1
|
Brandi LA, Nunes AT, Faleiros CA, Poleti MD, Oliveira ECDM, Schmidt NT, Sousa RLM, Fukumasu H, Balieiro JCC, Brandi RA. Dietary Energy Sources Affect Cecal and Fecal Microbiota of Healthy Horses. Animals (Basel) 2024; 14:3494. [PMID: 39682460 DOI: 10.3390/ani14233494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Different energy sources are often used in horse diets to enhance health and performance. Understanding how diet impacts the cecal and fecal microbiota is crucial for meeting the nutritional needs of horses. High-throughput sequencing and qPCR were used to compare the fecal and cecal microbiota of five healthy horses receiving three different diets: hay diet (HAY), hay + starch and sugar (SS), and hay + fiber and oil ingredients (FO). Assessment of short-chain fatty acids, pH, and buffer capacity was also performed. The HAY diet was associated with the highest values of fecal pH; the FO and SS diets were associated with higher values of BC6 in the cecum, and the SS diet had higher BC5 values in feces (p < 0.05). HAY was associated with a lower alpha diversity in feces and with a higher abundance of Treponema, Fibrobacter, Lachnospiraceae AC2044, and Prevotellaceae UCG-003 in feces. SS was associated with a higher abundance of Desulfovibrio, the Lachnospiraceae AC2044 group, and Streptococcus in the cecum, and Streptococcus and Prevotellaceae UCG-001 in feces, while FO was associated with higher Prevotella, Prevotellaceae UCG-003, and Akkermansia in the cecum, and the Rikenellaceae RC9 gut group and Ruminococcus in feces. This study indicated that different energy sources can influence cecal and fecal microbiota composition and fecal diversity without significantly affecting fermentation processes under experimental conditions. These findings suggest that the diets studied may not pose immediate health risks; however, further research is needed to generalize these effects on gastrointestinal microbiota in broader equine populations.
Collapse
Affiliation(s)
- Laura A Brandi
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Alanne T Nunes
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Camila A Faleiros
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Mirele D Poleti
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Elisângela C de M Oliveira
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Natalia T Schmidt
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Ricardo L M Sousa
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Julio C C Balieiro
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| | - Roberta A Brandi
- Department of Animal Science, School of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, São Paulo, Brazil
| |
Collapse
|
2
|
Hao Y, Xia J, Wang W, Wang Y, Cao Z, Yang H, Jiang L, Ma Z, Chu K, Wang S, Guan LL, Li S. Diurnal shifts of rumen fermentation and microbial profiles revealed circadian rhythms of rumen bacteria, methanogens, and protozoa under high-grain and high-forage diets. JDS COMMUNICATIONS 2024; 5:700-706. [PMID: 39650029 PMCID: PMC11624341 DOI: 10.3168/jdsc.2023-0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/28/2024] [Indexed: 12/11/2024]
Abstract
In this study, we investigated how the composition and population of rumen microbiota shifted in response to diurnal oscillations under 2 different diets (high grain vs. high forage). Five multiparous Holstein dairy cows with similar BW, DIM, and parity were enrolled in this study. The cows were fed high-grain (HG) diet for 21 d and then shifted to high-forage (HF) diet in the next 21 d (7-d washout and 14-d experimental period). During the experimental period, DMI and rumination activity were recorded, and rumen fluid was collected 8 times postfeeding every 6 h during the last 2 d of each dietary feeding period. The rumen microbial (bacterial, archaeal, and protozoal) population and composition were assessed using quantitative PCR and amplicon sequencing, respectively. The daily dynamic of measurements was assessed using the cosinor model. The associations between microbial taxa and rumen fermentation profiles were assessed using the linear mixed model, in which the cows were termed as random intercept effects. Daily rhythmicity was observed for DMI, rumination activity, and rumen fermentation profiles under both diets. Additionally, rumination time, rumen pH, and acetate/propionate ratio had a higher mesor (the average level of diurnal fluctuations) under HF diet than in HG diet. The amplitude (the distance between the peak and mesor) of DMI, rumen pH, ammonia nitrogen, and total volatile acid concentration were higher under the HG diet than in the HF diet. Although no significant diurnal oscillation was observed for the rumen microbial population, the relative abundance of 14 bacterial genera, 1 protozoal genus, and 2 archaeal species had significant diurnal oscillations under both HF and HG diets. Among them, the bacterial genera Ruminococcus and Colidextribacter had time at peak of rhythm within 0 to 12 h after feeding, which were also negatively associated with the rumen acetate/propionate ratio. The bacterial genus Rikenellaceae_RC9_gut_group had time at peak of rhythm within 12 to 24 h after feeding, which was also positively associated with the ruminal acetate/propionate ratio. Our study illustrated the daily dynamic on the rumen microbiota population and composition under different diets, and also identified the feeding-responsive rumen microbiota, highlighting that a more targeted approach is needed to manipulate rumen microbiota.
Collapse
Affiliation(s)
- Yangyi Hao
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Jianming Xia
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Kangkang Chu
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Shuang Wang
- Beijing Dairy Cattle Center, Beijing 100192, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Fregulia P, Campos MM, Dhakal R, Dias RJP, Neves ALA. Feed efficiency and enteric methane emissions indices are inconsistent with the outcomes of the rumen microbiome composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175263. [PMID: 39102957 DOI: 10.1016/j.scitotenv.2024.175263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
The correlation between enteric methane emissions (eME) and feed efficiency (FE) in cattle is linked to the anaerobic fermentation of feedstuffs that occurs in the rumen. Several mathematical indices have been developed to predict feed efficiency and identify low methane emitters in herds. To investigate this, the current study aimed to evaluate the rumen microbial composition in the same group of animals ranked according to six different indices (three indices for FE and three for eME). Thirty-three heifers were ranked into three groups, each consisting of 11 animals, based on FE (feed conversion efficiency - FCE, residual weight gain - RG, and residual feed intake - RFI) and eME indices (production, yield, and intensity). Rumen fluids were collected using a stomach tube and analyzed using 16S rRNA and 18S rRNA, targeting rumen bacteria, archaea, and protozoa. The sequencing analysis revealed that the presence of unique microbial species in the rumen varies across animals ranked by the FE and eME indices. The High RG group harbored 17 unique prokaryotic taxa, while the High FCE group contained only seven. Significant differences existed in the microbial profiles of the animals based on the FE and eME indices. For instance, Raoultibacter was more abundant in the Intermediate RFI group but less so in the Intermediate RG and Intermediate FCE groups. The abundance of Entodinium was higher while Diplodinium was lower in the High FCE group, in contrast to the High RG and High RFI groups. Methanobrevibacter exhibited similar abundances across eME indices. However, the heifers did not demonstrate the same production, yield, and intensity of eME. The present findings underscore the importance of standardizing the FE and eME indices. This standardization is crucial for ensuring consistent and reliable assessments of the composition and function of the rumen microbiome across different herds.
Collapse
Affiliation(s)
- Priscila Fregulia
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Magalhães Campos
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Brazil
| | - Rajan Dhakal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
4
|
Prachumchai R, Suriyapha C, Dagaew G, Sommai S, Matra M, Phupaboon S, Phasuk Y, Wanapat M. Microencapsulation of lemongrass and mangosteen peel as phytogenic compounds to gas kinetics, fermentation, degradability, methane production, and microbial population using in vitro gas technique. PLoS One 2024; 19:e0304282. [PMID: 38837999 DOI: 10.1371/journal.pone.0304282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
The purpose of the current study was to evaluate the impact of various doses of microencapsulated lemongrass and mangosteen peel (MELM) on gas dynamics, rumen fermentation, degradability, methane production, and microbial population in in vitro gas experiments. With five levels of microencapsulated-phytonutrient supplementation at 0, 1, 2, 3, and 4% of substrate, 0.5 g of roughage, and a concentrate ratio of 60:40, the trial was set up as a completely randomized design. Under investigation, the amount of final asymptotic gas volume was corresponding responded to completely digested substrate (b) increased cubically as a result of the addition of MELM (P < 0.01) and a cubic rise in cumulative gas output. The amount of MELM form did not change the pH and NH3-N concentration of the rumen after 12 and 24 h of incubation. However, methane production during 24 h of incubation, the levels were cubically decreased with further doses of MELM (P < 0.01) at 12 h of incubation. Increasing the dosage of MELM supplementation at 2% DM resulted in a significant increase in the digestibility of in vitro neutral detergent fiber (IVNDF) and in vitro true digestibility (IVTD) at various incubation times (P < 0.05), but decreased above 3% DM supplementations. Moreover, the concentration of propionic acid (C3) exhibited the variations across the different levels of MELM (P < 0.05), with the maximum concentration obtained at 2% DM. The populations of Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens, and Megasphaera elsdenii revealed a significant increase (P < 0.05), while the quantity of Methanobacteriales decreased linearly with increasing doses of MELM. In conclusion, the inclusion of MELM at a concentration of 2% DM in the substrate which could enhance cumulative gas production, NDF and true digestibility, C3 production, and microbial population, while reducing methane concentration and Methanobacterial abundance.
Collapse
Affiliation(s)
- Rittikeard Prachumchai
- Department of Animal Science, Faculty of Agricultural Technology, Rajamangala, University of Technology Thanyaburi, Pathum Thani, Thailand
| | - Chaichana Suriyapha
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Gamonmas Dagaew
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Sukruthai Sommai
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Maharach Matra
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Srisan Phupaboon
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Yupin Phasuk
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
5
|
Hackmann TJ, Sen A, Firkins JL. Culture techniques for ciliate protozoa from the rumen: Recent advances and persistent challenges. Anaerobe 2024; 87:102865. [PMID: 38782297 DOI: 10.1016/j.anaerobe.2024.102865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Ciliate protozoa are key members of the microbial community of the rumen. Their study is important to the health and productivity of cattle, which are their hosts. However, there have been persistent challenges in culturing this microbial group in the laboratory. This review will sum up recent advances along with these persistent challenges. Protozoa have been maintained in three types of cultures (ex vivo, in vitro batch, in vitro continuous). Ex vivo cultures are prepared readily from rumen contents by washing away contaminating cells (e.g., bacteria). They have been useful in making basic observations of metabolism, such as which types of fermentation products protozoa form. However, these cultures can be maintained for only short periods (minutes or hours). In vitro batch and in vitro continuous cultures can be used in longer experiments (weeks or longer). However, it is not currently possible to maintain protozoa in these cultures unless bacteria are also present. We conclude the review with a protocol for preparing ex vivo cultures of protozoa. Our protocol has been standardized and used successfully across animal diets, users, and institutions. We anticipate this review will prepare others to culture rumen ciliate protozoa and reach new insights into this important microbial group.
Collapse
Affiliation(s)
- Timothy J Hackmann
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, 95168, CA, USA.
| | - Arup Sen
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, 95168, CA, USA
| | - Jeffrey L Firkins
- Department of Animal Sciences, The Ohio State University, 2029 Fyffe Ct, Columbus, 43210, OH, USA
| |
Collapse
|
6
|
Corrêa PS, Fernandes MA, Jimenez CR, Mendes LW, Lima PDMT, Abdalla AL, Louvandini H. Interaction between methanotrophy and gastrointestinal nematodes infection on the rumen microbiome of lambs. FEMS Microbiol Ecol 2024; 100:fiae083. [PMID: 38821514 PMCID: PMC11165275 DOI: 10.1093/femsec/fiae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/21/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Complex cross-talk occurs between gastrointestinal nematodes and gut symbiotic microbiota, with consequences for animal metabolism. To investigate the connection between methane production and endoparasites, this study evaluated the effect of mixed infection with Haemonchus contortus and Trichostrongylus colubriformis on methanogenic and methanotrophic community in rumen microbiota of lambs using shotgun metagenomic and real-time quantitative PCR (qPCR). The rumen content was collected from six Santa Inês lambs, (7 months old) before and after 42 days infection by esophageal tube. The metagenomic analysis showed that the infection affected the microbial community structure leading to decreased abundance of methanotrophs bacteria, i.e. α-proteobacteria and β-proteobacteria, anaerobic methanotrophic archaea (ANME), protozoa, sulfate-reducing bacteria, syntrophic bacteria with methanogens, geobacter, and genes related to pyruvate, fatty acid, nitrogen, and sulfur metabolisms, ribulose monophosphate cycle, and Entner-Doudoroff Pathway. Additionally, the abundance of methanogenic archaea and the mcrA gene did not change. The co-occurrence networks enabled us to identify the interactions between each taxon in microbial communities and to determine the reshaping of rumen microbiome associations by gastrointestinal nematode infection. Besides, the correlation between ANMEs was lower in the animal's postinfection. Our findings suggest that gastrointestinal parasites potentially lead to decreased methanotrophic metabolism-related microorganisms and genes.
Collapse
Affiliation(s)
- Patricia Spoto Corrêa
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Murilo Antonio Fernandes
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Carolina Rodriguez Jimenez
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Lucas William Mendes
- Laboratory of Molecular Cell Biology, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Paulo de Mello Tavares Lima
- Department of Animal Science, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071, United States
| | - Adibe Luiz Abdalla
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, Center for Nuclear Energy in Agriculture, University of São Paulo, 303 Centenario Avenue, Piracicaba, SP 13416-000, Brazil
| |
Collapse
|
7
|
Abdullah HM, Mohammed OB, Sheikh A, Almathen F, Khalid AM, Bakhiet AO, Abdelrahman MM. Molecular detection of ruminal micro-flora and micro-fauna in Saudi Arabian camels: Effects of season and region. Saudi J Biol Sci 2024; 31:103982. [PMID: 38600912 PMCID: PMC11004988 DOI: 10.1016/j.sjbs.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
This study investigated and explored the availability of micro-flora and micro-fauna in the ruminal contents of Arabian camel (Camelus dromedarius) from three different regions in Saudi Arabia along with two seasons. Samples were prepared and tested by conventional polymerase chain reaction (PCR). This study confirmed that the bacterial flora were dominating over other microbes. Different results of the availability of each microbe in each region and season were statistically analyzed and discussed. There was no significant effect of season on the micro-flora or micro-fauna however, the location revealed a positive effect with Ruminococcus flavefaciens (p < 0 0.03) in the eastern region. This study was the first to investigate the abundance of micro-flora and micro-fauna in the ruminal contents of camels of Saudi Arabia. This study underscores the significance of camel ruminal micro-flora and micro-fauna abundance, highlighting their correlation with both seasonality and geographic location. This exploration enhances our comprehension of camel rumination and digestion processes. The initial identification of these microbial communities serves as a foundational step, laying the groundwork for future in-depth investigations into camel digestibility and nutritional requirements.
Collapse
Affiliation(s)
- Hashim M. Abdullah
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Osama B. Mohammed
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Faisal Almathen
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
| | - Ahmed M. Khalid
- Department of Veterinary Public Health, College of Veterinary Medicine, King Faisal University, P.O. Box 400, Al-Hofuf 31982, Al-Ahsa, Saudi Arabia
- Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Shambat 13314, Sudan
| | - Amel O. Bakhiet
- Deanship of Scientific Research, Sudan University of Science and Technology, P.O. Box 407, Khartoum, Sudan
| | - Mutassim M. Abdelrahman
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
García-Rodríguez J, Saro C, Mateos I, Carro MD, Ranilla MJ. Effects of Garlic Oil and Cinnamaldehyde on Sheep Rumen Fermentation and Microbial Populations in Rusitec Fermenters in Two Different Sampling Periods. Animals (Basel) 2024; 14:1067. [PMID: 38612306 PMCID: PMC11011117 DOI: 10.3390/ani14071067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Garlic oil (GO) and cinnamaldehyde (CIN) have shown potential to modify rumen fermentation. The aim of this study was to assess the effects of GO and CIN on rumen fermentation, microbial protein synthesis (MPS), and microbial populations in Rusitec fermenters fed a mixed diet (50:50 forage/concentrate), as well as whether these effects were maintained over time. Six fermenters were used in two 15-day incubation runs. Within each run, two fermenters received no additive, 180 mg/L of GO, or 180 mg/L of CIN. Rumen fermentation parameters were assessed in two periods (P1 and P2), and microbial populations were studied after each of these periods. Garlic oil reduced the acetate/propionate ratio and methane production (p < 0.001) in P1 and P2 and decreased protozoal DNA concentration and the relative abundance of fungi and archaea after P1 (p < 0.05). Cinnamaldehyde increased bacterial diversity (p < 0.01) and modified the structure of bacterial communities after P1, decreased bacterial DNA concentration after P2 (p < 0.05), and increased MPS (p < 0.001). The results of this study indicate that 180 mg/L of GO and CIN promoted a more efficient rumen fermentation and increased the protein supply to the animal, respectively, although an apparent adaptive response of microbial populations to GO was observed.
Collapse
Affiliation(s)
- Jairo García-Rodríguez
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - Cristina Saro
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - Iván Mateos
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| | - María Dolores Carro
- Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Agroalimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid, Spain;
| | - María José Ranilla
- Departamento de Producción Animal, Universidad de León, Campus de Vegazana, s/n, 24071 León, Spain; (J.G.-R.); (C.S.); (I.M.)
- Instituto de Ganadería de Montaña, CSIC—Universidad de León, Finca Marzanas, s/n, 24346 Grulleros, Spain
| |
Collapse
|
9
|
Fregulia P, Dias RJP, Campos MM, Tomich TR, Pereira LGR, Neves ALA. Composition of the rumen microbiome and its association with methane yield in dairy cattle raised in tropical conditions. Mol Biol Rep 2024; 51:447. [PMID: 38536522 PMCID: PMC10972937 DOI: 10.1007/s11033-024-09381-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Methane (CH4) emissions from rumen fermentation are a significant contributor to global warming. Cattle with high CH4 emissions tend to exhibit lower efficiency in milk and meat production, as CH4 production represents a loss of the gross energy ingested by the animal. The objective of this study was to investigate the taxonomic and functional composition of the rumen microbiome associated with methane yield phenotype in dairy cattle raised in tropical areas. METHODS AND RESULTS Twenty-two Girolando (F1 Holstein x Gyr) heifers were classified based on their methane yield (g CH4 / kg dry matter intake (DMI)) as High CH4 yield and Low CH4 yield. Rumen contents were collected and analyzed using amplicon sequencing targeting the 16 and 18S rRNA genes. The diversity indexes showed no differences for the rumen microbiota associated with the high and low methane yield groups. However, the sparse partial least squares discriminant analysis (sPLS-DA) revealed different taxonomic profiles of prokaryotes related to High and Low CH4, but no difference was found for protozoa. The predicted functional profile of both prokaryotes and protozoa differed between High- and Low CH4 groups. CONCLUSIONS Our results suggest differences in rumen microbial composition between CH4 yield groups, with specific microorganisms being strongly associated with the Low (e.g. Veillonellaceae_UCG - 001) and High (e.g., Entodinium) CH4 groups. Additionally, specific microbial functions were found to be differentially more abundant in the Low CH4 group, such as K19341, as opposed to the High CH4 group, where K05352 was more prevalent. This study reinforces that identifying the key functional niches within the rumen is vital to understanding the ecological interplay that drives methane production.
Collapse
Affiliation(s)
- Priscila Fregulia
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, 36036-900, Brazil
- Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Magalhães Campos
- Brazilian Agricultural Research Corporation, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, National Center for Research on Dairy Cattle, Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Thierry Ribeiro Tomich
- Brazilian Agricultural Research Corporation, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, National Center for Research on Dairy Cattle, Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - Luiz Gustavo Ribeiro Pereira
- Brazilian Agricultural Research Corporation, Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA, National Center for Research on Dairy Cattle, Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, 36038-330, Brazil
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, Frederiksberg C, DK-1870, Denmark.
| |
Collapse
|
10
|
Keum GB, Pandey S, Kim ES, Doo H, Kwak J, Ryu S, Choi Y, Kang J, Kim S, Kim HB. Understanding the Diversity and Roles of the Ruminal Microbiome. J Microbiol 2024; 62:217-230. [PMID: 38662310 DOI: 10.1007/s12275-024-00121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/26/2024]
Abstract
The importance of ruminal microbiota in ruminants is emphasized, not only as a special symbiotic relationship with ruminants but also as an interactive and dynamic ecosystem established by the metabolites of various rumen microorganisms. Rumen microbial community is essential for life maintenance and production as they help decompose and utilize fiber that is difficult to digest, supplying about 70% of the energy needed by the host and 60-85% of the amino acids that reach the small intestine. Bacteria are the most abundant in the rumen, but protozoa, which are relatively large, account for 40-50% of the total microorganisms. However, the composition of these ruminal microbiota is not conserved or constant throughout life and is greatly influenced by the host. It is known that the initial colonization of calves immediately after birth is mainly influenced by the mother, and later changes depending on various factors such as diet, age, gender and breed. The initial rumen microbial community contains aerobic and facultative anaerobic bacteria due to the presence of oxygen, but as age increases, a hypoxic environment is created inside the rumen, and anaerobic bacteria become dominant in the rumen microbial community. As calves grow, taxonomic diversity increases, especially as they begin to consume solid food. Understanding the factors affecting the rumen microbial community and their effects and changes can lead to the early development and stabilization of the microbial community through the control of rumen microorganisms, and is expected to ultimately help improve host productivity and efficiency.
Collapse
Affiliation(s)
- Gi Beom Keum
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hyunok Doo
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jinok Kwak
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sumin Ryu
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yejin Choi
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Juyoun Kang
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Sheena Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hyeun Bum Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
11
|
Zhao J, Zhao X, Gao J, Bai B, Niu J, Yang Y, Zhao G, Wang Z, Xu Z, Wang J, Cheng Y, Hao L. Ensiled diet improved the growth performance of Tibetan sheep by regulating the rumen microbial community and rumen epithelial morphology. J Anim Sci 2024; 102:skae173. [PMID: 38902909 PMCID: PMC11245705 DOI: 10.1093/jas/skae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024] Open
Abstract
The aim of this study was to investigate the effects of ensiled agricultural byproducts from Qinghai-Tibet plateau on growth performance, rumen microbiota, ruminal epithelium morphology, and nutrient transport-related gene expression in Tibetan sheep. Fourteen male Tibetan sheep were randomly assigned to one of two diets: an untreated diet (without silage inoculum, CON, n = 7) or an ensiled diet (with silage inoculum, ESD, n = 7). The total experimental period lasted for 84 d, including early 14 d as adaption period and remaining 70 d for data collection. The ESD increased average daily gain (P = 0.046), dry matter intake (P < 0.001), ammonia nitrogen (P = 0.045), microbial crude protein (P = 0.034), and total volatile fatty acids concentration (P < 0.001), and decreased ruminal pH value (P = 0.014). The proportion of propionate (P = 0.006) and the copy numbers of bacteria (P = 0.01) and protozoa (P = 0.002) were higher, while the proportion of acetate (P = 0.028) was lower in the sheep fed ESD compared to CON. Pyrosequencing of the 16S ribosomal RNA gene revealed that ESD increased the relative abundance of Firmicutes, Ruminococcus, Lachnospiraceae_AC2044_group, Lachnospiraceae_XPB1014_group, and Christensenellaceae_R-7_group in the rumen (P < 0.05), while decreased the relative abundance of Bacteroidota, Prevotellaceae_UCG-003, and Veillonellaceae_UCG-001 (P < 0.05). Analyses with PICRUSt2 and STAMP indicated that the propionate metabolism pathway was enriched in the sheep fed ESD (P = 0.026). The ESD increased the rumen papillae height (P = 0.012), density (P = 0.036), and surface area (P = 0.001), and improved the thickness of the total epithelia (P = 0.018), stratum corneum (P = 0.040), stratum granulosum (P = 0.042), and stratum spinosum and basale (P = 0.004). The relative mRNA expression of cyclin-dependent Kinase 2, CyclinA2, CyclinD2, zonula occludens-1, Occludin, monocarboxylate transporter isoform 1 (MCT1), MCT4, sodium/potassium pump, and sodium/hydrogen antiporter 3 were higher in the rumen epithelial of sheep fed ESD than CON (P < 0.05). Conversely, the relative mRNA expressions of Caspase 3 and B-cell lymphoma-2 were lower in the sheep fed ESD than CON (P < 0.05). In conclusion, compared with an untreated diet, feeding an ensiled diet altered the rumen microbial community, enhanced nutrient transport through rumen epithelium, and improved the growth performance of Tibetan sheep.
Collapse
Affiliation(s)
- Jian Zhao
- Laboratory of Gastrointestinal Microbiology, National Centre for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinsheng Zhao
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| | - Jian Gao
- Laboratory of Gastrointestinal Microbiology, National Centre for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Binqiang Bai
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| | - Jianzhang Niu
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| | - Yingkui Yang
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| | - Guojun Zhao
- Haibei Prefecture Agricultural and Animal Husbandry Product Quality and Safety Inspection and Testing Center, Qinghai Xihai 812200, China
| | - Zuojiang Wang
- Qinghai Qaidam Nongken Mohe Camel Farm Co., LTD, Mo He 817101, China
| | - Zhenhua Xu
- Qinghai Regenerative Nutrition Biotechnology Co., LTD, Hu Zhu 810599, China
| | - Jilong Wang
- Qinghai Regenerative Nutrition Biotechnology Co., LTD, Hu Zhu 810599, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Centre for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Lizhuang Hao
- Qinghai University, Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Xi’ning 810016, China
| |
Collapse
|
12
|
Manlapig JJD, Kondo M, Ban-Tokuda T, Matsui H. Effect of rice bran fermented with Ligilactobacillus equi on in vitro fermentation profile and microbial population. Anim Sci J 2024; 95:e13955. [PMID: 38769748 DOI: 10.1111/asj.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
This study was conducted to assess the effects of fermented rice bran (FRB) with Ligilactobacillus equi on ruminal fermentation using an in vitro system. Oat hay, corn starch, and wheat bran were used as substrate for control. Ten percent of wheat bran was replaced with rice bran (RB), rice bran fermented with distilled water, and rice bran fermented with L. equi for T1, T2, and T3, respectively. The experimental diets were mixed with buffered rumen fluid from wethers under nitrogen gas and incubated for 24 h at 39°C. The fermentation profile and microbial population were analyzed after the incubations. The results revealed that the RB and FRB (with or without L. equi) significantly reduced the gas, methane (CH4), and CH4 per dry matter digested (p < 0.001). Total short-chain fatty acid was also reduced in T1 and T2 in comparison with the control (p < 0.001). Propionate proportion was increased while butyrate proportion was reduced in response to treatment addition in cultures (p < 0.001). Anaerobic fungi and Fibrobacter succinogenes abundance were decreased in treatments (p < 0.001). Overall, CH4 production in vitro can be reduced by RB and FRB supplementation as a result of the reduction of fiber-degrading microorganisms and a decrease in gas production.
Collapse
Affiliation(s)
- Jamal James D Manlapig
- Department of Animal Science, College of Agriculture, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | - Makoto Kondo
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| | | | - Hiroki Matsui
- Graduate School of Bioresources, Mie University, Tsu, Mie, Japan
| |
Collapse
|
13
|
Salehian Z, Khalilvandi-Behroozyar H, Pirmohammadi R, Ahmadifard N, Almasi H, Ramin M. Investigating the effect of supplementing different levels of Isochrysis galbana on in vitro rumen fermentation parameters. Anim Sci J 2024; 95:e13929. [PMID: 38400743 DOI: 10.1111/asj.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 02/26/2024]
Abstract
This study aimed to investigate the effect of supplementing Isochrysis galbana (I. galbana) at levels of 0 (control), 1, 2, 3, 4, and 5 (g/100 g DM) of the diet on the gas production kinetics, methane production, rumen fermentation parameters, and relative microbial population in vitro. Supplementation of I. galbana at high level (5 g/100 g DM) caused a significant decrease in total gas production (p < 0.05). High supplementation rates (4 and 5 g/100 g DM) decreased CH4 production relative to the control by 18.4% and 23.2%, respectively. Although rumen ammonia nitrogen (N-NH3) and total volatile fatty acids (VFA) concentrations were affected by dietary treatments, but the VFA profile did not changed. The relative proportion of protozoa and methanogenic archaea as well as Anaerovibrio lipolytica, Prevotella spp., Ruminococcus flavefaciens, and Fibrobacter succinogenes were decreased significantly as a result of microalgae supplementation. However, the relative abundance of Ruminococcus albus, Butyrivibrio fibrisolvens and Selenomonas ruminantium were significantly increased (p < 0.05), related to the control group. As well, the pH was not affected by dietary treatments. It was concluded that I. galbana reduced in vitro CH4 production and methanogenic archaea that its worth to be investigated further in in vivo studies.
Collapse
Affiliation(s)
- Zahra Salehian
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Rasoul Pirmohammadi
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Nasrollah Ahmadifard
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran
- Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Mohammad Ramin
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
14
|
Sarmikasoglou E, Johnson ML, Vinyard JR, Sumadong P, Lobo RR, Arce-Cordero JA, Bahman A, Ravelo A, Halima S, Salas-Solis GK, Hikita C, Watanabe T, Faciola AP. Effects of cashew nutshell extract and monensin on microbial fermentation in a dual-flow continuous culture. J Dairy Sci 2023; 106:8746-8757. [PMID: 37678783 DOI: 10.3168/jds.2023-23597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023]
Abstract
The objective of this study was to compare cashew nutshell extract (CNSE) to monensin and evaluate changes in in vitro mixed ruminal microorganism fermentation, nutrient digestibility, and microbial nitrogen outflow. Treatments were randomly assigned to 8 fermenters in a replicated 4 × 4 Latin square design with 4 experimental periods of 10 d (7 d for diet adaptation and 3 d for sample collection). Basal diets contained 43.5:56.5 forage: concentrate ratio and each fermenter was fed 106 g of DM/d divided equally between 2 feeding times. Treatments were control (CON, basal diet without additives), 2.5 μM monensin (MON), 0.1 mg CNSE granule/g DM (CNSE100), and 0.2 mg CNSE granule/g DM (CNSE200). On d 8 to10, samples were collected for pH, lactate, NH3-N, volatile fatty acids (VFA), mixed protozoa counts, organic matter (OM), and neutral detergent fiber (NDF) digestibility. Data were analyzed with the GLIMMIX procedure of SAS. Orthogonal contrasts were used to test the effects of (1) ADD (CON vs. MON, CNSE100, and CNSE200); (2) MCN (MON vs. CNSE100 and CNSE200); and (3) DOSE (CNSE100 vs. CNSE200). We observed that butyrate concentration in all treatments was lower compared with CON and the concentration for MON was lower compared with CNSE treatments. Protozoal population in all treatments was lower compared with CON. No effects were observed for pH, lactate, NH3-N, total VFA, OM, or N utilization. Within the 24-h pool, protozoal generation time, tended to be lower, while NDF digestibility tended to be greater in response to all additives. Furthermore, the microbial N flow, and the efficiency of N use tended to be lower for the monensin treatment compared with CNSE treatments. Overall, our results showed that both monensin and CNSE decreased butyrate synthesis and protozoal populations, while not affecting OM digestibility and tended to increase NDF digestibility; however, such effects are greater with monensin than CNSE nutshell.
Collapse
Affiliation(s)
- E Sarmikasoglou
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - M L Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - J R Vinyard
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - P Sumadong
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611; Department of Animal Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - R R Lobo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - J A Arce-Cordero
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611; Escuela de Zootecnia, Universidad de Costa Rica, San Jose, 11501-2060, Costa Rica
| | - A Bahman
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - A Ravelo
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - S Halima
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - G K Salas-Solis
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611
| | - C Hikita
- SDS Biotech K.K., Tokyo, Japan 101-0022
| | | | - A P Faciola
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
15
|
Li Y, Mao K, Zang Y, Lu G, Qiu Q, Ouyang K, Zhao X, Song X, Xu L, Liang H, Qu M. Revealing the developmental characterization of rumen microbiome and its host in newly received cattle during receiving period contributes to formulating precise nutritional strategies. MICROBIOME 2023; 11:238. [PMID: 37924150 PMCID: PMC10623857 DOI: 10.1186/s40168-023-01682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/27/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Minimizing mortality losses due to multiple stress and obtaining maximum performance are the production goals for newly received cattle. In recent years, vaccination and metaphylaxis treatment significantly decreased the mortality rate of newly received cattle, while the growth block induced by treatment is still obvious. Assessment of blood metabolites and behavior monitoring offer potential for early identification of morbid animals. Moreover, the ruminal microorganisms' homeostasis is a guarantee of beef steers' growth and health. The most critical period for newly received cattle is the first-month post-transport. Therefore, analyzing rumen metagenomics, rumen metabolomics, host metabolomics, and their interaction during receiving period (1 day before transport and at days 1/4, 16, and 30 after transport) is key to revealing the mechanism of growth retardation, and then to formulating management and nutritional practices for newly received cattle. RESULTS The levels of serum hormones (COR and ACTH), and pro-inflammatory factors (IL-1β, TNF-α, and IL-6) were highest at day 16, and lowest at day 30 after arrival. Meanwhile, the antioxidant capacity (SOD, GSH-Px, and T-AOC) was significantly decreased at day 16 and increased at day 30 after arrival. Metagenomics analysis revealed that rumen microbes, bacteria, archaea, and eukaryota had different trends among the four different time points. At day 16 post-transport, cattle had a higher abundance of ruminal bacteria and archaea than those before transport, but the eukaryote abundance was highest at day 30 post-transport. Before transport, most bacteria were mainly involved in polysaccharides digestion. At day 4 post-transport, the most significantly enriched KEGG pathways were nucleotide metabolism (pyrimidine metabolism and purine metabolism). At day 16 post-transport, the energy metabolism (glycolysis/gluconeogenesis, pyruvate metabolism) and ruminal contents of MCP and VFAs were significantly increased, but at the same time, energy loss induced by methane yields (Methanobrevibacter) together with pathogenic bacteria (Saccharopolyspora rectivirgula) were also significantly increased. At this time, the most upregulated ruminal L-ornithine produces more catabolite polyamines, which cause oxidative stress to rumen microbes and their host; the most downregulated ruminal 2',3'-cAMP provided favorable growth conditions for pathogenic bacteria, and the downregulated ruminal vitamin B6 metabolism and serum PC/LysoPC disrupt immune function and inflammation reaction. At day 30 post-transport, the ruminal L-ornithine and its catabolites (mainly spermidine and 1,3-propanediamine) were decreased, and the serum PC/LysoPC and 2',3'-cNMPs pools were increased. This is also consistent with the changes in redox, inflammation, and immune status of the host. CONCLUSIONS This study provides new ideas for regulating the health and performance of newly received cattle during the receiving period. The key point is to manage the newly received cattle about day 16 post-transport, specifically to inhibit the production of methane and polyamines, and the reproduction of harmful bacteria in the rumen, therefore improving the immunity and performance of newly received cattle. Video Abstract.
Collapse
Affiliation(s)
- Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| | - Kang Mao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yitian Zang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guwei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Kehui Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianghui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lanjiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huan Liang
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
16
|
Yoo D, Yang S, Kim H, Moon J, Seo J. Effects of the Use of Rice Grain on Growth Performances, Blood Metabolites, Rumen Fermentation, and Rumen Microbial Community in Fattening Hanwoo Steers. Animals (Basel) 2023; 13:2988. [PMID: 37760388 PMCID: PMC10525799 DOI: 10.3390/ani13182988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to assess the influence of rice grain in the total mixed ration (TMR) on the growth performance, blood metabolites, rumen fermentation, and rumen microbial community of fattening Hanwoo steers. Two experimental diets were prepared: (i) a TMR containing 33% dry matter (DM) corn grains (Corn TMR) and (ii) a TMR containing 33% DM rice grains (Rice TMR). Twenty-two Hanwoo steers (body weight [BW], 498 ± 32 kg; months, 17 ± 0.5) were distributed into two treatment groups in a completely randomized block design according to BW. The Rice TMR group had a higher final BW and DM intake (DMI) compared to those in the Corn TMR group (p < 0.01). However, no difference was observed in the average daily gain (ADG) and feed conversion ratio (FCR) between the two treatments. For the rumen fermentation parameters, the molar portion of butyrate in the Rice TMR was higher than in the Corn TMR (p < 0.01). Streptococcus bovis tended to be higher in the Rice TMR (p = 0.09). The results of this study suggest that using rice grain as the primary starch source in TMRs may be an alternative option for fattening Hanwoo steers.
Collapse
Affiliation(s)
| | | | | | | | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea; (D.Y.); (S.Y.); (H.K.); (J.M.)
| |
Collapse
|
17
|
Li L, Qu L, Li T. The effects of Selenohomolanthionine supplementation on the rumen eukaryotic diversity of Shaanbei white cashmere wether goats. Sci Rep 2023; 13:13134. [PMID: 37573461 PMCID: PMC10423290 DOI: 10.1038/s41598-023-39953-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
Selenium (Se) is an important microelement for animal health. However, the knowledge about the effects of Se supplementation on rumen eukaryotic community remains less explored. In this study, the ruminal eukaryotic diversity in three months old Shaanbei white cashmere wether goats, with body weight (26.18 ± 2.71) kg, fed a basal diet [0.016 mg/kg Se dry matter (DM), control group (CG)] were compared to those animals given basal diet supplemented with different levels of organic Se in the form of Selenohomolanthionine (SeHLan), namely low Se group (LSE, 0.3 mg/kg DM), medium Se group (MSE, 0.6 mg/kg Se DM) and high Se group (HSE, 1.2 mg/kg DM) using 18S rRNA amplicon sequencing. Illumina sequencing generated 2,623,541 reads corresponding to 3123 operational taxonomic units (OTUs). Taxonomic analysis revealed that Eukaryota (77.95%) and Fungi (14.10%) were the dominant eukaryotic kingdom in all samples. The predominant rumen eukaryotic phylum was found to be Ciliophora (92.14%), while fungal phyla were dominated by Ascomycota (40.77%), Basidiomycota (23.77%), Mucoromycota (18.32%) and unidentified_Fungi (13.89%). The dominant eukaryotic genera were found to be Entodinium (55.44%), Ophryoscolex (10.51%) and Polyplastron (10.19%), while the fungal genera were dominanted by Mucor (15.39%), Pichia (9.88%), Aspergillu (8.24%), Malassezia (7.73%) and unidentified_Neocallimastigaceae (7.72%). The relative abundance of eukaryotic genera Ophryoscolex, Enoploplastron and fungal genus Mucor were found to differ significantly among the four treatment groups (P < 0.05). Moreover, Spearman correlation analysis revealed that the ciliate protozoa and fungi were negatively correlated with each other. The results of this study provided newer information about the effects of Se on rumen eukaryotic diversity patterns using 18s rRNA high-throughput sequencing technology.
Collapse
Affiliation(s)
- Longping Li
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, 719000, China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, 719000, China
| | - Tuo Li
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, 719000, China
- College of Life Sciences, Yulin University, Yulin, 719000, China
| |
Collapse
|
18
|
Palma-Hidalgo JM, Belanche A, Jiménez E, Newbold CJ, Denman SE, Yáñez-Ruiz DR. Multi-omics in vitro study of the salivary modulation of the goat rumen microbiome. Animal 2023; 17:100895. [PMID: 37515965 DOI: 10.1016/j.animal.2023.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023] Open
Abstract
Ruminants are able to produce large quantities of saliva which enter into the rumen and salivary components exert different physiological functions. Although previous research has indicated that salivary immunoglobulins can partially modulate the rumen microbial activity, the role of the salivary components other than ions on the rumen microbial ecosystem has not been thoroughly investigated in ruminants. To investigate this modulatory activity, a total of 16 semi-continuous in vitro cultures with oats hay and concentrate were used to incubate rumen fluid from four donor goats with autoclaved saliva (AUT) as negative control, saliva from the same rumen fluid donor (OWN) as positive control, and either goat (GOAT) or sheep (SHEEP) saliva as experimental interventions. Fermentation was monitored throughout 7 days of incubation and the microbiome and metabolome were analysed at the end of this incubation by Next-Generation sequencing and liquid chromatography coupled with mass spectrometry, respectively. Characterisation of the proteome and metabolome of the different salivas used for the incubation showed a high inter-animal variability in terms of metabolites and proteins, including immunoglobulins. Incubation with AUT saliva promoted lower fermentative activity in terms of gas production (-9.4%) and highly divergent prokaryotic community in comparison with other treatments (OWN, GOAT and SHEEP) suggesting a modulatory effect derived from the presence of bioactive salivary components. Microbial alpha-diversity at amplicon sequence variant (ASV) level was unaffected by treatment. However, some differences were found in the microbial communities across treatments, which were mostly caused by a greater abundance of Proteobacteria and Rikenellacea in the AUT treatment and lower of Prevotellaceae. These bacteria, which are key in the rumen metabolism, had greater abundances in GOAT and SHEEP treatments. Incubation with GOAT saliva led to a lower protozoal concentration and propionate molar proportion indicating a capacity to modulate the rumen microbial ecosystem. The metabolomics analysis showed that the AUT samples were clustered apart from the rest indicating different metabolic pathways were promoted in this treatment. These results suggest that specific salivary components contribute to host-associated role in selecting the rumen commensal microbiota and its activity. These findings could open the possibility of developing new strategies to modulate the saliva composition as a way to manipulate the rumen function and activity.
Collapse
Affiliation(s)
- Juan Manuel Palma-Hidalgo
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain; Scotland's Rural College (SRUC), Peter Wilson Building King's Buildings, W Mains Rd, Edinburgh EH9 3JG, United Kingdom
| | - Alejandro Belanche
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain; Departamento de Producción Animal y Ciencia de los Alimentos, IA2, Universidad de Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisabeth Jiménez
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Charles J Newbold
- Scotland's Rural College (SRUC), Peter Wilson Building King's Buildings, W Mains Rd, Edinburgh EH9 3JG, United Kingdom
| | - Stuart E Denman
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St Lucia, Qld, Australia
| | - David R Yáñez-Ruiz
- Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
19
|
Li J, Zhao S, Meng Z, Gao Y, Miao J, Mao S, Jin W. Effects of Fumarate and Nitroglycerin on In Vitro Rumen Fermentation, Methane and Hydrogen Production, and on Microbiota. BIOLOGY 2023; 12:1011. [PMID: 37508440 PMCID: PMC10376899 DOI: 10.3390/biology12071011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
This study aimed to investigate the effects of fumarate and nitroglycerin on rumen fermentation, methane and hydrogen production, and microbiota. In vitro rumen fermentation was used in this study with four treatment groups: control (CON), fumarate (FA), nitroglycerin (NG) and fumarate plus nitroglycerin (FN). Real-time PCR and 16S rRNA gene sequencing were used to analyze microbiota. The results showed that nitroglycerin completely inhibited methane production and that this resulted in hydrogen accumulation. Fumarate decreased the hydrogen accumulation and improved the rumen fermentation parameters. Fumarate increased the concentration of propionate and microbial crude protein, and decreased the ratio of acetate to propionate in FN. Fumarate, nitroglycerin and their combination did not affect the abundance of bacteria, protozoa and anaerobic fungi, but altered archaea. The PCoA showed that the bacterial (Anosim, R = 0.747, p = 0.001) and archaeal communities (Anosim, R = 0.410, p = 0.005) were different among the four treatments. Compared with CON, fumarate restored Bacteroidetes, Firmicutes, Spirochaetae, Actinobacteria, Unclassified Ruminococcaceae, Streptococcus, Treponema and Bifidobacterium in relative abundance in FN, but did not affect Succinivibrio, Ruminobacter and archaeal taxa. The results indicated that fumarate alleviated the depressed rumen fermentation caused by the inhibition of methanogenesis by nitroglycerin. This may potentially provide an alternative way to use these chemicals to mitigate methane emission in ruminants.
Collapse
Affiliation(s)
- Jichao Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengwei Zhao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenxiang Meng
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlong Gao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Miao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Metzler-Zebeli BU, Lerch F, Yosi F, Vötterl J, Ehmig J, Koger S, Verhovsek D. Temporal Microbial Dynamics in Feces Discriminate by Nutrition, Fecal Color, Consistency and Sample Type in Suckling and Newly Weaned Piglets. Animals (Basel) 2023; 13:2251. [PMID: 37508029 PMCID: PMC10376145 DOI: 10.3390/ani13142251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Feces enable frequent samplings for the same animal, which is valuable in studies investigating the development of the gut microbiome in piglets. Creep feed should prepare the piglet's gut for the postweaning period and shape the microbiome accordingly. Little is known about the variation that is caused by differences in fecal color and consistency and different sample types (feces versus swab samples). Therefore, this study evaluated the age-related alterations in the microbiome composition (16S rRNA gene) in feces of suckling and newly weaned piglets in the context of nutrition and fecal consistency, color and sample type from day 2 to 34 of life. Feces from 40 healthy piglets (2 each from 20 litters) were collected on days 2, 6, 13, 20, 27, 30 and 34. Weaning occurred on day 28. Half of the litters only drank sow milk during the suckling phase, whereas the other half had access to creep feed from day 10. Creep feeding during the suckling phase influenced the age-related total bacterial and archaeal abundances but had less of an influence on the relative bacterial composition. Results further showed different taxonomic compositions in feces of different consistency, color and sample type, emphasizing the need to consider these characteristics in comprehensive microbiome studies.
Collapse
Affiliation(s)
- Barbara U Metzler-Zebeli
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Frederike Lerch
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Fitra Yosi
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Animal Science, Faculty of Agriculture, University of Sriwijaya, Palembang 30662, Indonesia
| | - Julia Vötterl
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Juliane Ehmig
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Simone Koger
- Christian-Doppler Laboratory for Innovative Gut Health Concepts of Livestock, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Doris Verhovsek
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
21
|
Liu Y, Xiao Y, Ma T, Diao Q, Tu Y. Candida tropicalis as a novel dietary additive to reduce methane emissions and nitrogen excretion in sheep. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82661-82671. [PMID: 37329373 DOI: 10.1007/s11356-023-28245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
The goal of this study was to investigate Candida tropicalis as a kind of environmentally friendly dietary additive to manipulate ruminal fermentation patterns, reduce methane emissions and nitrogen excretion, and to screen the appropriate dose for sheep. Twenty-four Dorper × thin-tailed Han crossbred ewes (51.12 kg ± 2.23 kg BW) were selected and randomly divided into four groups which were fed Candida tropicalis at dose of 0 (control), 4 × 108 (low dose), 4 × 109 (medium dose), and 4 × 1010 (high dose) colony-forming units (CFU)/d per head, respectively. The experiment lasted 33 days with 21 days for adaptation and 12 days for nutrient digestibility trial and respiratory gases sampling. The results showed that nutrients intake was not affected by Candida tropicalis supplementation (P > 0.05), whereas apparent digestibility of nutrients significantly increased compared with the control group (P < 0.05). Nitrogen and energy utilization increased with Candida tropicalis supplementation (P < 0.05). Compared with the ewes of the control group, rumen fluid pH and NH3-N concentration were not affected (P > 0.05), whereas total volatile fatty acid concentration and molar proportion of propionate were greater (P < 0.05), and molar proportion of acetate and the ratio of acetate to propionate were less (P < 0.05) when the ewes were fed Candida tropicalis. Daily total CH4 production (L/d) and CH4 emissions yield (L/d of CH4 per kg of dry matter intake, metabolic weight, or digestibility dry matter intake) were decreased at the low dose group (P < 0.05). The abundance of total bacteria, methanogen, and protozoa in rumen fluid was significantly higher at medium dose and high dose of Candida tropicalis supplementation (P < 0.05) compared with low dose and the control group. In summary, Candida tropicalis supplementation has a potential to reduce CH4 emissions and nitrogen excretion, and the optimal dose should be 4 × 108 CFU/d per head.
Collapse
Affiliation(s)
- Yunlong Liu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Yi Xiao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China.
| |
Collapse
|
22
|
Khurana R, Brand T, Tapio I, Bayat AR. Effect of a garlic and citrus extract supplement on performance, rumen fermentation, methane production, and rumen microbiome of dairy cows. J Dairy Sci 2023:S0022-0302(23)00273-4. [PMID: 37225588 DOI: 10.3168/jds.2022-22838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/23/2023] [Indexed: 05/26/2023]
Abstract
The aim of this trial was to determine the effect of a garlic and citrus extract supplement (GCE) on the performance, rumen fermentation, methane emissions, and rumen microbiome of dairy cows. Fourteen multiparous Nordic Red cows in mid-lactation from the research herd of Luke (Jokioinen, Finland) were allocated to 7 blocks in a complete randomized block design based on body weight, days in milk, dry matter intake (DMI), and milk yield. Animals within each block were randomly allocated to a diet with or without GCE. The experimental period for each block of cows (one for each of the control and GCE groups) consisted of 14 d of adaptation followed by 4 d of methane measurements inside the open circuit respiration chambers, with the first day being considered as acclimatization. Data were analyzed using the GLM procedure of SAS (SAS Institute Inc.). Methane production (g/d) and methane intensity (g/kg of energy-corrected milk) were lower by 10.3 and 11.7%, respectively, and methane yield (g/kg of DMI) tended to be lower by 9.7% in cows fed GCE compared with the control. Dry matter intake, milk production, and milk composition were similar between treatments. Rumen pH and total volatile fatty acid concentrations in rumen fluid were similar, whereas GCE tended to increase molar propionate concentration and decrease the molar ratio of acetate to propionate. Supplementation with GCE resulted in greater abundance of Succinivibrionaceae, which was associated with reduced methane. The relative abundance of the strict anaerobic Methanobrevibacter genus was reduced by GCE. The change in microbial community and rumen propionate proportion may explain the decrease in enteric methane emissions. In conclusion, feeding GCE to dairy cows for 18 d modified rumen fermentation and microbiota, leading to reduced methane production and intensity without compromising DMI or milk production in dairy cows. This could be an effective strategy for enteric methane mitigation of dairy cows.
Collapse
Affiliation(s)
| | | | - Ilma Tapio
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen 31600, Finland
| | - Ali-Reza Bayat
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen 31600, Finland
| |
Collapse
|
23
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Park T, Lee Y, Lee SS, Lee SS. Oral administration of Pinus koraiensis cone essential oil reduces rumen methane emission by altering the rumen microbial composition and functions in Korean native goat ( Capra hircus coreanae). Front Vet Sci 2023; 10:1168237. [PMID: 37275608 PMCID: PMC10234127 DOI: 10.3389/fvets.2023.1168237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
This study aimed to investigate Pinus koraiensis cone essential oil (PEO) as a methane (CH4) inhibitor and determine its impact on the taxonomic and functional characteristics of the rumen microbiota in goats. A total of 10 growing Korean native goats (Capra hircus coreanae, 29.9 ± 1.58 kg, male) were assigned to different dietary treatments: control (CON; basal diet without additive) and PEO (basal diet +1 g/d of PEO) by a 2 × 2 crossover design. Methane measurements were conducted every 4 consecutive days for 17-20 days using a laser CH4 detector. Samples of rumen fluid and feces were collected during each experimental period to evaluate the biological effects and dry matter (DM) digestibility after PEO oral administration. The rumen microbiota was analyzed via 16S rRNA gene amplicon sequencing. The PEO oral administration resulted in reduced CH4 emission (eructation CH4/body weight0.75, p = 0.079) without affecting DM intake; however, it lowered the total volatile fatty acids (p = 0.041), molar proportion of propionate (p = 0.075), and ammonia nitrogen (p = 0.087) in the rumen. Blood metabolites (i.e., albumin, alanine transaminase/serum glutamic pyruvate transaminase, creatinine, and triglyceride) were significantly affected (p < 0.05) by PEO oral administration. The absolute fungal abundance (p = 0.009) was reduced by PEO oral administration, whereas ciliate protozoa, total bacteria, and methanogen abundance were not affected. The composition of rumen prokaryotic microbiota was altered by PEO oral administration with lower evenness (p = 0.054) observed for the PEO group than the CON group. Moreover, PICRUSt2 analysis revealed that the metabolic pathways of prokaryotic bacteria, such as pyruvate metabolism, were enriched in the PEO group. We also identified the Rikenellaceae RC9 gut group as the taxa potentially contributing to the enriched KEGG modules for histidine biosynthesis and pyruvate oxidation in the rumen of the PEO group using the FishTaco analysis. The entire co-occurrence networks showed that more nodes and edges were detected in the PEO group. Overall, these findings provide an understanding of how PEO oral administration affects CH4 emission and rumen prokaryotic microbiota composition and function. This study may help develop potential manipulation strategies to find new essential oils to mitigate enteric CH4 emissions from ruminants.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Jun Sik Eom
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, Republic of Korea
| | - Tansol Park
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Yookyung Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonju, Republic of Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Sunchon, Republic of Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, Republic of Korea
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
24
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Lee Y, Song T, Lee SS. Assessment of the Pinus koraiensis cone essential oil on methane production and microbial abundance using in vitro evaluation system. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
25
|
Shen J, Zheng W, Xu Y, Yu Z. The inhibition of high ammonia to in vitro rumen fermentation is pH dependent. Front Vet Sci 2023; 10:1163021. [PMID: 37065225 PMCID: PMC10097989 DOI: 10.3389/fvets.2023.1163021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Ammonia is an important rumen internal environment indicator. In livestock production, feeding a large amount of non-protein nitrogen to ruminants will create high ammonia stress to the animals, which increases the risk of ammonia toxicity. However, the effects of ammonia toxicity on rumen microbiota and fermentation are still unknown. In this study, an in vitro rumen fermentation technique was used to investigate the effects of different concentrations of ammonia on rumen microbiota and fermentation. To achieve the four final total ammonia nitrogen (TAN) concentrations of 0, 8, 32, and 128 mmol/L, ammonium chloride (NH4Cl) was added at 0, 42.8, 171.2, and 686.8 mg/100 mL, and urea was added at 0, 24, 96, and 384 mg/100 mL. Urea hydrolysis increased, while NH4Cl dissociation slightly reduced the pH. At similar concentrations of TAN, the increased pH of the rumen culture by urea addition resulted in a much higher free ammonia nitrogen (FAN) concentration compared to NH4Cl addition. Pearson correlation analysis revealed a strong negative correlation between FAN and microbial populations (total bacteria, protozoa, fungi, and methanogens) and in vitro rumen fermentation profiles (gas production, dry matter digestibility, total volatile fatty acid, acetate, propionate, etc.), and a much weaker correlation between TAN and the above indicators. Additionally, bacterial community structure changed differently in response to TAN concentrations. High TAN increased Gram-positive Firmicutes and Actinobacteria but reduced Gram-negative Fibrobacteres and Spirochaetes. The current study demonstrated that the inhibition of in vitro rumen fermentation by high ammonia was pH-dependent and was associated with variations of rumen microbial populations and communities.
Collapse
Affiliation(s)
- Junshi Shen
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Junshi Shen
| | - Wenjin Zheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Xu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Hartinger T, Kröger I, Neubauer V, Faas J, Doupovec B, Schatzmayr D, Zebeli Q. Zearalenone and Its Emerging Metabolites Promptly Affect the Rumen Microbiota in Holstein Cows Fed a Forage-Rich Diet. Toxins (Basel) 2023; 15:185. [PMID: 36977076 PMCID: PMC10053043 DOI: 10.3390/toxins15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The study investigated the short-term effects of a single oral bolus of zearalenone (ZEN) on the rumen microbiota and fermentation patterns in four rumen-cannulated Holstein cows fed a forage diet with daily 2 kg/cow concentrate. During the baseline day, cows received uncontaminated concentrate, followed by ZEN-contaminated concentrate on the second day, and again the uncontaminated concentrate on day three. Free rumen liquid (FRL) and particle-associated rumen liquid (PARL) were collected at different hours post-feeding on all days to analyze the prokaryotic community composition, absolute abundances of bacteria, archaea, protozoa, and anaerobic fungi, as well as short-chain fatty acid (SCFA) profiles. The ZEN reduced the microbial diversity in FRL but not in the PARL fraction. The abundance of protozoa was higher after ZEN exposure in PARL, which may be related to their strong biodegradation capacity that, therefore, promoted protozoal growth. In contrast, α-zearalenol might compromise anaerobic fungi as indicated by reduced abundances in FRL and fairly negative correlations in both fractions. Total SCFA significantly increased in both fractions after ZEN exposure, while the SCFA profile only changed marginally. Concluding, a single ZEN challenge caused changes in the rumen ecosystem soon after intake, including ruminal eukaryotes, that should be the subject of future studies.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Iris Kröger
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Viktoria Neubauer
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Johannes Faas
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Barbara Doupovec
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Dian Schatzmayr
- Biomin Research Center, Biomin Holding GmbH, 3430 Tulln, Austria
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
27
|
The effects of feeding dried browse leaves on rumen ammonia levels, methanogens and protozoa amplification of sheep in the Coastal Savannah of Ghana. Trop Anim Health Prod 2023; 55:80. [PMID: 36786899 DOI: 10.1007/s11250-023-03456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
Tanniferous browse leaves are reported to inhibit methanogens and protozoa activity in the rumen, thus contributing to a reduction of methane emission. This study evaluated the influence of feeding dried browse leaves to sheep on rumen ammonia concentration, the base pair at which protozoa and methanogens were amplified and double stranded DNA concentration (dsDNA) from rumen fluid and faeces. The eight treatments were urea treated rice straw, Albizzia lebbek (AL), Moringa oleifera (MO), Millettia thonningii (MT), AL + MO, AL + MT, AL + MO + MT and MO + MT. After feeding 32 ram lambs for 3 months, one ram lamb on each of the eight experimental diets was randomly selected and slaughtered to obtain rumen fluid. Genomic DNAs were extracted from methanogen and protozoa strains obtained from rumen liquor and from faecal matter of sheep. Rumen ammonia was determined using spectrophotometer. Methanogens and protozoa from rumen fluid and faeces were amplified at 1100 base pair, 200-1100 base pair, 320-1100 base pair and 200-750 base pair respectively. Rumen ammonia concentration, dsDNA from rumen fluid and faeces ranged from 14.51 to 23.01 mg/dl, 65 to 900 µg/ml and 100 to 950 µg/g respectively. The rumen ammonia concentration met the requirements for efficient growth of microbes. The presence of methanogens and protozoa in the rumen fluid and in the faeces indicated that dried browse diets were able to inhibit the growth of both protozoa and methanogens in the rumen by eliminating them, and thus, were excreted in the faeces. Hence, feeding of dried browse leaves can contribute to lower methane emission.
Collapse
|
28
|
Fregulia P, Campos MM, Dias RJP, Liu J, Guo W, Pereira LGR, Machado MA, Faza DRDLR, Guan LL, Garnsworthy PC, Neves ALA. Taxonomic and predicted functional signatures reveal linkages between the rumen microbiota and feed efficiency in dairy cattle raised in tropical areas. Front Microbiol 2022; 13:1025173. [PMID: 36523842 PMCID: PMC9745175 DOI: 10.3389/fmicb.2022.1025173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/07/2022] [Indexed: 08/27/2023] Open
Abstract
Ruminants digest plant biomass more efficiently than monogastric animals due to their symbiotic relationship with a complex microbiota residing in the rumen environment. What remains unclear is the relationship between the rumen microbial taxonomic and functional composition and feed efficiency (FE), especially in crossbred dairy cattle (Holstein x Gyr) raised under tropical conditions. In this study, we selected twenty-two F1 Holstein x Gyr heifers and grouped them according to their residual feed intake (RFI) ranking, high efficiency (HE) (n = 11) and low efficiency (LE) (n = 11), to investigate the effect of FE on the rumen microbial taxa and their functions. Rumen fluids were collected using a stomach tube apparatus and analyzed using amplicon sequencing targeting the 16S (bacteria and archaea) and 18S (protozoa) rRNA genes. Alpha-diversity and beta-diversity analysis revealed no significant difference in the rumen microbiota between the HE and LE animals. Multivariate analysis (sPLS-DA) showed a clear separation of two clusters in bacterial taxonomic profiles related to each FE group, but in archaeal and protozoal profiles, the clusters overlapped. The sPLS-DA also revealed a clear separation in functional profiles for bacteria, archaea, and protozoa between the HE and LE animals. Microbial taxa were differently related to HE (e.g., Howardella and Shuttleworthia) and LE animals (e.g., Eremoplastron and Methanobrevibacter), and predicted functions were significatively different for each FE group (e.g., K03395-signaling and cellular process was strongly related to HE animals, and K13643-genetic information processing was related to LE animals). This study demonstrates that differences in the rumen microbiome relative to FE ranking are not directly observed from diversity indices (Faith's Phylogenetic Diversity, Pielou's Evenness, Shannon's diversity, weighted UniFrac distance, Jaccard index, and Bray-Curtis dissimilarity), but from targeted identification of specific taxa and microbial functions characterizing each FE group. These results shed light on the role of rumen microbial taxonomic and functional profiles in crossbred Holstein × Gyr dairy cattle raised in tropical conditions, creating the possibility of using the microbial signature of the HE group as a biological tool for the development of biomarkers that improve FE in ruminants.
Collapse
Affiliation(s)
- Priscila Fregulia
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Magalhães Campos
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Junhong Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Luiz Gustavo Ribeiro Pereira
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Marco Antônio Machado
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Daniele Ribeiro de Lima Reis Faza
- Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA), National Center for Research on Dairy Cattle, Juiz de Fora, Minas Gerais, Brazil
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Phil C. Garnsworthy
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
29
|
Phesatcha B, Phesatcha K, Wanapat M. Mitragyna speciosa Korth Leaf Pellet Supplementation on Feed Intake, Nutrient Digestibility, Rumen Fermentation, Microbial Protein Synthesis and Protozoal Population in Thai Native Beef Cattle. Animals (Basel) 2022; 12:3238. [PMID: 36496759 PMCID: PMC9737993 DOI: 10.3390/ani12233238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
This experiment evaluated the use of Mitragyna speciosa Korth leaf pellets (MSLP) on feed intake and nutrient digestibility in Thai native beef cattle. Four Thai native beef cattle steers were randomly assigned according to a 4 × 4 Latin square design to receive four dietary treatments. The treatments were as follows: control (no supplementation), MSLP supplement at 10 g/hd/d, MSLP supplement at 20 g/hd/d and MSLP supplement at 30 g/hd/d, respectively. All animals were fed a concentrate mixture at 0.5% body weight, while urea lime-treated rice straws were fed ad libitum. Findings revealed that feed intakes were increased by MSLP, which also significantly increased the digestibility of dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF). Ruminal total volatile fatty acid (TVFA) concentration and propionate (C3) proportion were increased (p < 0.05) with MSLP supplementation, whereas ruminal ammonia-N (NH3-N), plasma urea nitrogen (PUN), acetate (C2), C2:C3 ratio and estimated methane (CH4) production decreased (p < 0.05). Total bacterial, Fibrobacter succinogenes and Ruminococus flavefaciens populations increased (p < 0.05) at high levels of MSLP supplementation, while protozoal populations and methanogenic archaea reduced (p < 0.05). Supplementation of MSLP also increased the efficiency of microbial nitrogen protein synthesis. Supplementing beef cattle with MSLP 10−30 g/hd/d significantly increased rumen fermentation end products and nutrient digestibility by mitigating protozoal populations and estimated CH4 production.
Collapse
Affiliation(s)
- Burarat Phesatcha
- Department of Agricultural Technology and Environment, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Kampanat Phesatcha
- Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
30
|
Huuki H, Tapio M, Mäntysaari P, Negussie E, Ahvenjärvi S, Vilkki J, Vanhatalo A, Tapio I. Long-term effects of early-life rumen microbiota modulation on dairy cow production performance and methane emissions. Front Microbiol 2022; 13:983823. [PMID: 36425044 PMCID: PMC9679419 DOI: 10.3389/fmicb.2022.983823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/11/2022] [Indexed: 09/29/2023] Open
Abstract
Rumen microbiota modulation during the pre-weaning period has been suggested as means to affect animal performance later in life. In this follow-up study, we examined the post-weaning rumen microbiota development differences in monozygotic twin-heifers that were inoculated (T-group) or not inoculated (C-group) (n = 4 each) with fresh adult rumen liquid during their pre-weaning period. We also assessed the treatment effect on production parameters and methane emissions of cows during their 1st lactation period. The rumen microbiota was determined by the 16S rRNA gene, 18S rRNA gene, and ITS1 amplicon sequencing. Animal weight gain and rumen fermentation parameters were monitored from 2 to 12 months of age. The weight gain was not affected by treatment, but butyrate proportion was higher in T-group in month 3 (p = 0.04). Apart from archaea (p = 0.084), the richness of bacteria (p < 0.0001) and ciliate protozoa increased until month 7 (p = 0.004) and anaerobic fungi until month 11 (p = 0.005). The microbiota structure, measured as Bray-Curtis distances, continued to develop until months 3, 6, 7, and 10, in archaea, ciliate protozoa, bacteria, and anaerobic fungi, respectively (for all: p = 0.001). Treatment or age × treatment interaction had a significant (p < 0.05) effect on 18 bacterial, 2 archaeal, and 6 ciliate protozoan taxonomic groups, with differences occurring mostly before month 4 in bacteria, and month 3 in archaea and ciliate protozoa. Treatment stimulated earlier maturation of prokaryote community in T-group before month 4 and earlier maturation of ciliate protozoa at month 2 (Random Forest: 0.75 month for bacteria and 1.5 month for protozoa). No treatment effect on the maturity of anaerobic fungi was observed. The milk production and quality, feed efficiency, and methane emissions were monitored during cow's 1st lactation. The T-group had lower variation in energy-corrected milk yield (p < 0.001), tended to differ in pattern of residual energy intake over time (p = 0.069), and had numerically lower somatic cell count throughout their 1st lactation period (p = 0.081), but no differences between the groups in methane emissions (g/d, g/kg DMI, or g/kg milk) were observed. Our results demonstrated that the orally administered microbial inoculant induced transient changes in early rumen microbiome maturation. In addition, the treatment may influence the later production performance, although the mechanisms that mediate these effects need to be further explored.
Collapse
Affiliation(s)
- Hanna Huuki
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Miika Tapio
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Päivi Mäntysaari
- Production Systems, Animal Nutrition, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Enyew Negussie
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Seppo Ahvenjärvi
- Production Systems, Animal Nutrition, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Johanna Vilkki
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Aila Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Ilma Tapio
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
31
|
Effects of Different Fiber Substrates on In Vitro Rumen Fermentation Characteristics and Rumen Microbial Community in Korean Native Goats and Hanwoo Steers. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Korean native goats (Capra hircus coreanae) (KNG) and Hanwoo (Bos taurus coreanae) are indigenous breeds inhabiting Korea. This study compared the in vitro rumen fermentation characteristics, dry matter (DM) degradation, and ruminal microbial communities of Korean native goats and Hanwoo steers consuming rice hay (RH) and cotton fiber (CF). The pH, ammonia-nitrogen (NH3-N), and total volatile fatty acids (VFAs) production significantly differ (p < 0.05) across species in all incubation times. After 24 h, the pH, NH3-N, and total VFAs production were higher in Korean native goats than in Hanwoo steers. Total gas, molar proportion of propionate, and total VFAs were higher (p < 0.05) in RH than in CF for both ruminant species. DM digestibility of both substrates were higher (p < 0.05) in Hanwoo steers than in KNG. Both treatments in KNG produced higher (p < 0.01) microbial DNA copies of general bacteria than those in Hanwoo steers. Butyrivibrio fibrisolvens and Fibrobacter succinogenes had significantly higher DNA copies under RH and CF in Hanwoo steers than in Korean native goats. B. fibrisolvens, Ruminococcus albus, and Ruminococcus flavifaciens after 24 h of incubation had a higher abundance (p < 0.05) in RH than in CF. Overall results suggested that rumen bacteria had host-specific and substrate-specific action for fiber digestion and contribute to improving ruminal functions of forage utilization between ruminant species.
Collapse
|
32
|
Król B, Słupczyńska M, Wilk M, Asghar M, Cwynar P. Anaerobic rumen fungi and fungal direct-fed microbials
in ruminant feeding. JOURNAL OF ANIMAL AND FEED SCIENCES 2022. [DOI: 10.22358/jafs/153961/2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Active Dry Yeast and Thiamine in Synergistic Mode Can Mitigate Adverse Effects of In Vitro Ruminal Acidosis Model of Goats. Animals (Basel) 2022; 12:ani12182333. [PMID: 36139193 PMCID: PMC9495026 DOI: 10.3390/ani12182333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ruminal acidosis is a type of metabolic disorder of high-yielding ruminants which is associated with the consumption of a high-grain diet. It not only harms the productive efficiency, health and wellbeing of the animals but also has detrimental effects on the economy of the farmers. Various strategies have been adapted to control ruminal acidosis. However, none of them have produced the desired results. This research was carried out to investigate the potential of active dry yeast (ADY) and thiamine in a synergistic mode to mitigate in vitro-induced ruminal acidosis. The purpose of this study was to determine how active dry yeast alone and in combination with thiamine affected the ruminal pH, lactate, volatile fatty acids, lipopolysaccharides (LPS) and microbial community in in vitro-induced ruminal acidosis. The experiment comprises three treatment groups, (1) SARA/control, (2) ADY and (3) ADYT (ADY + thiamine). In vitro batch fermentation was conducted for 24 h. The results indicated that ruminal induced successfully and both additives improved the final pH (p < 0.01) and decreased the LPS and lactate (p < 0.01) level as compared to the SARA group. However, the ADYT group decreased the level of lactate below 0.5 mmol/L. Concomitant to fermentation indicators, both the treatment groups decreased (p < 0.05) the abundance of lactate-producing bacteria while enhancing (p < 0.01) the abundance of lactate-utilizing bacteria. However, ADYT also increased (p < 0.05) the abundance of protozoa compared to the SARA and ADY group. Therefore, it can be concluded that ADY and thiamine in synergistic mode could be a better strategy in combating the adverse effects of subacute ruminal acidosis.
Collapse
|
34
|
Comparisons of Ramie and Corn Stover Silages: Effects on Chewing Activity, Rumen Fermentation, Microbiota and Methane Emissions in Goats. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study aimed to investigate the nutritional value of ramie (Boehmeria nivea) silage, and its consequences for chewing activity, rumen fermentation, and enteric methane (CH4) emissions in goats, by comparing it with corn stover (CS) silage. An in vitro ruminal experiment was firstly performed to investigate the substrate degradation and fermentation of CS and ramie silage. The ramie silage diet was formulated by replacing 60% of CS silage with ramie silage (dry matter (DM) basis). Eight female Xiangdong Black goats (a local breed in Southern China, 1 to 1.2 years of age) with BW of 21.0 ± 1.05 kg were used for this experiment and were randomly assigned to either one of the two dietary treatments in a cross-over design. The ramie silage had higher crude protein (CP) and ash content and lower hemicellulose content, together with decreased (p < 0.05) nutrient degradation and methane production and increased (p < 0.05) acetate molar percentage and acetate to propionate ratio through in vitro ruminal fermentation. Feeding the ramie silage diet did not alter feed intake (p > 0.05), decreased (p < 0.05) nutrient digestibility, and increased (p < 0.05) chewing activity and rumination activity, with reductions (p < 0.05) in eating activity and idle activity. Although feeding the ramie silage diet caused a greater (p < 0.05) molar percentage of acetate and lower molar percentage of propionate, it decreased the rumen-dissolved CH4 concentration and enteric CH4 emissions (p < 0.05). Feeding the ramie silage diet did not alter (p > 0.05) the population of bacteria, protozoa, and fungi; it increased the 16S rRNA gene copies of Ruminococcus flavefaciens (p < 0.05). Further 16SrRNA gene amplicon analysis indicated a distinct bacterial composition between the two treatments (p < 0.05). Feeding the ramie silage diet led to a lower abundance of genera Lawsonibacter, Sedimentibacter, Saccharofermentans, Sediminibacterium, and Bifidobacterium (p < 0.05). Ramie can be an alternative forage resource to stimulate chewing activity and reduce CH4 emissions in ruminants.
Collapse
|
35
|
Dose–Response Effects of Bamboo Leaves on Rumen Methane Production, Fermentation Characteristics, and Microbial Abundance In Vitro. Animals (Basel) 2022; 12:ani12172222. [PMID: 36077942 PMCID: PMC9454597 DOI: 10.3390/ani12172222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Due to economic, environmental, and nutritional considerations, mitigating enteric methane production from ruminants is an important issue. Nutritionists have recently shown that feeding livestock natural feed additives could ameliorate this problem, due to the antimicrobial activities of the biologically active components in the additives. Bamboo is widely distributed in Asia and is currently being used in construction and paper pulp production, which results in a significant amount of bamboo leaves as by-products. The present study investigated whether bamboo leaves feeding can decrease methane production in ruminants. Here we found that bamboo leaves supplementation in vitro caused a 12.7–34.2% reduction in methane production after 12 and 48 h. Further studies are needed to demonstrate the effect of bamboo leaves supplementation in vivo, to determine its potential for mitigating methane production from ruminants. Abstract Ruminants produce large amounts of methane as part of their normal digestive processes. Recently, feed additives were shown to inhibit the microorganisms that produce methane in the rumen, consequently reducing methane emissions. The objective of this study was to evaluate the dose–response effect of Phyllostachys nigra var. henonis (PHN) and Sasa borealis supplementation on in vitro rumen fermentation, methane, and carbon dioxide production, and the microbial population. An in vitro batch culture system was used, incubated without bamboo leaves (control) or with bamboo leaves (0.3, 0.6, and 0.9 g/L). After 48 h, total gas, methane, and carbon dioxide production decreased linearly with an increasing dose of bamboo leaves supplementation. The total volatile fatty acid, acetate, and acetate-to-propionate ratio were affected quadratically with increasing doses of bamboo leaves supplementation. In addition, propionate decreased linearly. Butyrate was increased linearly with increasing doses of PHN supplementation. The absolute values of total bacteria and methanogenic archaea decreased linearly and quadratically with an increasing dose of PHN treatment after 48 h. These results show that bamboo leaves supplementation can reduce methane production by directly affecting methanogenic archaea, depressing the metabolism of methanogenic microbes, or transforming the composition of the methanogenic community. These results need to be validated using in vivo feeding trials before implementation.
Collapse
|
36
|
Zhang Y, Li F, Chen Y, Guan LL. The Effects of Breed and Residual Feed Intake Divergence on the Abundance and Active Population of Rumen Microbiota in Beef Cattle. Animals (Basel) 2022; 12:ani12151966. [PMID: 35953955 PMCID: PMC9367312 DOI: 10.3390/ani12151966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
To assess the effects of residual feed intake (RFI) and breed on rumen microbiota, the abundance (DNA) and active population (RNA) of the total bacteria, archaea, protozoa, and fungi in the rumen of 96 beef steers from three different breeds (Angus (AN), Charolais (CH), and Kinsella Composite (KC)), and divergent RFIs (High vs Low), were estimated by measuring their respective maker gene copies using qRT-PCR. All experimental animals were kept under the same feedlot condition and fed with the same high-energy finishing diet. Rumen content samples were collected at slaughter and used for the extraction of genetic material (DNA and RNA) and further analysis. There was a significant difference (p < 0.01) between the marker gene copies detected for abundance and active populations for all four microbial groups. AN steers had a higher abundance of bacteria (p < 0.05) and a lower abundance of eukaryotes (protozoa and fungi, p < 0.05) compared to KC steers, while the abundance of protozoa (p < 0.05) in the AN cattle and fungi (p < 0.05) in the KC cattle were lower and higher, respectively, than those in the CH steers. Meanwhile, the active populations of bacteria, archaea, and protozoa in the KC steers were significantly lower than those in the AN and CH animals (p < 0.01). This work demonstrates that cattle breed can affect rumen microbiota at both the abundance and activity level. The revealed highly active protozoal populations indicate their important role in rumen microbial fermentation under a feedlot diet, which warrants further study.
Collapse
Affiliation(s)
- Yawei Zhang
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (F.L.); (Y.C.)
| | - Yanhong Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (F.L.); (Y.C.)
| | - Le-Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; (F.L.); (Y.C.)
- Correspondence:
| |
Collapse
|
37
|
Henniger MT, Wells JE, Hales KE, Lindholm-Perry AK, Freetly HC, Kuehn LA, Schneider LG, McLean KJ, Campagna SR, Christopher CJ, Myer PR. Effects of a Moderate or Aggressive Implant Strategy on the Rumen Microbiome and Metabolome in Steers. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.889817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The effects of growth-promoting implants have been well-defined for their ability to impact growth performance in beef cattle. Production-relevant microbes and microbiomes in the rumen have also been associated with growth traits. However, the role of implants on the rumen microbiome has not been determined. The objective of this study was to determine if different doses of implant hormones cause gain-associated ruminal microbial community changes. To assess this, a completely randomized design was used and 336 fall-born steers 450 to 470 days of age from the germplasm evaluation population at the US Meat Animal Research Center (Clay Center, NE) were divided into two treatment groups: 1) a moderate implant strategy (n = 167) of Revalor-IS (80 mg trenbolone acetate and 16 mg estradiol) followed by Revalor-S (120 mg trenbolone acetate and 24 mg estradiol) or 2) an aggressive implant strategy (n = 169) of Revalor-IS followed by Revalor-200 (200 mg trenbolone acetate and 20 mg estradiol). Steers were fed the same diet (57.0% dry-rolled corn, 30% wet distiller’s grains with solubles, 8.0% alfalfa hay, 4.25% vitamin and mineral supplement, and 0.75% urea, on a DM basis). On d 85 after implants administration, rumen contents were collected via orogastric tubing. Samples were sequenced to target and identify bacteria, archaea, and protozoa. Untargeted metabolomics was performed on rumen content using ultra high performance liquid chromatography high resolution mass spectrometry. Production data between implant strategies was analyzed using a mixed model ANOVA (SASv9.4, Cary, NC) followed by separation of least squares means. Microbial diversity between strategies did not differ for archaea or protozoa (P > 0.05). Average daily gain was different (P = 0.01; 1.72 vs 1.66 ± 0.02 kg, aggressive vs moderate, respectively); however, large microbial community shifts were not associated with implant strategy. Two metabolites, N-acetyllysine and N-acetylornithine, were found in greater abundance in the moderate implant strategy (P ≤ 0.04). Understanding associations between the rumen microbiome and implant strategies may allow improvement of growth efficiency in beef cattle.
Collapse
|
38
|
Lourenco JM, Welch CB. Using microbiome information to understand and improve animal performance. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2077147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Zhang M, Wang R, Wu T, Yang Y, He Z, Ma Z, Tan Z, Lin B, Wang M. Comparisons of Corn Stover Silages after Fresh- or Ripe-Corn Harvested: Effects on Digestibility and Rumen Fermentation in Growing Beef Cattle. Animals (Basel) 2022; 12:ani12101248. [PMID: 35625099 PMCID: PMC9137847 DOI: 10.3390/ani12101248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
Both waxy corn stover after fresh- (CF) and ripe-corn (CR) harvested are important byproducts of corn cropping system and have 20 d difference in harvest time. The study aimed to investigate the effects of prolonging harvest time on the nutritive value of corn stover silage by comparing CF with CR silages. In vitro ruminal experiment was firstly performed to investigate substrate degradation and fermentation of CF and CR silages. The CR diet was formulated by replacing 50% forage of CF silage with CR silage on a dry matter (DM) basis. Fourteen crossbred steers (Simmental × Limousin × local Chinese) aged 13 months with an average weight of 318.1 ± 37.1 kg were selected and randomly allocated into two dietary treatment groups. Although the CR silage had greater DM and fiber contents than CF silage, it did not alter in vitro degradation (p > 0.05), but with lower molar percentage of propionate and acetate to propionate ratio (p < 0.05). The cattle fed CR diet had a higher DM intake and lower fiber digestibility with reduction in 18S rRNA gene copies of protozoa and fungi and 16S rRNA gene copies of Fibrobacter succinogenes (p < 0.05). Further 16S rRNA gene amplicon analysis indicated a similar diversity of bacteria community between CR and CF treatments (p > 0.05). Few differences were observed in the abundance of genera larger than 1% (p > 0.05), except for the reduction in abundance of genera Ruminococcaceae_NK4A214_group in CR treatment (p < 0.05). In summary, prolonging 20 d harvest time of corn stover silage increases the forage fiber and DM content, which promotes feed intake with decreased fiber degradation, although rumen fermentation and growth performance are not changed in growing beef cattle.
Collapse
Affiliation(s)
- Min Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Key Laboratory for Agro-Ecological Processes in Subtropical Region/National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Rong Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region/National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Tingting Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yingbai Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Zhixiong He
- Key Laboratory for Agro-Ecological Processes in Subtropical Region/National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhiyuan Ma
- Key Laboratory for Agro-Ecological Processes in Subtropical Region/National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region/National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bo Lin
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Correspondence: (B.L.); (M.W.)
| | - Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region/National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- Correspondence: (B.L.); (M.W.)
| |
Collapse
|
40
|
Solomon R, Wein T, Levy B, Eshed S, Dror R, Reiss V, Zehavi T, Furman O, Mizrahi I, Jami E. Protozoa populations are ecosystem engineers that shape prokaryotic community structure and function of the rumen microbial ecosystem. THE ISME JOURNAL 2022; 16:1187-1197. [PMID: 34887549 PMCID: PMC8941083 DOI: 10.1038/s41396-021-01170-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
Unicellular eukaryotes are an integral part of many microbial ecosystems where they interact with their surrounding prokaryotic community-either as predators or as mutualists. Within the rumen, one of the most complex host-associated microbial habitats, ciliate protozoa represent the main micro-eukaryotes, accounting for up to 50% of the microbial biomass. Nonetheless, the extent of the ecological effect of protozoa on the microbial community and on the rumen metabolic output remains largely understudied. To assess the role of protozoa on the rumen ecosystem, we established an in-vitro system in which distinct protozoa sub-communities were introduced to the native rumen prokaryotic community. We show that the different protozoa communities exert a strong and differential impact on the composition of the prokaryotic community, as well as its function including methane production. Furthermore, the presence of protozoa increases prokaryotic diversity with a differential effect on specific bacterial populations such as Gammaproteobacteria, Prevotella and Treponema. Our results suggest that protozoa contribute to the maintenance of prokaryotic diversity in the rumen possibly by mitigating the effect of competitive exclusion between bacterial taxa. Our findings put forward the rumen protozoa populations as potentially important ecosystem engineers for future microbiome modulation strategies.
Collapse
Affiliation(s)
- Ronnie Solomon
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel ,grid.7489.20000 0004 1937 0511Institute of Natural Sciences, Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Tanita Wein
- grid.13992.300000 0004 0604 7563Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Bar Levy
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel ,grid.22098.310000 0004 1937 0503The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shahar Eshed
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Rotem Dror
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Veronica Reiss
- grid.410498.00000 0001 0465 9329Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Tamar Zehavi
- grid.7489.20000 0004 1937 0511Institute of Natural Sciences, Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ori Furman
- grid.7489.20000 0004 1937 0511Institute of Natural Sciences, Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Itzhak Mizrahi
- grid.7489.20000 0004 1937 0511Institute of Natural Sciences, Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Elie Jami
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
41
|
Xie F, Tang Z, Liang X, Wen C, Li M, Guo Y, Peng K, Yang C. Sodium nitrate has no detrimental effect on milk fatty acid profile and rumen bacterial population in water buffaloes. AMB Express 2022; 12:11. [PMID: 35122537 PMCID: PMC8818069 DOI: 10.1186/s13568-022-01350-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/22/2022] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the influence of dietary sodium nitrate on ruminal fermentation profiles, milk production and composition, microbial populations and diversity in water buffaloes. Twenty-four female water buffaloes were randomly divided into four groups and fed with 0, 0.11, 0.22, 044 g sodium nitrate per kg body weight diets, respectively. Results showed that the concentration of acetate, propionate, butyrate and total VFA in all sodium nitrate–adapted water buffaloes were greater than the control group (P < 0.05). Although the milk fatty acids value at 0.11 g sodium nitrate/kg/d were slightly lower than other treatments, no significant differences were observed among different treatments (P > 0.05). Compared to the control group, the archaea richness (ace and chao1) and diversity (Shannon index) indices were increased by nitrate supplementation (P < 0.05). Compared with the control group, sodium nitrate did not affect bacterial abundance at the phylum and genus level, but the relative abundance of the methanogen genera was greatly changed. There was a tendency for Methanobrevibacter to decrease in the sodium nitrate group (P = 0.091). Comparisons of archaea communities by PCoA analysis showed significant separation between the control group and nitrate treatments (P = 0.025). It was concluded that added 0.11–0.44 g sodium nitrate/kg of body weight increased the rumen VFA production and archaeal diversity of water buffaloes but had no detrimental effect on milk yield or composition, fatty acids profile, rumen methanogen or Butyrivibrio group population related to biohydrogenation.
Collapse
|
42
|
Mirzaei-Alamouti H, Abdollahi A, Rahimi H, Moradi S, Vazirigohar M, Aschenbach JR. Effects of dietary oil sources (sunflower and fish) on fermentation characteristics, epithelial gene expression and microbial community in the rumen of lambs fed a high-concentrate diet. Arch Anim Nutr 2022; 75:405-421. [PMID: 35112609 DOI: 10.1080/1745039x.2021.1997539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The feeding of high-concentrate diets commonly results in lowered pH and ruminal dysbiosis which cause shifts in uptake dynamics of short-chain fatty acids (SCFA) and altered epithelial function. Therefore, the current study evaluated the effect of dietary polyunsaturated fatty acids (PUFA) on ruminal fermentation products, gene expression in the ruminal epithelium and the associated changes in ruminal microorganisms in lambs fed a high-concentrate diet. Twenty-six Afshari lambs adapted to a high-concentrate diet during a completely randomised design were fed with a basal diet supplemented with 100 g oil supplement (OS; 60 g sunflower oil and 40 g fish oil) for 10 (OS10), 20 (OS20) and 30 (OS30) d, respectively (n = 6). Lambs with no oil supplementation (OS0, n = 8) were considered as control and slaughtered at d 0 of the experiment, and the remaining lambs were slaughtered at 10, 20 and 30 d on feed. After slaughter, ruminal digesta was collected for evaluating fermentation and microbial community. Ruminal papillae were taken for assessment of epithelial gene expression. Compared with OS0 lambs, supplemental PUFA in OS30 lambs tended to decrease total SCFA concentration with decreased acetic and increased propionic acid concentrations. Acetate:propionate ratios were decreased and ruminal pH was increased in OS20 and OS30 lambs compared to OS0. All groups with included OS had decreased concentrations of iso-valeric and valeric acids compared to OS0. Relative mRNA abundance of monocarboxylate transporter isoforms 1 and 4, insulin-like growth factor binding protein 3, sterol regulatory element-binding proteins 1 and 2 decreased with increasing OS duration. The relative abundance of 3-hydroxy-3-methylglutaryl-CoA synthase 1 mRNA transcript was higher for OS10 and OS20 lambs relative to OS0 lambs. OS20 and OS30 showed a decrease of lipopolysaccharide binding protein mRNA expression compared with OS0. Feeding supplemental PUFA decreased Ciliate protozoa and increased Butyrivibrio fibrisolvens in OS20 and OS30 lambs, whereas Megasphaera elsdenii was increased in OS30 lambs. In conclusion, combined supplementation of sunflower and fish oil to a high-concentrate diet affects the ruminal microbial community with prominent decreases in ruminal ciliate protozoa and increases in B. fibrisolvens and M. elsdenii. These results lead to a more stabilised ruminal pH and a fermentation shift towards more propionate generation. Consideration of nutrients digestion will help to fully understand the benefits of feeding PUFA with a high-concentrate diet.
Collapse
Affiliation(s)
| | - Arman Abdollahi
- Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Hasan Rahimi
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Saeedeh Moradi
- Department of Animal Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mina Vazirigohar
- Zist Dam Group, University of Zanjan Incubator Center, Zanjan, Iran
| | - Jörg R Aschenbach
- Institute of Veterinary Physiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
43
|
Huuki H, Ahvenjärvi S, Lidauer P, Popova M, Vilkki J, Vanhatalo A, Tapio I. Fresh Rumen Liquid Inoculant Enhances the Rumen Microbial Community Establishment in Pre-weaned Dairy Calves. Front Microbiol 2022; 12:758395. [PMID: 35095788 PMCID: PMC8790516 DOI: 10.3389/fmicb.2021.758395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 02/01/2023] Open
Abstract
The development of the functional rumen in calves involves a complex interplay between the host and host-related microbiome. Attempts to modulate rumen microbial community establishment may therefore have an impact on weaning success, calf health, and animal performance later in life. In this experiment, we aimed to elucidate how rumen liquid inoculum from an adult cow, provided to calves during the pre-weaning period, influences the establishment of rumen bacterial, archaeal, fungal, and ciliate protozoan communities in monozygotic twin calves (n = 6 pairs). The calves were divided into treatment (T-group) and control (C-group) groups, where the T-group received fresh rumen liquid as an oral inoculum during a 2-8-week period. The C-group was not inoculated. The rumen microbial community composition was determined using bacterial and archaeal 16S ribosomal RNA (rRNA) gene, protozoal 18S rRNA gene, and fungal ITS1 region amplicon sequencing. Animal weight gain and feed intake were monitored throughout the experiment. The T-group tended to have a higher concentrate intake (Treatment: p < 0.08) and had a significantly higher weekly weight gain (Treatment: p < 0.05), but no significant difference in volatile fatty acid concentrations between the groups was observed. In the T-group, the inoculum stimulated the earlier establishment of mature rumen-related bacterial taxa, affecting significant differences between the groups until 6 weeks of age. The inoculum also increased the archaeal operational taxonomic unit (OTU) diversity (Treatment: p < 0.05) but did not affect the archaeal quantity. Archaeal communities differed significantly between groups until week 4 (p = 0.02). Due to the inoculum, ciliate protozoa were detected in the T-group in week 2, while the C-group remained defaunated until 6 weeks of age. In week 8, Eremoplastron dilobum was the dominant ciliate protozoa in the C-group and Isotricha sp. in the T-group, respectively. The Shannon diversity of rumen anaerobic fungi reduced with age (Week: p < 0.01), and community establishment was influenced by a change of diet and potential interaction with other rumen microorganisms. Our results indicate that an adult cow rumen liquid inoculum enhanced the maturation of bacterial and archaeal communities in pre-weaning calves' rumen, whereas its effect on eukaryotic communities was less clear and requires further investigation.
Collapse
Affiliation(s)
- Hanna Huuki
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland.,Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Seppo Ahvenjärvi
- Production Systems, Animal Nutrition, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Paula Lidauer
- Production Systems, Welfare of Farmed Animals, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Milka Popova
- Institute National de la Recherche Agronomique, UMR 1213 Herbivores, Clermont Université, VetAgro Sup, UMR Herbivores, Clermont-Ferrand, France
| | - Johanna Vilkki
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Aila Vanhatalo
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Ilma Tapio
- Production Systems, Genomics and Breeding, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
44
|
Phesatcha K, Phesatcha B, Wanapat M. Mangosteen Peel Liquid-Protected Soybean Meal Can Shift Rumen Microbiome and Rumen Fermentation End-Products in Lactating Crossbred Holstein Friesian Cows. Front Vet Sci 2022; 8:772043. [PMID: 35146011 PMCID: PMC8821873 DOI: 10.3389/fvets.2021.772043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Rumen bypass protein can enhance protein availability in the lower gut. This study investigated the use of liquid-containing phytonutrients in dairy cows as a dietary additives to reduce rumen protein degradation. Four crossbred lactating Holstein Friesian cows (75% Holstein Friesian with 25% Thai native breed) with an initial body weight (BW) of 410 ± 20 kg were randomly assigned to a 2 × 2 factorial arrangement [two crude protein (CP) levels with soybean meal (SBM) or mangosteen peel liquid-protected soybean meal (MPLP)-SBM] in a 4 × 4 Latin square design experiment. Dietary treatments were as follows: T1 = SBM in low crude protein concentrate (LPC) (SBM-LPC); T2 = MPLP-SBM in LPC (MPLP-SBM-LPC); T3 = SBM in high crude protein concentrate (HPC) (SBM-HPC); T4 = MPLP-SBM in HPC (MPLP-SBM-HPC). Apparent digestibilities of organic matter (OM) and neutral detergent fiber (aNDF) were increased (p < 0.05) by CP level in the HPC diet (19% CP), with higher OM and aNDF digestibilities. High crude protein concentrate increased (p < 0.05) the propionic acid in the rumen but reduced (p < 0.05) the acetic acid-to-propionic acid ratio and methane (CH4) production. Rumen microbial populations of the total bacteria, Fibrobacter succinogenes and Butyrivibrio fibrisolvens were increased (p < 0.05) by HPC. Real-time PCR revealed a 30.6% reduction of rumen methanogens by the MPLP-SBM in HPC. Furthermore, efficiency of microbial nitrogen synthesis (EMNS) was 15.8% increased (p < 0.05) by the MPLP-SBM in HPC when compared to SBM-LPC. Milk yield and milk composition protein content were enhanced (p < 0.05) by both the CP level in concentrate and by MPLP inclusion. In this experiment, a high level of CP and the MPLP-SBM enhanced the ruminal propionate, shifted rumen microbiome, and enhanced milk yield and compositions.
Collapse
Affiliation(s)
- Kampanat Phesatcha
- Department of Animal Science, Faculty of Agriculture and Technology, Nakhon Phanom University, Nakhon Phanom, Thailand
| | - Burarat Phesatcha
- Department of Agricultural Technology and Environment, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Metha Wanapat
- Department of Animal Science, Faculty of Agriculture, Tropical Feed Resources Research and Development Center, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
45
|
Responsive changes of rumen microbiome and metabolome in dairy cows with different susceptibility to subacute ruminal acidosis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:331-340. [PMID: 35024470 PMCID: PMC8718735 DOI: 10.1016/j.aninu.2021.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Subacute ruminal acidosis (SARA) represents one of the most important digestive disorders in intensive dairy farms, and dairy cows are individually different in the severity of SARA risk. The objectives of the current study were to investigate differences in the ruminal bacterial community and metabolome in dairy cattle with different susceptibility to SARA. In the present study, 12 cows were initially enrolled in the experiment. Based on average ruminal pH, 4 cows with the lowest ruminal pH were assigned to the susceptible group (SUS, pH = 5.76, n = 4) and 4 cows with the highest ruminal pH assigned to the tolerant group (TOL, pH = 6.10, n = 4). Rumen contents from susceptible (SUS, n = 4) and tolerant (TOL, n = 4) dairy cows were collected through rumen fistula to systematically reveal the rumen microbial and metabolic alterations of dairy cows with different susceptibility to SARA using multi-omics approaches (16S and 18S rRNA gene sequencing and metabolome). The results showed that despite being fed the same diet, SUS cows had lower ruminal pH and higher concentrations of total volatile fatty acids (VFA) and propionate than TOL cows (P < 0.05). No significant differences were observed in dry matter intake, milk yield, and other milk compositions between the SUS and TOL groups (P > 0.05). The principal coordinates analysis based on the analysis of molecular variance indicated a significant difference in bacterial composition between the two groups (P = 0.01). More specifically, the relative abundance of starch-degrading bacteria (Prevotella spp.) was greater (P < 0.05), while the proportion of fiber-degrading bacteria (unclassified Ruminococcaceae spp., Ruminococcus spp., Papillibacter, and unclassified Family_XIII) was lower in the rumen of SUS cows compared with TOL cows (P < 0.05). Community analysis of protozoa showed that there were no significant differences in the diversity, richness, and community structure (P > 0.05). Metabolomics analysis revealed that the concentrations of organic acids (such as lactic acid), biogenic amines (such as histamine), and bacterial degradation products (such as hypoxanthine) were significantly higher in the SUS group compared to the TOL group (P < 0.05). These findings revealed that the higher proportion of starch-degrading bacteria/lower fiber-degrading bacteria in the rumen of SUS cows resulted in higher VFA-producing capacity, in particular propionate. This caused a disruption in metabolic homeostasis in the rumen which might be the reason for the higher susceptibility to SARA. Overall, these findings enhanced our understanding of the ruminal microbiome and metabolic changes in cows susceptible to SARA.
Collapse
|
46
|
DHA-Rich Aurantiochytrium Biomass, a Novel Dietary Supplement, Resists Degradation by Rumen Microbiota without Disrupting Microbial Activity. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We first sought to evaluate the effect of dietary supplementation with the docosahexaenoic acid (DHA)-rich microalgae, Aurantiochytrium limacinum (AURA), on rumen fermentation and the resistance of DHA to degradation and biohydrogenation by rumen microbes through ex vivo fermentation experiments. Subsequently, we sought to quantify the diet-derived DHA content of milk and the impact of AURA on microbial composition and metabolism in a pilot feeding trial with rumen-cannulated dairy cows. To achieve our aims, rumen fluid from cannulated cows was used as inoculum, and the effect of AURA inclusion on fermentation ex vivo was examined. At doses corresponding to the amount of AURA recommended for commercial production animals, only ~10% of DHA was degraded or biohydrogenated by rumen microorganisms. The results show that feeding with AURA had no effect on either total bacterial density or short-chain fatty acid production. Real-time quantitative PCR analysis of the rumen fluid samples collected during a seven-week in vivo trial revealed that microbes related to lactic acid metabolism and methanogenesis were significantly suppressed by the AURA-supplemented diet. The DHA concentration in milk increased over 25-fold with the AURA-supplemented diet and dropped by 30–40% within one week of washout. The addition of A. limacinum biomass to dairy cow diets resulted in positive effects on rumen microbial composition with no adverse effect on fermentation activity. AURA-derived DHA was stable, with only modest degradation in the rumen, and was successfully deposited in milk. This is the first study to investigate the effect of supplementing the diet of dairy cows with a protist-based biomass, namely, on important rumen fermentation parameters and on DHA deposition in milk, using a combination of ex vivo and in vivo approaches.
Collapse
|
47
|
Amini A, Pirmohammadi R, Khalilvandi-Behroozyar H, Mazaheri-Khameneh R. Effects of heat stress on in vivo and in vitro ruminal metabolism in fat-tailed ewes. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Gresner N, Rodehutscord M, Südekum KH. Amino acid pattern of rumen microorganisms in cattle fed mixed diets-An update. J Anim Physiol Anim Nutr (Berl) 2021; 106:752-771. [PMID: 34964170 DOI: 10.1111/jpn.13676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/16/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022]
Abstract
Rumen microorganisms turn small N-containing compounds into amino acids (AA) and contribute considerably to the supply of AA absorbed from the small intestine. Previous studies summarized the literature on microbial AA patterns, most recently in 2017 (Sok et al. Journal of Dairy Science, 100, 5241-5249). The present study intended to identify the microbial AA pattern typical when feeding Central European diets and a maximum proportion of concentrate (PCO; dry matter (DM) basis) of 0.60. Data sets were created from the literature for liquid (LAB)- and particle (PAB)-associated bacteria, total bacteria and protozoa, including 16, 9, 27 and 8 studies and 36, 21, 60 and 18 diets respectively. Because the only differences detected between LAB and PAB were slightly higher Phe and lower Thr percentages in PAB (p < 0.05), results for bacteria were pooled. A further data set evaluated AA-N (AAN) as a proportion of total N in microbial fractions and a final data set estimated protozoal contributions to total microbial N (TMN) flow to the duodenum, which were used to calculate weighted TMN AA patterns. Protozoa showed higher Lys, Asp, Glu, Ile and Phe and lower Ala, Arg, Gly, Met, Ser, Thr and Val proportions than bacteria (p < 0.05). The AAN percentage of total N in bacteria and protozoa showed large, unexplained variations, averaging 79.0% and 70.6% (p > 0.05) respectively. Estimation of protozoal contribution to TMN resulted in a cattle-specific mixed model including PCO and DM intake (DMI) per unit of metabolic body size (kg0.75 ) as fixed effects (RMSE = 3.77). With moderate PCO and DMI between 80 and 180 g/kg0.75 , which corresponds to a DMI of approximately 10 to 25 kg in a cow with 650 kg body weight, protozoal contribution ranged between 9% and 26% of TMN. Within this range, the estimated protozoal contribution to TMN resulted in minor effects on the total microbial AA pattern.
Collapse
Affiliation(s)
- Nina Gresner
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | | | | |
Collapse
|
49
|
Mitragyna speciosa Korth Leaves Supplementation on Feed Utilization, Rumen Fermentation Efficiency, Microbial Population, and Methane Production In Vitro. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The objective of the research was to evaluate the different levels of Mitragyna speciosa Korth leaves powder (MSLP) added to rations with 60:40 or 40:60 roughage to a concentrate (R:C ratio) on in vitro nutrient digestibility, rumen fermentation characteristics, microbial population, and methane (CH4) production. The treatments were arranged according to a 2 × 8 factorial arrangement in a completely randomized design. The two factors contain the R:C ratio (60:40 and 40:60) and the levels of MSLP addition (0, 1, 2, 3, 4, 5, 6, and 7% of the total substrate). There was no interaction between the R:C ratio and MSLP supplementation on gas production kinetics, ammonia nitrogen (NH3-N), and microbial populations. The gas production rate constant for the insoluble fraction (c) was increased by the R:C ratio at (40:60), whilst there was no difference obtained among treatments for cumulative gas production, whilst the gas production rate constant for the insoluble fraction (c) was increased by the R:C ratio at 40:60. The concentration of NH3-N was influenced by the R:C ratio and MSLP addition both at 4 and 8 h after incubation. In vitro dry matter degradability (IVDMD) and organic matter degradability (IVOMD) were significantly improved by the R:C ratio and supplementation of MSLP at 12 h. Increasing the R:C ratio and MSLP concentrations increased total volatile fatty acid (VFA) and propionic acid (C3) concentrations while decreasing acetic acid (C2) and butyric acid (C4) concentrations; thus, the C2:C3 ratio was reduced. MSLP addition reduced protozoa and methanogen populations (p < 0.05). The calculated CH4 production was decreased (p < 0.05) by the R:C ratios at 40:60 and supplementation of MSLP. Finally, the addition of MSLP as a phytonutrient may improve nutrient degradability and rumen fermentation properties while decreasing protozoa, methanogen population, and CH4 production.
Collapse
|
50
|
Choi Y, Lee SJ, Kim HS, Eom JS, Jo SU, Guan LL, Seo J, Kim H, Lee SS, Lee SS. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance. Sci Rep 2021; 11:24092. [PMID: 34916562 PMCID: PMC8677731 DOI: 10.1038/s41598-021-03356-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/01/2021] [Indexed: 01/02/2023] Open
Abstract
Several seaweed extracts have been reported to have potential antimethanogenic effects in ruminants. In this study, the effect of three brown seaweed species (Undaria pinnatifida, UPIN; Sargassum fusiforme, SFUS; and Sargassum fulvellum, SFUL) on rumen fermentation characteristics, total gas, methane (CH4), carbon dioxide (CO2) production, and microbial populations were investigated using an in vitro batch culture system. Seaweed extract and its metabolites, total flavonoid and polyphenol contents were identified and compared. For the in vitro batch, 0.25 mg∙mL-1 of each seaweed extract were used in 6, 12, 24, 36 and 48 h of incubation. Seaweed extract supplementation decreased CH4 yield and its proportion to total gas production after 12, 24, and 48 h of incubation, while total gas production were not significantly different. Total volatile fatty acid and molar proportion of propionate increased with SFUS and SFUL supplementation after 24 h of incubation, whereas UPIN was not affected. Additionally, SFUS increased the absolute abundance of total bacteria, ciliate protozoa, fungi, methanogenic archaea, and Fibrobacter succinogenes. The relative proportions of Butyrivibrio fibrisolvens, Butyrivibrio proteoclasticus, and Prevotella ruminicola were lower with seaweed extract supplementation, whereas Anaerovibrio lipolytica increased. Thus, seaweed extracts can decrease CH4 production, and alter the abundance of rumen microbial populations.
Collapse
Affiliation(s)
- Youyoung Choi
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Sang Kim
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jun Sik Eom
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seong Uk Jo
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sang Suk Lee
- Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, Sunchon National University, Sunchon, Republic of Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|