciFinder, ScienceDirect, PubMed, Google Scholar and EBSCO to include 196 articles. In general, ginsenosides, glycyrrhizin and curcumin demonstrate low bioavailability when orally administered. Ginkgo biloba L. induces both CYP3A4 and CYP2C9 and alters the AUC and Cmax of conventional medications including midazolam, tolbutamide, lopinavir and nifedipine. Ginsenosides Re stimulates CYP2C9, decreasing the anticoagulant activity of warfarin. Camellia sinensis (L.) Kuntze increases the bioavailability of buspirone and is rich in vitamin K thereby inhibiting the activity of anticoagulant agents. Glycyrrhiza glabra L. displaces serum bound cardiovascular drugs such as diltiazem, nifedipine and verapamil. Herbal medicine can directly affect hepatocytes leading to hepatoxicity based on both intrinsic and extrinsic factors. The potentiation of the activity of concurrently administered conventional agents is potentially lethal especially if the drugs bear dangerous side effects and have a low therapeutic window.
Collapse
Affiliation(s)
- S Suroowan
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - M F Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius.,Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
18
|
Guan C, Yang Y. Research of extraction behavior of heavy metal Cd in tea based on backpropagation neural network. Food Sci Nutr 2020; 8:1067-1074. [PMID: 32148815 PMCID: PMC7020285 DOI: 10.1002/fsn3.1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/02/2022] Open
Abstract
In order to meet the increasing demand for food and beverage safety and quality, this study focused on the application of a back propagation (BP) neural network to determine the leaching rate of heavy metal in tea to improve the scientific health of tea drinking. The evaluation index and target expectations have been determined based on the extraction experiment of heavy metal Cd in tea soaking, with 3 evaluation index values taken as input layer parameters and the heavy metal extraction rate taken as output layer parameter. Then, employ the sample data standardized by min-max linearization method to train and test the network model and get the satisfactory results, which showed that the constructed BP neural network expressed a fast convergence speed and the systematic error was as low as 0.0003509. Additionally, there was no significance between Cd leaching rate of experimental results and neural network model results by reliability testing with a correlation coefficient was .9895. These results revealed that the network model established possessed an outstanding training accuracy and generalization performance, which effectively reflected the extraction rate of heavy metal in tea soaking and improved the safety of tea drinking.
Collapse
Affiliation(s)
| | - Yue Yang
- Yangjiang PolytechnicYangjiangChina
- Guangdong Provincial Key Laboratory of Atmospheric environment and Pollution ControlSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
19
|
Roberts J, Liu Q, Cao C, Jackson SE, Zong X, Meyer GA, Yang L, Cade WT, Zheng X, López-Sánchez GF, Wu X, Smith L. Association of Hot Tea Consumption with Regional Adiposity Measured by Dual-Energy X-Ray Absorptiometry in NHANES 2003-2006. Obesity (Silver Spring) 2020; 28:445-451. [PMID: 31970908 DOI: 10.1002/oby.22705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study aimed to investigate the potential antiobesity benefits of hot tea consumption at the population level. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) 2003-2006, the association between hot tea consumption and dual-energy x-ray-measured body fat was examined in a large representative sample of US adults (n = 5,681, 51.9% women). RESULTS Compared with non-tea drinkers, men who consumed 0.25 to 1 cup per day of hot tea had 1.5% (95% CI: 0.4% to 2.6%) and 1.7% (95% CI: 0.4% to 3.0%) less total and trunk body fat, respectively. The associations were stronger among men 45 to 69 years old compared with younger men (20-44 years). For men who consumed 1 or more cups per day of hot tea, lower total (-1.2%, 95% CI: -2.3% to -0.2%) and trunk body fat (-1.3%, 95% CI: -2.6 to -0.1%) was observed among men 45 to 69 years old only. In women, those who drank 1 or more cups per day had 1.5% lower (95% CI: -2.7% to -0.3%) trunk body fat compared with non-tea drinkers. CONCLUSIONS Consumption of hot tea might be considered as part of a healthy diet in order to support parameters associated with metabolic health and may be particularly important in older male age groups in supporting reduced central adiposity.
Collapse
Affiliation(s)
- Justin Roberts
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Qinran Liu
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chao Cao
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah E Jackson
- Department of Behavioural Science and Health, University College London, London, UK
| | - Xiaoyu Zong
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lin Yang
- Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada
| | - W Todd Cade
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiaobin Zheng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | | | - Xiaojian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
20
|
Accurate and sensitive determination of lead in black tea samples using cobalt magnetic particles based dispersive solid-phase microextraction prior to slotted quartz tube-flame atomic absorption spectrometry. Food Chem 2019; 297:124947. [DOI: 10.1016/j.foodchem.2019.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 11/22/2022]
|
21
|
Xia E, Li F, Tong W, Yang H, Wang S, Zhao J, Liu C, Gao L, Tai Y, She G, Sun J, Cao H, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Wu Q, Ge R, Zhao H, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Zhao S, Bennetzen JL, Wei C, Wan X. The tea plant reference genome and improved gene annotation using long-read and paired-end sequencing data. Sci Data 2019; 6:122. [PMID: 31308375 PMCID: PMC6629666 DOI: 10.1038/s41597-019-0127-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/25/2019] [Indexed: 11/25/2022] Open
Abstract
Tea is a globally consumed non-alcohol beverage with great economic importance. However, lack of the reference genome has largely hampered the utilization of precious tea plant genetic resources towards breeding. To address this issue, we previously generated a high-quality reference genome of tea plant using Illumina and PacBio sequencing technology, which produced a total of 2,124 Gb short and 125 Gb long read data, respectively. A hybrid strategy was employed to assemble the tea genome that has been publicly released. We here described the data framework used to generate, annotate and validate the genome assembly. Besides, we re-predicted the protein-coding genes and annotated their putative functions using more comprehensive omics datasets with improved training models. We reassessed the assembly and annotation quality using the latest version of BUSCO. These data can be utilized to develop new methodologies/tools for better assembly of complex genomes, aid in finding of novel genes, variations and evolutionary clues associated with tea quality, thus help to breed new varieties with high yield and better quality in the future.
Collapse
Affiliation(s)
- Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Hua Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | | | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Chun Liu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Liping Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yuling Tai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Haisheng Cao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qiang Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wenzhao Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Shihua Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Haijing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Junlan Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Chengying Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | | | | | - Bei Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Dai Shan
- BGI-Shenzhen, Shenzhen, 518083, China
| | | | - Congbing Fang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Yue
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruoheng Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Huijuan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Shu Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Bin Han
- National Center for Gene Research, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 20032, China
| | - Changjun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ye Yin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | | | - Jeffrey L Bennetzen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- Department of Genetics, University of Georgia, Athens, GA30602, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
22
|
Meng XH, Li N, Zhu HT, Wang D, Yang CR, Zhang YJ. Plant Resources, Chemical Constituents, and Bioactivities of Tea Plants from the Genus Camellia Section Thea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5318-5349. [PMID: 30449099 DOI: 10.1021/acs.jafc.8b05037] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tea, as one of the most popular beverages with various bioactivities, is commonly produced from the fresh leaves of two widely cultivated tea plants, Camellia sinensis and C. sinensis var. assamica. Both plants belong to the genus Camellia section Thea, which was considered to have 12 species and 6 varieties according to Min's taxonomic system. Most species, except the cultivated species, are known as wild tea plants and have been exploited and utilized to produce tea by the local people of its growing areas. Thus far, six species and varieties have been phytochemically studied, leading to the identification of 398 compounds, including hydrolyzable tannins, flavan-3-ols, flavonoids, terpenoids, alkaloids, and other phenolic and related compounds. Various beneficial health effects were reported for tea and its components, involving antioxidant, antitumor, antimutagenic, antidiabetic, hypolipidemic, anti-inflammatory, antimicrobial, antiviral, antifungal, neuroprotective, hepatoprotective, etc. In this review, the geographical distribution of tea plants and the chemical constituents (1-398) reported from the genus Camellia section Thea and some tea products (green, black, oolong, and pu-erh tea) that have ever been studied between 1970 and 2018 have been summarized, taking species as the main hint, and the main biological activities are also discussed.
Collapse
Affiliation(s)
- Xiu-Hua Meng
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Na Li
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Hong-Tao Zhu
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Chong-Ren Yang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| | - Ying-Jun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources of West China, Kunming Institute of Botany , Chinese Academy of Sciences , Kunming , Yunnan 650201 , People's Republic of China
| |
Collapse
|
23
|
Wang P, Ma G, Zhang L, Li Y, Fu Z, Kan X, Han Y, Wang H, Jiang X, Liu Y, Gao L, Xia T. A Sucrose-Induced MYB (SIMYB) Transcription Factor Promoting Proanthocyanidin Accumulation in the Tea Plant ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1418-1428. [PMID: 30688075 DOI: 10.1021/acs.jafc.8b06207] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proanthocyanidins (PAs, also called condensed tannins), are an important class of secondary metabolites and exist widely in plants. Tea ( Camellia sinensis) is rich in PAs and their precursors, (-)-epicatechin (EC) and (+)-catechin (C). The biosynthesis of PAs is constantly regulated by many different MBW complexes, consisting of MYB transcription factors (TFs), basic-helix-loop-helix (bHLH) TFs, and WD-repeat (WDR) proteins. These regulatory factors can be environmentally affected, such as by biotic and abiotic stresses. In this study, we revalidated the effect of sucrose treatment on tea branches, and a sucrose-induced MYB (SIMYB) TF was screened and studied. Phylogenetic analysis indicted that this SIMYB TF belonged to MYB subgroup 5, named CsMYB5b. Heterologous expression of CsMYB5b in tobacco strongly induced PA accumulation, through up-regulating the key target genes LAR or ANRs. In addition, CsMYB5b restored PA production in the seed coat of A. thaliana tt2 mutant and rescued its phenotype. Yeast two-hybrid assay demonstrated CsMYB5b can interact directly with CsTT8 (an AtTT8 ortholog) and CsWD40 protein. Linking to the expression profiling of CsMYB5b and the PA accumulation pattern in tea plants suggest that the CsMYB5b acts as an important switch for the synthesis of monomeric catechins and PAs. Therefore, these data provide insight into the regulatory mechanisms controlling the biosynthesis of PAs.
Collapse
Affiliation(s)
- Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
- College of Horticulture , Qingdao Agricultural University , Qingdao 266109 , China
| | - Guoliang Ma
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Lingjie Zhang
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Yan Li
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Xinyi Kan
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Yahui Han
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
- College of Horticulture , Qingdao Agricultural University , Qingdao 266109 , China
| | - Haiyan Wang
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Yajun Liu
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Liping Gao
- School of Life Science , Anhui Agricultural University , Hefei , Anhui 230036 , China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization , Anhui Agricultural University , Hefei , Anhui 230036 , China
| |
Collapse
|
24
|
Dohrmann DD, Putnik P, Bursać Kovačević D, Simal-Gandara J, Lorenzo JM, Barba FJ. Japanese, Mediterranean and Argentinean diets and their potential roles in neurodegenerative diseases. Food Res Int 2018; 120:464-477. [PMID: 31000263 DOI: 10.1016/j.foodres.2018.10.090] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Environmental factors are responsible of cellular senescence and processes found in the development of cognitive disorders. The aim of this paper is to compare benefits of the Japanese, Mediterranean, and Argentinian Diet on the onset or prevention of senile dementia (SD) and Alzheimer's Disease (AD). Special focus was on the effects of specific compounds such as polyunsaturated fatty acids (PUFAs), antioxidants, and saturated and trans fatty acids. A high adherence to diets rich in PUFAs, monounsaturated fatty acids (MUFAs) and antioxidants may decrease the risk of developing neurodegenerative diseases; while the predominance of saturated and trans fatty acids possibly rises it.
Collapse
Affiliation(s)
- Diana Denise Dohrmann
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, València, Spain; Universidad de la Cuenca del Plata, Facultad de Ingeniería y Tecnología. Lavalle 50, 3410 Corrientes, Argentina
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, Burjassot, València, Spain.
| |
Collapse
|
25
|
Zhan X, Wang J, Pan S, Lu C. Tea consumption and the risk of ovarian cancer: A meta-analysis of epidemiological studies. Oncotarget 2018; 8:37796-37806. [PMID: 28445129 PMCID: PMC5514950 DOI: 10.18632/oncotarget.16890] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/27/2017] [Indexed: 01/06/2023] Open
Abstract
A large number of epidemiological studies have provided conflicting results about the relationship between tea consumption and ovarian cancer. This study aimed to clarify the association between tea consumption and ovarian cancer. A literature search of the MEDICINE, Scopus, PubMed, and Web of Science databases was performed in April 2016. A total of 18 (11 case-control and 7 cohort) studies, representing data for 701,857 female subjects including 8,683 ovarian cancer cases, were included in the meta-analysis. A random-effects meta-analysis was used to compute the pooled relative risks (RR), meta regression, and publication bias, and heterogeneity analyses were performed for the included trials. We found that tea consumption had a significant protective effect against ovarian cancer (relative risk [RR] = 0.86; 95% confidence interval [CI]: 0.76, 0.96). The relationship was confirmed particularly after adjusting for family history of cancer (RR = 0.85; 95% CI: 0.72, 0.97), menopause status (RR = 0.85; 95% CI: 0.72, 0.98), education (RR = 0.82; 95% CI: 0.68, 0.96), BMI (RR = 0.85; 95% CI: 0.70, 1.00), smoking (RR = 0.83; 95% CI: 0.72, 0.93) and Jadad score of 3 (RR = 0.76; 95% CI: 0.56, 0.95) and 5 (RR = 0.74; 95% CI: 0.59, 0.89). The Begg's and Egger's tests (all P > 0.01) showed no evidence of publication bias. In conclusion, our meta-analysis showed an inverse association between tea consumption and ovarian cancer risk. High quality cohort-clinical trials should be conducted on different tea types and their relationship with ovarian cancer.
Collapse
Affiliation(s)
- Xin Zhan
- Obstetrics and Gynecology Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, PR China
| | - Jie Wang
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Zhejiang Chinese Medical University Zhejiang Provincial Hospital of TCM, Hangzhou, Zhejiang 310016, PR China
| | - Shufen Pan
- Department of Obstetrics and Gynecology, Central Hospital of Wenzhou, Luchengqu, Wenzhou, Zhejiang 325000, PR China
| | - Caijuan Lu
- Obstetrics and Gynecology Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, PR China
| |
Collapse
|
26
|
Farooq S, Sehgal A. Antioxidant Activity of Different Forms of Green Tea: Loose Leaf, Bagged and Matcha. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2018. [DOI: 10.12944/crnfsj.6.1.04] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Green tea is commercially available in three forms: loose leaf, bagged and powdered. The objective of this study was to compare the radical scavenging capacity of different forms of green tea like loose leaf (3), bagged (2) and powdered matcha (2) of various brands. The green tea forms were prepared at 95-100°C for 5 min., to mimic conditions usually used for tea preparations at home. The comparison of combined IC50 values of different green tea forms (loose leaf, bagged and matcha) showed no significant difference in their radical scavenging activity except bagged tea that exhibited slightly more DPPH radical scavenging potential as compared to matcha. Individually, the Bud white loose leaf demonstrated highest antioxidant activity followed by Laplant bag, Lipton bag, Laplant loose, Gourmet matcha, Wow matcha and Lipton loose. These findings revealed that on the basis of form, it may not be possible to generalize which form of tea whether loose leaf, bagged or matcha, is more effective in scavenging free radicals.
Collapse
Affiliation(s)
- Sumaya Farooq
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Amit Sehgal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| |
Collapse
|
27
|
Wang P, Zhang L, Jiang X, Dai X, Xu L, Li T, Xing D, Li Y, Li M, Gao L, Xia T. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. PLANTA 2018; 247:139-154. [PMID: 28887677 PMCID: PMC5756577 DOI: 10.1007/s00425-017-2771-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/02/2017] [Indexed: 05/19/2023]
Abstract
MAIN CONCLUSION LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of NtLAR and NtANR s in CsMYB5b transgenic tobacco. Tea is rich in polyphenolic compounds, and catechins are the major polyphenols in tea. The biosynthesis of polyphenols is closely related to the expression of the leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) genes. In this paper, an evolutionary analysis and functional characterization of three CsLARs were performed. The phylogenetic tree showed that plant LARs could be grouped into three, including gymnosperms, monocotyledons and dicotyledons (clusters I and II). The eighth amino acid residue in a conserved LAR-specific motif is changeable due to a transversion (G → T) and transition (G → C) that occur in the corresponding codon. Therefore, plant LARs can be classified as G-type, A-type and S-type LARs due to this variable amino acid residue. Although (2R, 3S)-trans-flavan-3-ols were the products of recombinant CsLARs proteins expressed in Escherichia coli, both (2R, 3S)-trans and (2R, 3R)-cis-flavan-3-ols were detected in tobacco overexpressing CsLARs. However, a butanol/HCl hydrolysis assay indicated that overexpression of the CsLARs caused a decrease in polymerized catechins. A hybridization experiment with CsLARc + AtPAP1 also showed that no polymers other than epicatechin, catechin and glycoside were detected, although the accumulation of anthocyanins was markedly decreased. CsMYB5b promoted the biosynthesis of both flavan-3-ols and proanthocyanidins (PAs). Therefore, LARs promoted the biosynthesis of catechin monomers and inhibited their polymerization. The accumulation of catechin monomers and polymers was increased by up-regulating the expression of the NtLAR and NtANRs in CsMYB5b transgenic tobacco.
Collapse
Affiliation(s)
- Peiqiang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lingjie Zhang
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036, Anhui, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Lijuan Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Tong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Dawei Xing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yanzhi Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Mingzhuo Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, 130 West Changjiang Rd, Hefei, 230036, Anhui, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
28
|
Effects of nutraceuticals on anaplastic thyroid cancer cells. J Cancer Res Clin Oncol 2017; 144:285-294. [PMID: 29197967 DOI: 10.1007/s00432-017-2555-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
PURPOSE The anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer with a high mortality rate. Since nutraceuticals may exert beneficial effects on tumor biology, here, effects of four of these compounds [resveratrol, genistein, curcumin and epigallocatechin-3-gallate (EGCG)] on ATC cell lines were investigated. METHODS Two ATC-derived cell lines were used: SW1736 and 8505C. Cell viability and in vitro aggressiveness was tested by MTT and soft agar assays. Apoptosis was investigated by Western Blot, using an anti-cleaved-PARP antibody. mRNA and miRNA levels were quantified by real-time PCR. RESULTS All tested nutraceuticals caused in both cell lines decrease of cell viability and increase of apoptosis. In contrast, only curcumin reduced in vitro aggressiveness in both SW1736 and 8505C cell lines, while genistein and EGCG determined a reduction of colony formation only in 8505C cells. Effects on genes related to the thyroid-differentiated phenotype were also tested: resveratrol and genistein administration determined the increment of almost all tested mRNAs in both cell lines. Instead curcumin and EGCG treatments had opposite effects in the two cell lines, causing the increment of almost all the mRNAs in 8505C cells and their reduction in SW1736. Finally, effects of nutraceuticals on levels of several miRNAs, known as important in thyroid cancer progression (hsa-miR-221, hsa-miR-222, hsa-miR-21, hsa-miR-146b, hsa-miR-204), were tested. Curcumin induced a strong and significant reduction of all miR analyzed, except for has-miR-204, in both cell lines. CONCLUSIONS Altogether, our results clearly indicate the anti-cancer proprieties of curcumin, suggesting the promising use of this nutraceutical in ATC treatment. Resveratrol, genistein and EGCG have heterogeneous effects on molecular features of ATC cells.
Collapse
|
29
|
Metussin N, Mohamed H, Ahmad N, Yasin H, Usman A. Evaluation of antioxidant capacity of Aidia borneensis leaf infusion, an endemic plant in Brunei Darussalam. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.2(1).109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
30
|
Árvay J, Hauptvogl M, Ivanišová E, Tirdiľová I, Hrstková M, Bajčan D, Lazor P. Methylxanthines and catechines in different teas (Camellia sinensis L. Kuntze) - influence on antioxidant properties. POTRAVINARSTVO 2017. [DOI: 10.5219/796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In general, there are four basic types of tea: green (not fermented), black (fermented), oolong and white tea (partially fermented). The differences among these types are in the processing technology, which is largely reflected in their chemical composition. The most influential factor that significantly affects the quality and quantity of substances (biologically active) is the processing temperature, which causes changes in the composition (isomerization and/or transformation). The present paper focuses on monitoring content of three methylxanthines - alkaloids (caffeine, theophylline and theobromine), and seven flavan-3-ols - catechins ((+)-catechin (C), (-)-catechin-3-gallate (C-3-G), (-)-epicatechin (EC), (-)-epicatechin-3-gallate (EC-3-G), (-)-epigallocatechin-3-gallate (EGC-3-G), (-)-gallocatechin (GC) and (-)-gallocatechin-3-gallate (GC 3-G)), which are characteristic for tea. Attention was also given to the assessment of selected antioxidant parameters using spectrophotometric procedures (ABTS - radical cation decolorization assay and Phosphomolybdenum reducing antioxidant power assay) in relation to the determined substances using RP-HPLC/DAD analysis. Based on the results obtained, it can be concluded that a type of tea clearly affects the quality and quantity of the substances that have a positive impact on the consumer's health, significantly reflected in the levels of antioxidant active substances determined by the spectrophotometric procedures. The highest content of methylxanthin, catechins, polyphenols and antioxidant substances was recorded in the green tea sample GT3. The highest content of flavonoids and phenolic acids was recorded in the Pu-erh tea sample PT 5.
Collapse
|
31
|
Chen S, Yan J, Li J, Zhang Y, Lu D. Solid phase extraction with titanium dioxide nanofibers combined with dispersive liquid-liquid microextraction for speciation of thallium prior to electrothermal vaporization ICP-MS. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2309-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Jin JQ, Ma JQ, Yao MZ, Ma CL, Chen L. Functional natural allelic variants of flavonoid 3',5'-hydroxylase gene governing catechin traits in tea plant and its relatives. PLANTA 2017; 245:523-538. [PMID: 27896431 DOI: 10.1007/s00425-016-2620-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/17/2016] [Indexed: 05/21/2023]
Abstract
Functional allelic variants of the flavonoid 3',5'-hydroxylase (F3'5'H) gene provides new information of F3'5'H function of tea plant and its relatives. This insight may serve as the foundation upon which to advance molecular breeding in the tea plant. Catechins are the active components of tea that determine its quality and health attributes. This study established the first integrated genomic strategy for deciphering the genetic basis of catechin traits of tea plant. With the RNA-sequencing analysis of bulked segregants representing the tails of a F1 population segregated for total catechin content, we identified a flavonoid 3',5'-hydroxylase (F3'5'H) gene. F3'5'H had one copy in the genomic DNA of tea plant. Among 202 tea accessions, we identified 120 single nucleotide polymorphisms (SNPs) at F3'5'H locus. Seventeen significant marker-trait associations were identified by association mapping in multiple environments, which were involved in 10 SNP markers, and the traits including the ratio of di/tri-hydroxylated catechins and catechin contents. The associated individual and combination of SNPs explained 4.5-25.2 and 53.0-63.0% phenotypic variations, respectively. In the F1 population (validation population), the catechin trait variation percentages explained by F3'5'H diplotype were 6.9-74.3%. The genotype effects of ten functional SNPs in the F1 population were all consistent with the association population. Furthermore, the function of SNP-711/-655 within F3'5'H was validated by gene expression analysis. Altogether, our work indicated functional SNP allelic variants within F3'5'H governing the ratio of di/tri-hydroxylated catechins and catechin contents. The strong catechin-associated SNPs identified in this study can be used for future marker-assisted selection to improve tea quality.
Collapse
Affiliation(s)
- Ji-Qiang Jin
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Jian-Qiang Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Ming-Zhe Yao
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Chun-Lei Ma
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China
| | - Liang Chen
- Tea Research Institute of the Chinese Academy of Agricultural Sciences, National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, Zhejiang, China.
| |
Collapse
|
33
|
Pastoriza S, Mesías M, Cabrera C, Rufián-Henares JA. Healthy properties of green and white teas: an update. Food Funct 2017. [DOI: 10.1039/c7fo00611j] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Green tea has been consumed for centuries in Japan, China and Morocco.
Collapse
Affiliation(s)
- S. Pastoriza
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| | - M. Mesías
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC)
- Madrid
- Spain
| | - C. Cabrera
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| | - J. A. Rufián-Henares
- Departamento de Nutrición y Bromatología
- Facultad de Farmacia
- Campus de Cartuja S/N
- 18071
- Universidad de Granada
| |
Collapse
|
34
|
Brzezicha-Cirocka J, Grembecka M, Szefer P. Analytical Assessment of Bio- and Toxic Elements Distribution in Pu-erh and Fruit Teas in View of Chemometric Approach. Biol Trace Elem Res 2016; 174:240-250. [PMID: 27038620 PMCID: PMC5055561 DOI: 10.1007/s12011-016-0669-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/13/2016] [Indexed: 11/29/2022]
Abstract
This study concerns application of flame atomic absorption spectrometry (FAAS) in assessment of macro- and microelement and toxic metal levels (Mg, Ca, K, Na, Mn, Cu, Fe, Zn, Cr, Ni, Co, Cd and Pb) in dark (Pu-erh) and fruit tea leaves and their infusions. Phosphorus was also determined in the form of phosphomolybdate by spectrophotometric method. The reliability of the method was checked using three certified reference materials. The results of analysis were in agreement with the certified values, with analytical recovery ranging from 86 to 113 %. Significant correlations (p < 0.001) were found between concentrations of P, Zn, K, Ni, Fe, Co, Cr, and Pb in Pu-erh tea, whereas in fruit tea, such interdependences were found between Mg, Fe, P, Ni, and Co. Kruskal-Wallis test results have related differences in Pu-erh tea quality as well as technological processing of fruit tea to their mineral composition. In order to characterize tea elemental content, chemometric techniques such as factor analysis (FA) and cluster analysis (CA) were used. Their application allowed on differentiation of samples in view of the fermentation type, technological processing, and overall quality.
Collapse
Affiliation(s)
- Justyna Brzezicha-Cirocka
- Department of Food Sciences, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Małgorzata Grembecka
- Department of Food Sciences, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Piotr Szefer
- Department of Food Sciences, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
35
|
Leung ACY, Cook LS, Swenerton K, Gilks B, Gallagher RP, Magliocco A, Steed H, Köbel M, Nation J, Brooks-Wilson A, Le ND. Tea, coffee, and caffeinated beverage consumption and risk of epithelial ovarian cancers. Cancer Epidemiol 2016; 45:119-125. [PMID: 27810483 DOI: 10.1016/j.canep.2016.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND The risk for epithelial ovarian cancer associated with the consumption of caffeinated beverages (tea, coffee, and soft drinks) and green tea is inconclusive. However, few studies have investigated the type of caffeinated beverage or the type of tea. OBJECTIVE We assessed consumption of tea (black/caffeinated tea and green tea separately), coffee, and caffeinated soft drinks, as well as level of consumption, and the risk for epithelial ovarian cancer and its histotypes. STUDY DESIGN This study was conducted within a population-based case-control study in Alberta and British Columbia, Canada from 2001 to 2012. After restricting to cases of epithelial invasive cancers and controls aged 40-79 years who completed an interview that included coffee, soft drink, and tea consumption (ascertained starting in 2005 in British Columbia and 2008 in Alberta), there were a total of 524 cases and 1587 controls. Those that did not meet the threshold for beverage consumption (at least once per month for 6 months or more) were classified as non-drinkers. Adult lifetime cumulative consumption (cup-years=cups/day*years) was calculated. Unconditional logistic regression was used to estimate adjusted odds ratios (aOR) and 95% confidence intervals (CI) to describe the association between the relevant drink consumption and risk. RESULTS No excess risk was seen for coffee or caffeinated soft drinks. Similarly, any tea consumption was not associated with risk, but when stratified by the type of tea, there was an increase in risk in black tea only drinkers (aOR=1.56; 95% CI:1.07-2.28 for >40 cup-years), but no excess risk for the exclusive green tea drinkers. Similar findings were observed for post-menopausal women. The association for black tea only consumption was mainly seen in the endometrioid histotype (aOR=3.19; 95% CI: 1.32-7.69). CONCLUSION Black tea consumption may be associated with an increased risk epithelial ovarian carcinoma. The excess risk is seen only in the endometrioid histotype but not in serous or clear cell. Further studies are required to confirm these findings and identify the constituents in black tea that may increase the risk.
Collapse
Affiliation(s)
- Andy C Y Leung
- Cancer Control Research, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Linda S Cook
- Department of Internal Medicine, University of New Mexico and UNM Comprehensive Cancer Center, Albuquerque, NM, USA; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Alberta Health Services, Calgary, Alberta, Canada
| | - Kenneth Swenerton
- Medical Oncology, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Blake Gilks
- Department of Pathology, Vancouver General Hospital and British Columba Cancer Agency, Vancouver, British Columbia, Canada
| | - Richard P Gallagher
- Cancer Control Research, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Anthony Magliocco
- Department of Anatomic Pathology, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Helen Steed
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Köbel
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jill Nation
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angela Brooks-Wilson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nhu D Le
- Cancer Control Research, BC Cancer Research Centre, Vancouver, British Columbia, Canada.
| |
Collapse
|
36
|
Tomaszewska E, Dobrowolski P, Winiarska-Mieczan A, Kwiecień M, Tomczyk A, Muszyński S, Radzki R. Alteration in bone geometric and mechanical properties, histomorphometrical parameters of trabecular bone, articular cartilage, and growth plate in adolescent rats after chronic co-exposure to cadmium and lead in the case of supplementation with green, black, red and white tea. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:36-44. [PMID: 27423034 DOI: 10.1016/j.etap.2016.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Adolescent male Wistar rats were used to check whether regular consumption of black, red, white, or green tea would have a protective effect on femur development during 12-week exposure to Cd and Pb (7mg Cd and 50mg Pb in 1kg of the diet). The animals were randomly divided (n=12) into a positive control (without Cd, Pb and teas), a negative control group (Cd and Pb), and groups supplemented additionally with green (GT), black (BT), red (RT), and white tea (WT). Heavy metals reduced the geometric and densitometric parameters and the total thickness of articular cartilage irrespective of tea administration and influenced mechanical endurance, growth plate thickness, and trabecular histomorphometry depending on the tea type. It is difficult to indicate which tea has the best protective effects on bone and hyaline cartilage against heavy metal action.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Poland
| | - Małgorzata Kwiecień
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Poland
| | - Agnieszka Tomczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Siemowit Muszyński
- Department of Physics, Faculty of Production Engineering, University of Life Sciences in Lublin, Poland
| | - Radosław Radzki
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| |
Collapse
|
37
|
Hudlikar RR, Venkadakrishnan VB, Kumar R, Thorat RA, Kannan S, Ingle AD, Desai S, Maru GB, Mahimkar MB. Polymeric black tea polyphenols (PBPs) inhibit benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1- butanone-induced lung carcinogenesis potentially through down-regulation of p38 and Akt phosphorylation in A/J mice. Mol Carcinog 2016; 56:625-640. [DOI: 10.1002/mc.22521] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/22/2016] [Accepted: 07/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Rasika R. Hudlikar
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC); Tata Memorial Centre (TMC), Kharghar; Navi Mumbai India
| | - Varadha Balaji Venkadakrishnan
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC); Tata Memorial Centre (TMC), Kharghar; Navi Mumbai India
| | - Rajiv Kumar
- Department of Pathology, Tata Memorial Hospital; Tata Memorial Centre (TMC); Parel Mumbai India
| | - Rahul A. Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC); Tata Memorial Centre (TMC), Kharghar; Navi Mumbai India
| | - Sadhana Kannan
- Epidemiology and Clinical Trial Unit (ECTU), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC); Tata Memorial Centre (TMC), Kharghar; Navi Mumbai India
| | - Arvind D. Ingle
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC); Tata Memorial Centre (TMC), Kharghar; Navi Mumbai India
| | - Saral Desai
- Department of Pathology, Tata Memorial Hospital; Tata Memorial Centre (TMC); Parel Mumbai India
| | - Girish B. Maru
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC); Tata Memorial Centre (TMC), Kharghar; Navi Mumbai India
| | - Manoj B. Mahimkar
- Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC); Tata Memorial Centre (TMC), Kharghar; Navi Mumbai India
| |
Collapse
|
38
|
Nkansah MA, Opoku F, Ackumey AA. Risk assessment of mineral and heavy metal content of selected tea products from the Ghanaian market. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:332. [PMID: 27154053 DOI: 10.1007/s10661-016-5343-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/29/2016] [Indexed: 05/06/2023]
Abstract
Food consumption is the most likely route of human exposure to metals. Tea (Camellia sinensis L.) is among the most widely consumed non-alcoholic beverages. Concentrations of heavy metals and minerals in tea from 15 different brands in Kumasi, Ghana were measured to assess the health risk associated with their consumption. The mineral and metal contents (Fe, Cu, Zn, Pb, As, Cd) were analyzed using atomic absorption spectrophotometer (Z-8100 polarized Zeeman). The results revealed that the mean concentrations were in the order: Ca > Fe > As > Cd > Zn > Pb. The average contents of Ca, Fe, Zn, Pb, Cd, and As in the samples were 94.08, 6.15, 0.20, 0.16, 0.36, and 1.66 mg/kg, respectively. All the minerals and heavy metals were below the maximum permissible limits stipulated by the World Health Organization (WHO) and US Pharmacopeia (USP). Metal-to-metal correlation indicated strong correlations between As/Zn, Cd/Zn, Cd/As, and Pb/As pairs. Factor analysis demonstrated a clear separation between minerals, grouped on one side, and heavy metals, clustered on another side. Both the target hazard quotient (THQ) and hazard index (HI) levels in green tea were far below 1, suggesting that consumption of green tea should pose no potential risk to human health. However, carcinogenic risk levels for arsenic were high; R > 10(-6). The results showed that residents in Kumasi consume tea could be at risk from exposure to these heavy metals and minerals.
Collapse
Affiliation(s)
| | - Francis Opoku
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | |
Collapse
|
39
|
Pereira JB, Dantas KG. Evaluation of inorganic elements in cat’s claw teas using ICP OES and GF AAS. Food Chem 2016; 196:331-7. [DOI: 10.1016/j.foodchem.2015.09.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022]
|
40
|
Werner J. Determination of metal ions in tea samples using task-specific ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction coupled to liquid chromatography with ultraviolet detection. J Sep Sci 2016; 39:1411-7. [DOI: 10.1002/jssc.201501200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 12/07/2022]
Affiliation(s)
- Justyna Werner
- Department of General and Analytical Chemistry; Poznan University of Technology; Poznań Poland
| |
Collapse
|
41
|
Árvay J, Hauptvogl M, Tomáš J, Harangozo Ľ. Determination of mercury, cadmium and lead contents in different tea and teas infusions (Camelia sinensis, L.). POTRAVINARSTVO 2015. [DOI: 10.5219/510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present paper deals with assessing the level of contamination of green (n = 14) and black - fermented (n = 10) teas of different origins (country of origin) (China, India, Japan, Nepal and Taiwan), which are normally available in Slovakia. The contents of the studied contaminants (mercury, cadmium and lead) were observed in samples of dried teas and their infusions. The contaminant contents were investigated by atomic absorption spectrometry with Zeeman background correction and a graphite furnace GF-AAS (Cd, Pb). The total mercury content was analyzed by CV-AAS method. Concentrations of the studied contaminants in the dried tea samples were as follows: green tea: Hg: 0.0027 ±0.0010 mg.kg-1 (median ± standard deviation); Cd: 0.161 ±0.084 mg.kg-1, Pb: 0.875 ±0.591 mg.kg-1, black tea: Hg: 0.0022 ±0.0014 mg.kg-1, Cd: 0.397 ±0.077 mg.kg-1, Pb: 1.387 ±0.545 mg.kg-1. The contents of the contaminants in the tea infusions were as follows: green tea: Hg: 0.03 ±0.04 μg.L-1, Cd: 0.278 ±0.068 μg.L-1, Pb: 1.975 ±0.503 μg.L-1, black tea: Hg: 0.050 ±0.080 μg.L-1, Cd: 0.291 ±0.054 μg.L-1, Pb: 1.955 ±1.264 μg.L-1. According to the currently valid maximum limits for a particular contaminant in Slovakia, it can be stated that the health standards were not exceeded in any of the tea samples. The limit value of the lead content (2.0 mg.kg-1 DM) was exceeded (by 12.4%) only in one sample of the dried black tea from China (Yunnan - Golden Snow), however it is the limit value valid in China. The results of the analysis of 24 tea samples show that even regular consumption does not pose a health risk to consumers.
Collapse
|
42
|
Tomaszewska E, Winiarska-Mieczan A, Dobrowolski P. The lack of protective effects of tea supplementation on liver and jejunal epithelium in adult rats exposed to cadmium and lead. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:708-714. [PMID: 26410089 DOI: 10.1016/j.etap.2015.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
Adult rats at the age of 12 weeks were divided into the control group and groups supplemented with green (GT), black (BT), red (RT), or white (WT) tea extracts. The diet (except that for the control) was mixed with 7 mg Cd/kg and 50 mg Pb/kg. The experiment lasted 12 weeks. Basal haematology and plasma biochemical parameters as well as the histomorphometrical parameters of jejunal epithelium and liver were determined. The lowest body mass was found in the RT and WT groups. Some functional (increased plasma ALT and AST, and the de Ritis coefficient) and structural changes in the liver (slight fatty degenerative changes, an increase in the intercellular space) were evident irrespective of the type of tea in the Cd and Pb poisoned rats. This toxic effect was visible especially in rats drinking black or red tea. However, the rats had no elevated LDH and ALT activities. The highest content of Cd and Pb in the liver and blood plasma was found in rats drinking red tea. Based on the results obtained, it is clear that long-term exposure of adult rats with a mature intestinal barrier to Cd and Pb contamination, under higher exposure conditions than the current estimates of weekly exposure of the general population to Cd and Pb through diet, causes a toxic effect, especially in the liver, and can change the structure of intestinal mucosa, irrespective of tea administration.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| | - Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950, Poland.
| | - Piotr Dobrowolski
- Department of Comparative Anatomy and Anthropology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| |
Collapse
|
43
|
Parviz M, Eshghi N, Asadi S, Teimoory H, Rezaei M. Investigation of heavy metal contents in infusion tea samples of Iran. TOXIN REV 2015. [DOI: 10.3109/15569543.2015.1072562] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
44
|
Chu KO, Chan KP, Yang YP, Qin YJ, Li WY, Chan SO, Wang CC, Pang CP. Effects of EGCG content in green tea extract on pharmacokinetics, oxidative status and expression of inflammatory and apoptotic genes in the rat ocular tissues. J Nutr Biochem 2015; 26:1357-67. [PMID: 26362107 DOI: 10.1016/j.jnutbio.2015.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 05/21/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022]
Abstract
Green tea extract (GTE) exerts antioxidative activities in ocular tissues of rats, but high levels of (-)-epigallocatechin gallate (EGCG) can induce oxidative stress. In this study, pharmacokinetics, diurnal variation of oxidative status, antioxidation and transcription factors changes in ocular tissues of rats were investigated. Rats were fed intragastrically with GTE and catechin mixtures containing different amounts of EGCG. Plasma and various ocular tissues were taken for pharmacokinetic analysis, oxidation marker testings and gene expression assays. Effects of EGCG on ocular oxidation status were assessed by 8-isoprostane level and reduced/oxidized glutathione ratio. Oxidation, inflammation and apoptosis regulations in retina were evaluated by real-time polymerase chain reaction. Epicatechin, epigallocatechin and EGCG were dominant in various ocular tissues except vitreous humor, where gallocatechin was predominant. Diurnal variation of oxidative status was found in some compartments. GTE caused oxidative stress increase in the plasma, aqueous humor, vitreous humor, cornea and retina but decrease in the lens and choroid-sclera. Catechins mixture containing half dose of EGCG lowered 8-isoprostane in the retina and lens. GTE treatment induced superoxide dismutase 1 and glutathione peroxidase-3 expressions but suppressed catalase in the retina. Our results reveal pro-oxidation of GTE with high EGCG content to the ocular tissues. Optimal EGCG level is needed for protection.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong; Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong
| | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong
| | - Ya Ping Yang
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong
| | - Yong Jie Qin
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong
| | - Wai Ying Li
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong
| | - Sun On Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong.
| |
Collapse
|
45
|
Zhong WS, Ren T, Zhao LJ. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry. J Food Drug Anal 2015; 24:46-55. [PMID: 28911408 PMCID: PMC9345429 DOI: 10.1016/j.jfda.2015.04.010] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/16/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu’er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5%) and recoveries (98.91–101.32%). The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China’s Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.
Collapse
Affiliation(s)
- Wen-Si Zhong
- The Experimental High School Attached to Beijing Normal University, Beijing, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Li-Jiao Zhao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
| |
Collapse
|
46
|
Systematic Analysis of the Multiple Bioactivities of Green Tea through a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:512081. [PMID: 25525446 PMCID: PMC4267163 DOI: 10.1155/2014/512081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022]
Abstract
During the past decades, a number of studies have demonstrated multiple beneficial health effects of green tea. Polyphenolics are the most biologically active components of green tea. Many targets can be targeted or affected by polyphenolics. In this study, we excavated all of the targets of green tea polyphenolics (GTPs) though literature mining and target calculation and analyzed the multiple pharmacology actions of green tea comprehensively through a network pharmacology approach. In the end, a total of 200 Homo sapiens targets were identified for fifteen GTPs. These targets were classified into six groups according to their related disease, which included cancer, diabetes, neurodegenerative disease, cardiovascular disease, muscular disease, and inflammation. Moreover, these targets mapped into 143 KEGG pathways, 26 of which were more enriched, as determined though pathway enrichment analysis and target-pathway network analysis. Among the identified pathways, 20 pathways were selected for analyzing the mechanisms of green tea in these diseases. Overall, this study systematically illustrated the mechanisms of the pleiotropic activity of green tea by analyzing the corresponding “drug-target-pathway-disease” interaction network.
Collapse
|
47
|
Jin JQ, Ma JQ, Ma CL, Yao MZ, Chen L. Determination of catechin content in representative Chinese tea germplasms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:9436-41. [PMID: 25204786 DOI: 10.1021/jf5024559] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To understand tea germplasms better and to use them effectively for production and breeding, the catechin content of 403 accessions of representative tea germplasms collected from various locations in China were studied using HPLC. The catechin content of these tea germplasms varied from 56.6 to 231.9 mg/g and averaged 154.5 ± 18.1 mg/g. One germplasm with low total catechin (TC) content (<60 mg/g) and three with high TC (>200 mg/g) contents were found. Averages of the TC content of the three varieties of Camellia sinensis (L.) O. Kuntze, namely, sinensis, assamica, and pubilimba, were 152.9 ± 16.2 mg/g, 162.8 ± 22.3 mg/g, and 165.1 ± 21.3 mg/g, respectively. The TC content of the sinensis variety was significantly lower (P < 0.05) than that of the other two varieties. The assamica variety had the highest levels of (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC), whereas the pubilimba variety had the highest levels of (-)-epigallocatechin gallate (EGCG), (+)-gallocatechin (GC), (+)-catechin (C), and (-)-gallocatechin gallate (GCG). Factor analysis indicated that GC, C, GCG, catechin index, and ECG greatly influenced the classification. The TC content of germplasms collected from the various provinces showed significant differences (P < 0.05). Tea germplasms of the southern provinces had higher degrees of variation in TC.
Collapse
Affiliation(s)
- Ji-Qiang Jin
- Tea Research Institute of the Chinese Academy of Agricultural Sciences , National Center for Tea Improvement, Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, Zhejiang 310008, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Huang J, Wang Y, Xie Z, Zhou Y, Zhang Y, Wan X. The anti-obesity effects of green tea in human intervention and basic molecular studies. Eur J Clin Nutr 2014; 68:1075-87. [DOI: 10.1038/ejcn.2014.143] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/30/2014] [Accepted: 06/15/2014] [Indexed: 12/14/2022]
|
49
|
Zheng H, Li JL, Li HH, Hu GC, Li HS. Analysis of Trace Metals and Perfluorinated Compounds in 43 Representative Tea Products from South China. J Food Sci 2014; 79:C1123-9. [DOI: 10.1111/1750-3841.12470] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 03/11/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Hai Zheng
- Key Laboratory of Agro-Environment in the Tropics; China Ministry of Agriculture; South China Agricultural Univ; Guangzhou 510642 China
| | - Jian-Long Li
- Key Laboratory of Agro-Environment in the Tropics; China Ministry of Agriculture; South China Agricultural Univ; Guangzhou 510642 China
- Drinkable Plants Inst. (Tea Research Center); Guangdong Academy of Agricultural Sciences; Guangzhou 510640 China
| | - Hai-Hang Li
- Guangdong Provincial Key Lab of Biotechnology for Plant Development and College of Life Sciences; South China Normal Univ; Guangzhou 510631 China
| | - Guo-Cheng Hu
- South China Inst. of Environmental Sciences; Ministry of Environmental Protection; Guangzhou 510655 China
| | - Hua-Shou Li
- Key Laboratory of Agro-Environment in the Tropics; China Ministry of Agriculture; South China Agricultural Univ; Guangzhou 510642 China
| |
Collapse
|
50
|
Chu KO, Chan SO, Pang CP, Wang CC. Pro-oxidative and antioxidative controls and signaling modification of polyphenolic phytochemicals: contribution to health promotion and disease prevention? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4026-4038. [PMID: 24779775 DOI: 10.1021/jf500080z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polyphenolic phytochemicals (PPs) have been extensively studied as potential nutriceuticals for maintenance of health and treatment of cancer, inflammation, and neurodegeneration. However, the reported beneficial outcomes are inconsistent. The biological activities of PPs have been attributed to their pro-oxidative and antioxidative actions and effects on signaling mechanisms and epigenomic modifications. These diversified properties were described or postulated on the basis of a variety of experimental studies using cell culture and animal models, even though most have not been replicated and results are not validated. This review attempts to give an overview of biological properties of PPs, based on the coherent results from relevant studies, and evaluate critically the experimental conditions and possible artifacts. Complicated molecular mechanisms and multitargeting genomic interactions of PPs are discussed, with a view that reasonable mechanistic propositions are usually obtained from well-designed in vivo studies.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong in Hong Kong Eye Hospital , Kowloon, Hong Kong
| | | | | | | |
Collapse
|