1
|
Merchand-Reyes G, Santhanam R, Valencia-Pena ML, Kumar K, Mo X, Belay T, Woyach JA, Mundy-Bosse B, Tridandapani S, Butchar JP. Active Hexose-Correlated Compound Shows Direct and Indirect Effects against Chronic Lymphocytic Leukemia. Nutrients 2023; 15:5138. [PMID: 38140397 PMCID: PMC10747249 DOI: 10.3390/nu15245138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a disease characterized by the accumulation of mature CD19+CD5+CD23+ B cells in the bloodstream and in lymphoid organs. It usually affects people over 70 years of age, which limits the options for treatments. The disease is typically well-managed, but to date is still incurable. Hence, the need for novel therapeutic strategies remains. Nurse-like cells (NLCs) are major components of the microenvironment for CLL, supporting tumor cell survival, proliferation, and even drug resistance. They are of myeloid lineage, guided toward differentiating into their tumor-supportive role by the CLL cells themselves. As such, they are analogous to tumor-associated macrophages and represent a major therapeutic target. Previously, it was found that a mushroom extract, Active Hexose-Correlated Compound (AHCC), promoted the death of acute myeloid leukemia cells while preserving normal monocytes. Given these findings, it was asked whether AHCC might have a similar effect on the abnormally differentiated myeloid-lineage NLCs in CLL. CLL-patient PBMCs were treated with AHCC, and it was found that AHCC treatment showed a direct toxic effect against isolated CLL cells. In addition, it significantly reduced the number of tumor-supportive NLCs and altered their phenotype. The effects of AHCC were then tested in the Eµ-TCL1 mouse model of CLL and the MllPTD/WT Flt3ITD/WT model of AML. Results showed that AHCC not only reduced tumor load and increased survival in the CLL and AML models, but it also enhanced antitumor antibody treatment in the CLL model. These results suggest that AHCC has direct and indirect effects against CLL and that it may be of benefit when combined with existing treatments.
Collapse
Affiliation(s)
- Giovanna Merchand-Reyes
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (G.M.-R.)
| | - Ramasamy Santhanam
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (G.M.-R.)
| | - Maria L. Valencia-Pena
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (G.M.-R.)
| | - Krishan Kumar
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (G.M.-R.)
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tesfaye Belay
- Department of Applied Sciences and Mathematics, Bluefield State University, Bluefield, WV 24701, USA
| | - Jennifer A. Woyach
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (G.M.-R.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Bethany Mundy-Bosse
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (G.M.-R.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (G.M.-R.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P. Butchar
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH 43210, USA; (G.M.-R.)
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Singh A, Adam A, Rodriguez L, Peng BH, Wang B, Xie X, Shi PY, Homma K, Wang T. Oral Supplementation with AHCC ®, a Standardized Extract of Cultured Lentinula edodes Mycelia, Enhances Host Resistance against SARS-CoV-2 Infection. Pathogens 2023; 12:554. [PMID: 37111440 PMCID: PMC10144296 DOI: 10.3390/pathogens12040554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted global public health safety and the economy. Multiple antiviral drugs have been developed, and some have received regulatory approval and/or authorization. The use of nutraceuticals can be beneficial for preventing and treating COVID-19 complications. AHCC is a standardized, cultured extract of an edible mushroom Lentinula edodes of the Basidiomycete family of fungi that is enriched in acylated α-1,4-glucans. Here, we evaluated the effects of the oral administration of AHCC on the host response to SARS-CoV-2 infection in two murine models, K18-hACE2 transgenic mice and immunocompetent BALB/c mice. Oral administration of AHCC every other day for one week before and one day post SARS-CoV-2 infection in both strains of mice decreased the viral load and attenuated inflammation in the lungs. AHCC treatment also significantly reduced SARS-CoV-2-induced lethality in the K18-hACE2 mice. AHCC administration enhanced the expansion of γδ T cells in the spleen and lungs before and after viral infection and promoted T helper 1-prone mucosal and systemic T cell responses in both models. In AHCC-fed BALB/c mice, SARS-CoV-2 specific IgG responses were also enhanced. In summary, AHCC supplementation enhances host resistance against mild and severe COVID-19 infection primarily via the promotion of innate and adaptive T cell immune responses in mice.
Collapse
Affiliation(s)
- Ankita Singh
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Leslie Rodriguez
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bi-Hung Peng
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Binbin Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kohei Homma
- Research and Development Division, Amino Up Co., Ltd., Sapporo 004-0839, Hokkaido, Japan
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Derosa G, Maffioli P, D’Angelo A, Di Pierro F. Nutraceutical Approach to Preventing Coronavirus Disease 2019 and Related Complications. Front Immunol 2021; 12:582556. [PMID: 34262553 PMCID: PMC8273380 DOI: 10.3389/fimmu.2021.582556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/14/2021] [Indexed: 01/12/2023] Open
Abstract
Introduction Several months ago, Chinese authorities identified an atypical pneumonia in Wuhan city, province of Hubei (China) caused by a novel coronavirus (2019-nCoV or SARS-CoV-2). The WHO announced this new disease was to be known as "COVID-19". Evidence Acquisition Several approaches are currently underway for the treatment of this disease, but a specific cure remains to be established. Evidence Synthesis This review will describe how the use of selected nutraceuticals could be helpful, in addition to pharmacological therapy, in preventing some COVID-19-related complications in infected patients. Conclusions Even if a specific and effective cure for COVID-19 still has some way to go, selected nutraceuticals could be helpful, in addition to pharmacological therapy, in preventing some COVID-19-related complications in infected patients.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Angela D’Angelo
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Di Pierro
- Velleja Research S.r.l., Milan, Italy
- Digestive Endoscopy & Gastroenterology, Poliambulanza Hospital, Brescia, Italy
| |
Collapse
|
4
|
Meijerink N, de Oliveira JE, van Haarlem DA, Hosotani G, Lamot DM, Stegeman JA, Rutten VPMG, Jansen CA. Glucose Oligosaccharide and Long-Chain Glucomannan Feed Additives Induce Enhanced Activation of Intraepithelial NK Cells and Relative Abundance of Commensal Lactic Acid Bacteria in Broiler Chickens. Vet Sci 2021; 8:110. [PMID: 34204778 PMCID: PMC8231533 DOI: 10.3390/vetsci8060110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/25/2022] Open
Abstract
Restrictions on the use of antibiotics in the poultry industry stimulate the development of alternative nutritional solutions to maintain or improve poultry health. This requires more insight in the modulatory effects of feed additives on the immune system and microbiota composition. Compounds known to influence the innate immune system and microbiota composition were selected and screened in vitro, in ovo, and in vivo. Among all compounds, 57 enhanced NK cell activation, 56 increased phagocytosis, and 22 increased NO production of the macrophage cell line HD11 in vitro. Based on these results, availability and regulatory status, six compounds were selected for further analysis. None of these compounds showed negative effects on growth, hatchability, and feed conversion in in ovo and in vivo studies. Based on the most interesting numerical results and highest future potential feasibility, two compounds were analyzed further. Administration of glucose oligosaccharide and long-chain glucomannan in vivo both enhanced activation of intraepithelial NK cells and led to increased relative abundance of lactic acid bacteria (LAB) amongst ileum and ceca microbiota after seven days of supplementation. Positive correlations between NK cell subsets and activation, and relative abundance of LAB suggest the involvement of microbiota in the modulation of the function of intraepithelial NK cells. This study identifies glucose oligosaccharide and long-chain glucomannan supplementation as effective nutritional strategies to modulate the intestinal microbiota composition and strengthen the intraepithelial innate immune system.
Collapse
Affiliation(s)
- Nathalie Meijerink
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | | | - Daphne A. van Haarlem
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| | - Guilherme Hosotani
- Cargill R&D Center Europe, B-1800 Vilvoorde, Belgium; (J.E.d.O.); (G.H.)
| | - David M. Lamot
- Cargill Animal Nutrition and Health Innovation Center, 5334 LD Velddriel, The Netherlands;
| | - J. Arjan Stegeman
- Department Population Health Sciences, Division Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Victor P. M. G. Rutten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (N.M.); (D.A.v.H.); (V.P.M.G.R.)
| |
Collapse
|
5
|
Raheem A, Liang L, Zhang G, Cui S. Modulatory Effects of Probiotics During Pathogenic Infections With Emphasis on Immune Regulation. Front Immunol 2021; 12:616713. [PMID: 33897683 PMCID: PMC8060567 DOI: 10.3389/fimmu.2021.616713] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022] Open
Abstract
In order to inhibit pathogenic complications and to enhance animal and poultry growth, antibiotics have been extensively used for many years. Antibiotics applications not only affect target pathogens but also intestinal beneficially microbes, inducing long-lasting changes in intestinal microbiota associated with diseases. The application of antibiotics also has many other side effects like, intestinal barrier dysfunction, antibiotics residues in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly compromise the efficacy of antibiotics. Thus, the development of new antibiotics is necessary, while the search for antibiotic alternatives continues. Probiotics are considered the ideal antibiotic substitute; in recent years, probiotic research concerning their application during pathogenic infections in humans, aquaculture, poultry, and livestock industry, with emphasis on modulating the immune system of the host, has been attracting considerable interest. Hence, the adverse effects of antibiotics and remedial effects of probiotics during infectious diseases have become central points of focus among researchers. Probiotics are live microorganisms, and when given in adequate quantities, confer good health effects to the host through different mechanisms. Among them, the regulation of host immune response during pathogenic infections is one of the most important mechanisms. A number of studies have investigated different aspects of probiotics. In this review, we mainly summarize recent discoveries and discuss two important aspects: (1) the application of probiotics during pathogenic infections; and (2) their modulatory effects on the immune response of the host during infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Abdul Raheem
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Lin Liang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Guangzhi Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| | - Shangjin Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Technology of Beijing, Ministry of Agriculture, Beijing, China
| |
Collapse
|
6
|
Teplyakova TV, Ilyicheva TN, Markovich NA. Prospects for the Development of Anti-Influenza Drugs Based on Medicinal Mushrooms (Review). APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820050142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Di Pierro F, Bertuccioli A, Cavecchia I. Possible therapeutic role of a highly standardized mixture of active compounds derived from cultured Lentinula edodes mycelia (AHCC) in patients infected with 2019 novel coronavirus. MINERVA GASTROENTERO 2020; 66:172-176. [PMID: 32162896 DOI: 10.23736/s1121-421x.20.02697-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outbreak of SARS-CoV-2 disease (COVID-19) is currently, March 2020, affecting more than 100,000 people worldwide and, according to the WHO (World Health Organization), a pandemic is shortly expected. The virus infects the lower respiratory tract and causes severe pneumonia and mortality in approximately 10% and 3-5%, respectively, of cases, mainly among the elderly and/or people affected by other diseases. AHCC is an α-glucan-based standardized mushroom extract that has been extensively investigated as an immunostimulant both in animals and/or in humans affected by West Nile virus, influenza virus, avian influenza virus, hepatitis C virus, papillomavirus, herpes virus, hepatitis B virus and HIV by promoting a regulated and protective immune response. Although the efficacy of AHCC has not yet been specifically evaluated with respect to SARS-CoV-2 disease, its action in promoting a protective response to a wide range of viral infections, and the current absence of effective vaccines, could support its use in the prevention of diseases provoked by human pathogenic coronavirus, including COVID-19.
Collapse
Affiliation(s)
| | | | - Ilaria Cavecchia
- Department of Sciences and Research, Velleja Research, Milan, Italy
| |
Collapse
|
8
|
De Felice B, Damiano S, Montanino C, Del Buono A, La Rosa G, Guida B, Santillo M. Effect of beta- and alpha-glucans on immune modulating factors expression in enterocyte-like Caco-2 and goblet-like LS 174T cells. Int J Biol Macromol 2020; 153:600-607. [PMID: 32165203 DOI: 10.1016/j.ijbiomac.2020.03.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
Glucans are complex polysaccharides consisting of repeated units of d-glucose linked by glycosidic bonds. The nutritional contribution in α-glucans is mainly given by starch and glycogen while in β-glucans by mushrooms, yeasts and whole grains, such as barley and spelt well represented in the Mediterranean Diet. Numerous and extensive studies performed on glucans highlighted their marked anti-tumor, antioxidant and immunomodulatory activity. It has recently been shown that rather than merely being a passive barrier, the intestinal epithelium is an essential modulator of immunity. Indeed, epithelial absorptive enterocytes and mucin secreting goblet cells can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. Despite the clear evidence of the effects of glucans on immune system cells, there are only limited data about their effects on immune activity of mucosal intestinal cells strictly related to intestinal barrier integrity. The aim of the study was to evaluate the effects of α and β glucans, alone or in combination with other substances with antioxidant properties, on reactive oxygen species (ROS) levels, on the expression of ROS-generating enzyme DUOX-2 and of the immune modulating factors Tumor Necrosis Factor (TNF-α), Interleukin 1 β (IL-1β) and cyclooxygenase-2 (COX-2) in two intestinal epithelial cells, the enterocyte-like Caco-2 cells and goblet cell-like LS174T. In our research, the experiments were carried out incubating the cells with glucans for 18 h in culture medium containing 0.2% FBS and measuring ROS levels fluorimetrically as dihydrodichlorofluoresce diacetate (DCF-DA) fluorescence, protein levels of DUOX-2 by Western blotting and mRNA levels of, TNF-α, IL-1β and COX-2 by qRT-PCR. α and β glucans decreased ROS levels in Caco-2 and LS 174T cells. The expression levels of COX-2, TNF-α, and IL-1β were also reduced by α- and β-glucans. Additive effects on the expression of these immune modulating factors were exerted by vitamin C. In Caco-2 cells, the dual oxidase DUOX-2 expression is positively modulated by ROS. Accordingly, in Caco-2 or LS174T cells treated with α and β-glucans alone or in combination with Vitamin C, the decrease of ROS levels was associated with a reduced expression of DUOX-2. The treatment of cells with the NADPH oxidase (NOX) inhibitor apocynin decrease ROS, DUOX-2, COX-2, TNF-α and IL-1β levels indicating that NOX dependent ROS regulate the expression of immune modulating factors of intestinal cells. However, the combination of vitamin C, α and β-glucans with apocynin did not exert an additive effect on COX-2, TNF-α and IL-1β levels when compared with α-, β-glucans and Vitamin C alone. The present study showing a modulatory effect of α and β-glucans on ROS and on the expression of immune modulating factors in intestinal epithelial cells suggests that the assumption of food containing high levels of these substances or dietary supplementation can contribute to normal immunomodulatory function of intestinal barrier.
Collapse
Affiliation(s)
- Bruna De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DISTABIF), University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Simona Damiano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| | - Concetta Montanino
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| | | | - Giuliana La Rosa
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| | - Mariarosaria Santillo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II, Italy
| |
Collapse
|
9
|
The Effects of AHCC®, a Standardized Extract of Cultured Lentinura edodes Mycelia, on Natural Killer and T Cells in Health and Disease: Reviews on Human and Animal Studies. J Immunol Res 2019; 2019:3758576. [PMID: 31930148 PMCID: PMC6942843 DOI: 10.1155/2019/3758576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
Mushrooms have been used for various health conditions for many years by traditional medicines practiced in different regions of the world although the exact effects of mushroom extracts on the immune system are not fully understood. AHCC® is a standardized extract of cultured shiitake or Lentinula edodes mycelia (ECLM) which contains a mixture of nutrients including oligosaccharides, amino acids, and minerals obtained through liquid culture. AHCC® is reported to modulate the numbers and functions of immune cells including natural killer (NK) and T cells which play important roles in host defense, suggesting the possible implication of its supplementation in defending the host against infections and malignancies via modulating the immune system. Here, we review in vivo and in vitro effects of AHCC® on NK and T cells of humans and animals in health and disease, providing a platform for the better understanding of immune-mediated mechanisms and clinical implications of AHCC®.
Collapse
|
10
|
Boss AP, Freeborn RA, Duriancik DM, Kennedy RC, Gardner EM, Rockwell CE. The Nrf2 activator tBHQ inhibits the activation of primary murine natural killer cells. Food Chem Toxicol 2018; 121:231-236. [PMID: 30171972 PMCID: PMC6287942 DOI: 10.1016/j.fct.2018.08.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 12/12/2022]
Abstract
Tert-butylhydroquinone (tBHQ) is a commonly used food preservative with known immunomodulatory activity; however, there is little information regarding its role on natural killer (NK) cell activation and function. tBHQ is a known activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which results in induction of cytoprotective genes. Activation of Nrf2 has been shown to modulate immune responses in a number of different models. In addition, studies in our laboratory have shown that tBHQ inhibits numerous early events following T cell activation. In the current study, we investigated whether activated NK cells are impacted by tBHQ, since many signaling cascades that control NK cell effector function also contribute to T cell function. Splenocytes were isolated from female, wild-type C57Bl/6J mice and treated with 1 μM or 5 μM tBHQ. NK cell function was assessed after activation with phorbol 12-myristate 13-acetate (PMA) and ionomycin for 24 h. Activation of NK cells in the presence of tBHQ decreased total NK cell percentage, production of intracellular interferon gamma (IFNɣ), granzyme B, and perforin, and induction of the cell surface proteins CD25 and CD69, which are markers of NK cell activation. In addition to NK cell effector function, NK cell maturation was also altered in response to tBHQ. Notably, this is the first study to demonstrate that the Nrf2 activator, tBHQ, negatively impacts effector function and maturation of NK cells.
Collapse
Affiliation(s)
- Allison P Boss
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States.
| | - Robert A Freeborn
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States.
| | - David M Duriancik
- Department of Biology, University of Michigan- Flint, Flint, MI, 48502, United States.
| | - Rebekah C Kennedy
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States.
| | - Elizabeth M Gardner
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States.
| | - Cheryl E Rockwell
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
11
|
Duriancik DM, Tippett JJ, Morris JL, Roman BE, Gardner EM. Age, calorie restriction, and age of calorie restriction onset reduce maturation of natural killer cells in C57Bl/6 mice. Nutr Res 2018; 55:81-93. [PMID: 29914631 DOI: 10.1016/j.nutres.2018.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/05/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Calorie restriction (CR), also known as energy restriction, has been shown to have a deleterious impact on both adult and aged mouse survival during influenza virus infection. Natural killer (NK) cell phenotypic differences contribute to increased susceptibility of adult CR mice. We hypothesized NK cell phenotype from adult and aged C57Bl/6 mice fed NIH-31 diet ad libitum (AL) would be different from NK cell phenotype from adult and aged mice fed NIH-31/NIA fortified diet at 40% CR. We hypothesized NK cell phenotype from mice consuming 40% CR initiated at 20 months of age would not be different from 40% CR initiated at 3 months of age. We initiated the 40% restriction either at the standard 12 weeks of age or at 78 weeks of age. NK cells were isolated and quantified from various tissues using flow cytometry. Aged CR mice had significantly reduced levels of terminally mature (CD27-CD11b+) NK cells, increased expression of the immature marker CD127, and decreased expression of the mature marker DX5. Total number of NK cells among cells was significantly lower in the lung and spleen of old-onset aged CR mice compared to aged AL mice, while there was no significant difference between young-onset aged CR and aged AL mice. Old-onset aged CR mice had significantly less early mature (DX5+ and CD27+CD11b+) NK cells compared to young-onset aged CR and aged AL fed mice. Overall, we found that CR in aged mice is detrimental to maturation of NK cells, which is exacerbated when CR is initiated in old age.
Collapse
Affiliation(s)
- David M Duriancik
- Biology Department, 459 Murchie Science Building, University of Michigan - Flint, 303 E. Kearsley Street, Flint, MI, USA 48502.
| | - Jared J Tippett
- Biology Department, 459 Murchie Science Building, University of Michigan - Flint, 303 E. Kearsley Street, Flint, MI, USA 48502.
| | - Jaslyn L Morris
- Biology Department, 459 Murchie Science Building, University of Michigan - Flint, 303 E. Kearsley Street, Flint, MI, USA 48502.
| | - Brooke E Roman
- Department of Food Science and Human Nutrition, Room 236A G. M. Trout FSHN Building, Michigan State University, 469 Wilson Road, East Lansing, MI, USA 48824-1224.
| | - Elizabeth M Gardner
- Department of Food Science and Human Nutrition, Room 236A G. M. Trout FSHN Building, Michigan State University, 469 Wilson Road, East Lansing, MI, USA 48824-1224.
| |
Collapse
|
12
|
Graham ÉA, Mallet JF, Jambi M, Nishioka H, Homma K, Matar C. MicroRNA signature in the chemoprevention of functionally-enriched stem and progenitor pools (FESPP) by Active Hexose Correlated Compound (AHCC). Cancer Biol Ther 2017; 18:765-774. [PMID: 28886271 PMCID: PMC5678688 DOI: 10.1080/15384047.2017.1373211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Many breast cancer patients use natural compounds in their battle against breast cancer. Active Hexose Correlated Compound (AHCC®) is a cultured mushroom mycelium extract shown to favorably modulate the immune system and alleviate cancer burden. Cancer Stem cells (CSCs) are a subset of highly tumorigenic cancer cells that are thought to be responsible for recurrence. CSCs can be epigenetically regulated by microRNAs (miRNAs). We hypothesized that AHCC may influence CSCs by modulating tumor-suppressor or oncogenic miRNAs. METHODS Functionally-enriched stem and progenitor pools (FESPP) were isolated in the form of mammospheres from MDA-MB-231, MCF-7, and 4T1 cells, exposed to AHCC in both regular and primary culture from Balb/c mice, and analyzed by visual counting and flow cytometry. Cell motility was also observed in MDA-MB-231 cells. Profiling and RT-qPCR were performed to determine AHCC influence on miRNAs in MDA-MB-231 mammospheres. Additionally, Balb/c mice were orally gavaged with AHCC, and tumor growth parameters and miR-335 expression were analyzed. MDA-MB-231 cells were transfected with miR-335 and analyzed by western blot. RESULTS We demonstrated that AHCC reduced mammosphere growth in three cell lines and in primary culture, prevented cell migration, and upregulated miR-335 expression in MDA-MB-231 cells and mouse tumor samples. Among the differentially regulated miRNAs in CSCs, we focused on tumor suppressor miR-335, known to target extracellular matrix protein Tenascin C (TNC). TNC is involved in CSC immune evasion pathways. In MDA-MB-231, inhibition of miR-335 increased TNC protein expression. CONCLUSIONS These results support that AHCC limits FESPP growth, partly by targeting miRNA pathways.
Collapse
Affiliation(s)
- Émilie A. Graham
- Interdisciplinary Health Sciences, University of Ottawa, Ottawa, Canada
| | - Jean-François Mallet
- Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Majed Jambi
- Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Kohei Homma
- R&D Division Amino Up Chemical Co, Ltd, Sapporo, Japan
| | - Chantal Matar
- Interdisciplinary Health Sciences, University of Ottawa, Ottawa, Canada
- Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Reis FS, Martins A, Vasconcelos MH, Morales P, Ferreira IC. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.05.010] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Fatehchand K, Santhanam R, Shen B, Erickson EL, Gautam S, Elavazhagan S, Mo X, Belay T, Tridandapani S, Butchar JP. Active hexose-correlated compound enhances extrinsic-pathway-mediated apoptosis of Acute Myeloid Leukemic cells. PLoS One 2017; 12:e0181729. [PMID: 28727820 PMCID: PMC5519206 DOI: 10.1371/journal.pone.0181729] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Active Hexose Correlated Compound (AHCC) has been shown to have many immunostimulatory and anti-cancer activities in mice and in humans. As a natural product, AHCC has potential to create safer adjuvant therapies in cancer patients. Acute Myeloid Leukemia (AML) is the least curable and second-most common leukemia in adults. AML is especially terminal to those over 60 years old, where median survival is only 5 to 10 months, due to inability to receive intensive chemotherapy. Hence, the purpose of this study was to investigate the effects of AHCC on AML cells both in vitro and in vivo. Results showed that AHCC induced Caspase-3-dependent apoptosis in AML cell lines as well as in primary AML leukopheresis samples. Additionally, AHCC induced Caspase-8 cleavage as well as Fas and TRAIL upregulation, suggesting involvement of the extrinsic apoptotic pathway. In contrast, monocytes from healthy donors showed suppressed Caspase-3 cleavage and lower cell death. When tested in a murine engraftment model of AML, AHCC led to significantly increased survival time and decreased blast counts. These results uncover a mechanism by which AHCC leads to AML-cell specific death, and also lend support for the further investigation of AHCC as a potential adjuvant for the treatment of AML.
Collapse
Affiliation(s)
- Kavin Fatehchand
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Ramasamy Santhanam
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Brenda Shen
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Ericka L. Erickson
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Shalini Gautam
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Saranya Elavazhagan
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, United States of America
| | - Tesfaye Belay
- School of Arts and Sciences, Bluefield State University, Bluefield, WV, United States of America
| | - Susheela Tridandapani
- Medical Scientist Training Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan P. Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
15
|
Doursout MF, Liang Y, Sundaresan A, Wakame K, Fujii H, Takanari J, Devakottai S, Kulkarni A. Active hexose correlated compound modulates LPS-induced hypotension and gut injury in rats. Int Immunopharmacol 2016; 39:280-286. [PMID: 27500458 DOI: 10.1016/j.intimp.2016.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023]
Abstract
We hypothesized that AHCC; (Amino UP Chemical Co., Ltd., Sapporo, Japan), a mushroom mycelium extract obtained from liquid culture of Lentinula edodes, restores immune function in LPS-induced inflammation in the gut, especially when the nitric oxide signaling pathway is impaired. This is the first inter-disciplinary proposal to identify molecular mechanisms involved in LPS-induced immune dysfunction in the gut in conscious animals treated or non-treated with AHCC, a promoter of immune support. Specifically, we have tested the effects of AHCC on LPS-induced deleterious effects on blood pressure and gut injury in conscious rats. The time course of biological markers of innate/acquired immune responses, and inflammation/oxidative stress is fully described in the present manuscript. Rats were randomly assigned into 3 groups (N=6 per group). Group 1 received 10% of AHCC in drinking water for 5days; Group 2 received lipopolysaccharide (LPS; Escherichia coli 0111:B4 purchased from Sigma) only at 20mg/kg IV; Group 3 received combined treatments (AHCC + LPS). LPS was administered at 20mg/kg IV, 5days following AHCC treatment. We have demonstrated that AHCC decreased the LPS-deleterious effects of blood pressure and also decreased inflammatory markers e.g., cytokines, nitric oxide and edema formation. Finally, AHCC diminished lymphocyte infiltration, restoring gut architecture. Because AHCC was administered prior to LPS, our results indicate the potential impact of AHCC's prophylactic effects on LPS inflammation. Consequently, additional experiments are warrant to assess its therapeutic effects in sepsis-induced inflammation.
Collapse
Affiliation(s)
- Marie-Francoise Doursout
- Department of Anesthesiology, The University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, United States.
| | - Yangyan Liang
- Department of Anesthesiology, The University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, United States
| | - Alamelu Sundaresan
- Department of Biology, Texas Southern University, 3100 Cleburne St., Houston, TX, 77004, United States
| | - Koji Wakame
- Hokkaido Pharmaceutical University School of Pharmacy, Department of Life Science, 7-1 Katsurakoka-cho, Otaru, 047-0264, Hokkaido, Japan
| | - Hajime Fujii
- Hokkaido Pharmaceutical University School of Pharmacy, Department of Life Science, 7-1 Katsurakoka-cho, Otaru, 047-0264, Hokkaido, Japan; Research and Development Division, Amino Up Chemical Co., Ltd., 363-32 Shinei Kiyota-ku, Sapporo 004-0839, Japan
| | - Jun Takanari
- Hokkaido Pharmaceutical University School of Pharmacy, Department of Life Science, 7-1 Katsurakoka-cho, Otaru, 047-0264, Hokkaido, Japan; Research and Development Division, Amino Up Chemical Co., Ltd., 363-32 Shinei Kiyota-ku, Sapporo 004-0839, Japan
| | - Sundar Devakottai
- Department of Anesthesiology, The University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, United States
| | - Anil Kulkarni
- Department of Surgery, The University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, United States
| |
Collapse
|
16
|
Ignacio RM, Kim CS, Kim YD, Lee HM, Qi XF, Kim SK. Therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with CpG-ODN (oligodeoxynucleotide) in B16 melanoma murine model. Cytokine 2015; 76:131-137. [PMID: 26082022 DOI: 10.1016/j.cyto.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/13/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
While Active Hexose Correlated Compound (AHCC) and CpG oligodeoxynucleotide (ODN) are separately known to modulate oxidative stress and immune responses in cancer patients, the combined effect of these two compounds is unknown. To clarify this, we investigated whether AHCC plus KSK-CpG ODN would be therapeutic in B16 melanoma mouse model, if so, and how in reduction-oxidation (redox) balance and cytokines network. We found that treatment groups (AHCC only, KSK-CpG ODN only and AHCC/KSK-CpG ODN) markedly reduced (p<0.001) tumor size when compared to the positive control (PC) group. The total white blood cell (WBC) of AHCC only and KSK-CpG ODN only-treated groups showed significant lower counts than that of PC group. Next, the production of nitric oxide (NO) was significantly increased (p<0.01) in AHCC/KSK-CpG ODN group compared to the PC group. Further, the redox balance was improved in AHCC/KSK-CpG ODN group through significantly low (p<0.001) reactive oxygen species (ROS) production and significantly high (p<0.05) glutathione peroxidase (GPx) activity compared to the PC group. Finally, AHCC/KSK-CpG ODN (p<0.01) and KSK-CpG ODN (p<0.001)-treated groups augmented tumor immune surveillance as shown by significantly increased level of anti-inflammatory cytokine (IL-10) and significantly decreased (p<0.05) level of pro-tumorigenic IL-6 of AHCC/KSK-CpG ODN treated group as compared to the PC group. Collectively, our study indicates therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with KSK-CpG ODN in B16 melanoma murine model via balancing redox and cytokines network.
Collapse
Affiliation(s)
- Rosa Mistica Ignacio
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea
| | - Cheol-Su Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea
| | - Young-Do Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea
| | - Hak-Min Lee
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea
| | - Xu-Feng Qi
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental and Regenerative Biology, Ji Nan University, School of Life Science and Technology, Guangzhou, People's Republic of China.
| | - Soo-Ki Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea; Institute of Genomic Cohort, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea.
| |
Collapse
|
17
|
Active Hexose Correlated Compound (AHCC) promotes an intestinal immune response in BALB/c mice and in primary intestinal epithelial cell culture involving toll-like receptors TLR-2 and TLR-4. Eur J Nutr 2015; 55:139-46. [PMID: 25596849 DOI: 10.1007/s00394-015-0832-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/08/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Active Hexose Correlated Compound (AHCC(®)) is a cultured mushroom extract that is commercially available and promoted for immune support. Available data suggest that AHCC supplementation affects immune cell populations and immune outcomes, including natural killer cell response to infection. The mechanism by which AHCC exerts its effects is not well understood. The present work aimed to characterize the immunomodulatory activity of AHCC in the gut and to study the effects of AHCC on toll-like receptor (TLR) signaling in intestinal epithelial cells (IECs). METHODS BALB/c mice were fed AHCC by gavage. In vivo activities were assessed by immunohistochemistry and cytokine production. The effects of AHCC on ex vivo primary cell culture from IECs were examined after challenge with LPS or E. coli alone or in the presence of anti-TLR-2 and TLR-4 blocking antibodies. RESULTS Feeding AHCC resulted in increased IgA+ cells in the intestine and increased sIgA, IL-10, and IFN-γ in the intestinal fluid. In IECs, contact with AHCC increased IL-6 production but not to the pro-inflammatory level of positive controls, LPS and E. coli. Blocking TLR-2 and TLR-4 reduced the induction of IL-6 by AHCC, suggesting that these innate receptors are involved in generating the immune response of IECs to AHCC. CONCLUSIONS AHCC may play a role in the orchestration of immune response and the maintenance of immune homeostasis in part by priming the TLR-2 and TLR-4 gate at the intestinal epithelium. Such a response is likely due to the recognition of non-pathogenic food-associated molecular patterns (FAMPs) such as those found associated with other mushroom or yeast-derived compounds.
Collapse
|
18
|
Cao Z, Chen X, Lan L, Zhang Z, Du J, Liao L. Active hexose correlated compound potentiates the antitumor effects of low-dose 5-fluorouracil through modulation of immune function in hepatoma 22 tumor-bearing mice. Nutr Res Pract 2014; 9:129-36. [PMID: 25861418 PMCID: PMC4388943 DOI: 10.4162/nrp.2015.9.2.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/11/2014] [Accepted: 09/23/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/OBJECTIVES A variety of immunomodulators can improve the efficacy of low-dose chemotherapeutics. Active hexose correlated compound (AHCC), a mushroom mycelia extract, has been shown to be a strong immunomodulator. Whether AHCC could enhance the antitumor effect of low-dose 5-fluorouracil (5-FU) via regulation of host immunity is unknown. MATERIALS/METHODS In the current study Hepatoma 22 (H22) tumor-bearing mice were treated with PBS, 5-FU (10 mg·kg-1·d-1, i.p), or AHCC (360 mg·kg-1·d-1, i.g) plus 5-FU, respectively, for 5 d. CD3+, CD4+, CD8+, and NK in peripheral blood were detected by flow cytometry. ALT, AST, BUN, and Cr levels were measured by biochemical assay. IL-2 and TNFα in serum were measured using the RIA kit and apoptosis of tumor was detected by TUNEL staining. Bax, Bcl-2, and TS protein levels were measured by immunohistochemical staining and mRNA level was evaluated by RT-PCR. RESULTS Diet consumption and body weight showed that AHCC had no apparent toxicity. AHCC could reverse liver injury and myelosuppression induced by 5-FU (P < 0.05). Compared to mice treated with 5-FU, mice treated with AHCC plus 5-FU had higher thymus index, percentages of CD3+, CD4+, and NK cells (P < 0.01), and ratio of CD4+/CD8+ (P < 0.01) in peripheral blood. Radioimmunoassay showed that mice treated with AHCC plus 5-FU had the highest serum levels of IL-2 and TNFα compared with the vehicle group and 5-FU group. More importantly, the combination of AHCC and 5-FU produced a more potent antitumor effect (P < 0.05) and caused more severe apoptosis in tumor tissue (P < 0.05) compared with the 5-FU group. In addition, the combination of AHCC and 5-FU further up-regulated the expression of Bcl-2 associated X protein (Bax) (P < 0.01), while it down-regulated the expression of B cell lymphoma 2 (Bcl-2) (P < 0.01). CONCLUSIONS These results support the claim that AHCC might be beneficial for cancer patients receiving chemotherapy.
Collapse
Affiliation(s)
- Zhiyun Cao
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Huatuo Road, No1, Fuzhou, 350108, China
| | - Xuzheng Chen
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Huatuo Road, No1, Fuzhou, 350108, China
| | - Lan Lan
- The Second People's Hospital of Fujian Province, China
| | - Zhideng Zhang
- Inspection and Quarantine Technique Centre of Fujian Entry-exit Inspection and Quarantine Bureau, China
| | - Jian Du
- The Second People's Hospital of Fujian Province, China
| | - Lianming Liao
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Huatuo Road, No1, Fuzhou, 350108, China
| |
Collapse
|
19
|
Bovine colostrum enhances natural killer cell activity and immune response in a mouse model of influenza infection and mediates intestinal immunity through toll-like receptors 2 and 4. Nutr Res 2014; 34:318-25. [DOI: 10.1016/j.nutres.2014.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 01/20/2023]
|
20
|
Ulbricht C, Brigham A, Bryan JK, Catapang M, Chowdary D, Costa D, Culwell S, D'Auria D, Giese N, Iovin R, Isaac R, Juturu V, Liu A, Mintzer M, Rusie E, Shaffer M, Windsor RC. An evidence-based systematic review of active hexose correlated compound (AHCC) by the Natural Standard Research Collaboration. J Diet Suppl 2013; 10:264-308. [PMID: 23931762 DOI: 10.3109/19390211.2013.822631] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An evidence-based systematic review of active hexose correlated compound (AHCC) by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated, reproducible grading rationale. This article includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.
Collapse
Affiliation(s)
- Catherine Ulbricht
- Natural Standard Research Collaboration, Somerville, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee YN, Youn HN, Kwon JH, Lee DH, Park JK, Yuk SS, Erdene-Ochir TO, Kim KT, Lee JB, Park SY, Choi IS, Song CS. Sublingual administration of Lactobacillus rhamnosus affects respiratory immune responses and facilitates protection against influenza virus infection in mice. Antiviral Res 2013; 98:284-90. [PMID: 23523767 DOI: 10.1016/j.antiviral.2013.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 02/20/2013] [Accepted: 03/01/2013] [Indexed: 12/30/2022]
Abstract
The extensive morbidity and mortality caused by influenza A viruses worldwide prompts the need for a deeper understanding of the host immune response and novel therapeutic and/or prophylactic interventions. In this study, we assessed the sublingual route as an effective means of delivering probiotics against influenza virus in mice. In addition, IgA levels, NK cell activity, T cell activation, and cytokine profiles in the lungs were examined to understand the mechanism underlying this protective effect. Sublingual administration of Lactobacillus rhamnosus provided enhanced protection against influenza virus infection by enhancing mucosal secretory IgA production, and T and NK cell activity. Moreover, interleukin (IL)-12 levels in the lungs increased significantly. Conversely, IL-6 and tumor necrosis factor alpha levels in the lungs decreased significantly. On the basis of these promising findings, we propose that the sublingual mucosal route is an attractive alternative to mucosal routes for administering probiotics against influenza virus.
Collapse
Affiliation(s)
- Yu-Na Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Clinthorne JF, Beli E, Duriancik DM, Gardner EM. NK cell maturation and function in C57BL/6 mice are altered by caloric restriction. THE JOURNAL OF IMMUNOLOGY 2012; 190:712-22. [PMID: 23241894 DOI: 10.4049/jimmunol.1201837] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NK cells are a heterogenous population of innate lymphocytes with diverse functional attributes critical for early protection from viral infections. We have previously reported a decrease in influenza-induced NK cell cytotoxicity in 6-mo-old C57BL/6 calorically restricted (CR) mice. In the current study, we extend our findings on the influence of CR on NK cell phenotype and function in the absence of infection. We demonstrate that reduced mature NK cell subsets result in increased frequencies of CD127(+) NK cells in CR mice, skewing the function of the total NK cell pool. NK cells from CR mice produced TNF-α and GM-CSF at a higher level, whereas IFN-γ production was impaired following IL-2 plus IL-12 or anti-NK1.1 stimulation. NK cells from CR mice were highly responsive to stimulation with YAC-1 cells such that CD27(-)CD11b(+) NK cells from CR mice produced granzyme B and degranulated at a higher frequency than CD27(-)CD11b(+) NK cells from ad libitum fed mice. CR has been shown to be a potent dietary intervention, yet the mechanisms by which the CR increases life span have yet to be fully understood. To our knowledge, these findings are the first in-depth analysis of the effects of caloric intake on NK cell phenotype and function and provide important implications regarding potential ways in which CR alters NK cell function prior to infection or cancer.
Collapse
Affiliation(s)
- Jonathan F Clinthorne
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
23
|
Roman BE, Beli E, Duriancik DM, Gardner EM. Short-term supplementation with active hexose correlated compound improves the antibody response to influenza B vaccine. Nutr Res 2012; 33:12-7. [PMID: 23351405 DOI: 10.1016/j.nutres.2012.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 10/22/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
Abstract
Administration of bioactive nutritional supplements near or at the time of immunization has been a recent approach to stimulate human immune response to vaccination. Active hexose correlated compound (AHCC), a mushroom extract, has been shown to protect mice against lethal primary influenza infection. Moreover, when AHCC was administered pre-vaccination in mice, they showed improved protection from lethal avian flu infection when compared to mice vaccinated alone. In this study, we hypothesized that AHCC will also improve the immune responses of healthy individuals to influenza vaccine. A randomized controlled study was performed with 30 healthy adults to evaluate the effects of AHCC supplementation on the immune response to the 2009-2010 seasonal influenza vaccine. Blood was drawn pre-vaccination and 3 wk post-vaccination. Immediately post-vaccination, the AHCC group began supplementation with AHCC (3 g/d). Flow cytometric analysis of lymphocyte subpopulations revealed that AHCC supplementation increased NKT cells (P < .1), and CD8 T cells (P < .05) post-vaccination compared to controls. Analysis of antibody production 3 weeks post-vaccination revealed that AHCC supplementation significantly improved protective antibody titers to influenza B, while the improvement was not significant in the control group. Overall, our study showed that AHCC supplementation improved some lymphocyte percentages and influenza B antibody titers over the control. Future studies are required to determine the kinetics of AHCC supplementation to improve the overall response to influenza vaccination.
Collapse
Affiliation(s)
- Brooke E Roman
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824-1224, USA
| | | | | | | |
Collapse
|
24
|
Daddaoua A, Martínez-Plata E, Ortega-González M, Ocón B, Aranda CJ, Zarzuelo A, Suárez MD, de Medina FS, Martínez-Augustin O. The nutritional supplement Active Hexose Correlated Compound (AHCC) has direct immunomodulatory actions on intestinal epithelial cells and macrophages involving TLR/MyD88 and NF-κB/MAPK activation. Food Chem 2012. [PMID: 23194525 DOI: 10.1016/j.foodchem.2012.09.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Active Hexose Correlated Compound (AHCC) is an immunostimulatory nutritional supplement. AHCC effects and mechanism of action on intestinal epithelial cells or monocytes are poorly described. AHCC was added to the culture medium of intestinal epithelial cells (IEC18 and HT29 cells) and monocytes (THP-1 cells) and assessed the secretion of proinflammatory cytokines by ELISA. Inhibitors of NFκB and MAPKs were used to study signal transduction pathways while TLR4 and MyD88 were silenced in IEC18 cells using shRNA. It was found that AHCC induced GROα and MCP1 secretion in IEC18 and IL-8 in HT29 cells. These effects depended on NFκB activation, and partly on MAPKs activation and on the presence of MyD88 and TLR4. In THP-1 cells AHCC evoked IL-8, IL-1β and TNF-α secretion. The induction of IL-8 depended on JNK and NFκB activation. Therefore, AHCC exerts immunostimulatory effects on intestinal epithelial cells and monocytes involving TLR4/MyD88 and NFκB/MAPK signal transduction pathways.
Collapse
Affiliation(s)
- Abdelali Daddaoua
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, E-18008 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee WW, Lee N, Fujii H, Kang I. Active Hexose Correlated Compound promotes T helper (Th) 17 and 1 cell responses via inducing IL-1β production from monocytes in humans. Cell Immunol 2012; 275:19-23. [PMID: 22531483 DOI: 10.1016/j.cellimm.2012.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 03/16/2012] [Accepted: 04/01/2012] [Indexed: 12/24/2022]
Abstract
The differentiation of T helper (Th) cells is critically dependent on cytokine milieu. The innate immune monocytes produce IL-1β which can affect the development of Th17 and Th1 cells that predominantly produce IL-17 and IFN-γ, respectively. Oligosaccharides from microorganisms, crops and mushrooms can stimulate innate immune cells. Active Hexose Correlated Compound (AHCC) that contains a large amount of oligosaccharides is a natural extract prepared from the mycelium of the edible Basidiomycete fungus. This compound is reported to modulate immune responses against pathogens although the mechanisms for this effect are largely unknown. Here we show that AHCC could induce high levels of IL-1β production from human monocytes. Furthermore, AHCC-treated monocytes increased the production of IL-17 and IFN-γ from autologous CD4(+) T cells, which was blocked by adding IL-1 receptor antagonist. These finding provide new insight into how food supplements like AHCC could enhance human immunity by modulating monocytes and Th cells.
Collapse
Affiliation(s)
- Won-Woo Lee
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
26
|
Matsui K, Ozaki T, Oishi M, Tanaka Y, Kaibori M, Nishizawa M, Okumura T, Kwon AH. Active hexose correlated compound inhibits the expression of proinflammatory biomarker iNOS in hepatocytes. Eur Surg Res 2011; 47:274-83. [PMID: 22076046 DOI: 10.1159/000333833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/20/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIMS Excess production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) has been implicated as proinflammatory biomarker in liver injury. The application of active hexose correlated compound (AHCC) as a functional food in complementary and alternative medicine has increased. The possibility that AHCC might inhibit iNOS induction was investigated as a potential liver-protective effect. METHODS Hepatocytes were isolated from rats by collagenase perfusion and cultured. Primary cultured hepatocytes were treated with interleukin-1β in the presence or absence of AHCC-sugar fraction (AHCC-SF). RESULTS AND CONCLUSION AHCC-SF inhibited the production of NO and reduced expressions of iNOS mRNA and its protein. AHCC-SF had no effects on either IκB degradation or nuclear factor-κB (NF-κB) activation. In contrast, AHCC-SF inhibited the upregulation of type I interleukin-1 receptor (IL-1RI) through the inhibition of Akt phosphorylation. Transfection experiments with iNOS promoter-luciferase constructs revealed that AHCC-SF reduced the levels of iNOS mRNA at both promoter transactivation and mRNA stabilization steps. AHCC-SF inhibited the expression of iNOS gene antisense transcript, which is involved in iNOS mRNA stabilization. These findings demonstrate that AHCC-SF suppresses iNOS gene expression through a IκB/NF-κB-independent but Akt/IL-1RI-dependent pathway, resulting in the reduction of NO production. AHCC-SF may have therapeutic potential for various liver injuries.
Collapse
Affiliation(s)
- K Matsui
- Department of Surgery, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Takeda S, Takeshita M, Kikuchi Y, Dashnyam B, Kawahara S, Yoshida H, Watanabe W, Muguruma M, Kurokawa M. Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int Immunopharmacol 2011; 11:1976-83. [PMID: 21871585 DOI: 10.1016/j.intimp.2011.08.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/10/2011] [Indexed: 01/05/2023]
Abstract
Some probiotics possess immunomodulatory activities and have been used as complementary and alternative medicines. We previously found that 10 lactic acid bacteria (LAB) strains isolated from traditional Mongolian dairy products showed probiotic potential in vitro. In this study, we assessed the immunomodulatory activity of 10 LABs on influenza virus (IFV) infection in relation to their efficacies in IFV-infected mice. In an intranasal IFV infection model in mice, oral administration of boiled Lactobacillus plantarum 06CC2 strain (20mg/mouse), one of the 10 LABs, twice daily for 10 days starting two days before infection was significantly effective in protecting the body weight loss of infected mice, reducing virus yields in the lungs on days 2, 4, and 6 after infection, and prolonging survival times without toxicity. The total numbers of infiltrated cells in the bronchoalveolar lavage fluid (BALF), especially macrophages and neutrophils, were significantly reduced by 06CC2 administration on day 2. On day 2, tumor necrosis factor (TNF)-α production in BALF was also reduced significantly, but interferon-α, interleukin-12, and interferon-γ productions were augmented and natural killer (NK) cell activity was significantly elevated. Furthermore, the gene expressions of interleukin-12 receptor and interferon-γ in Peyer's patches were augmented by 06CC2 administration on day 2. Thus, 06CC2 was suggested to alleviate influenza symptoms in mice in correlation with the augmentation of NK cell activity associated with the enhancement of interferon-α and Th1 cytokine productions through intestinal immunity and the reduction of TNF-α in the early stage of infection.
Collapse
Affiliation(s)
- Shiro Takeda
- Research Division, Minami Nippon Dairy Co-op Co. Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chunchao H, Guo JY. A Hypothesis: Supplementation with Mushroom-Derived Active Compound Modulates Immunity and Increases Survival in Response to Influenza Virus (H1N1) Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:252501. [PMID: 21660092 PMCID: PMC3096471 DOI: 10.1093/ecam/neq037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 03/30/2010] [Indexed: 01/19/2023]
Abstract
We hypothesize that the mushroom-derived active compound may be a potential strategy for increasing survival in response to influenza virus (H1N1) infection through the stimulation of host innate immune response. The validity of the hypothesis can be tested by immune response to influenza infection as seen through survival percentage, virus clearance, weight loss, natural killer cell cytotoxicity, Tumor Necrosis Factor-α (TNF-α) and Interferon-gamma (IFN-γ) levels, lytic efficiency in the spleens of mice and inducible nitric oxide synthase mRNA expressions in RAW 264.7 murine macrophage cells. The hypothesis may improve people's quality of life, reduce the medical cost of our healthcare system and eliminate people's fears of influenza outbreak.
Collapse
Affiliation(s)
- Han Chunchao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | | |
Collapse
|
29
|
Shah SK, Walker PA, Moore-Olufemi SD, Sundaresan A, Kulkarni AD, Andrassy RJ. An Evidence-Based Review of aLentinula edodesMushroom Extract as Complementary Therapy in the Surgical Oncology Patient. JPEN J Parenter Enteral Nutr 2011; 35:449-58. [DOI: 10.1177/0148607110380684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shinil K. Shah
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Peter A. Walker
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Stacey D. Moore-Olufemi
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
- Children’s Cancer Hospital, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alamelu Sundaresan
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
- Department of Biology, Texas Southern University, Houston, Texas
| | - Anil D. Kulkarni
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas
| | - Richard J. Andrassy
- Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, Texas
- Children’s Cancer Hospital, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
30
|
Fujii H, Nishioka N, Simon R, Kaur R, Lynch B, Roberts A. Genotoxicity and subchronic toxicity evaluation of Active Hexose Correlated Compound (AHCC). Regul Toxicol Pharmacol 2011; 59:237-50. [DOI: 10.1016/j.yrtph.2010.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 10/18/2022]
|
31
|
Guo H, Kumar P, Malarkannan S. Evasion of natural killer cells by influenza virus. J Leukoc Biol 2010; 89:189-94. [PMID: 20682623 DOI: 10.1189/jlb.0610319] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NK cells are important innate immune effectors during influenza virus infection. However, the influenza virus seems able to use several tactics to counter NK cell recognition for immune evasion. In this review, we will summarize and discuss recent advances regarding the understanding of NK cell evasion mechanisms manipulated by the influenza virus to facilitate its rapid replication inside the respiratory epithelial cells.
Collapse
Affiliation(s)
- Hailong Guo
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA.
| | | | | |
Collapse
|
32
|
Low-dose supplementation with active hexose correlated compound improves the immune response to acute influenza infection in C57BL/6 mice. Nutr Res 2009; 29:139-43. [PMID: 19285605 DOI: 10.1016/j.nutres.2009.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/21/2022]
Abstract
Supplementation with mushroom-derived active hexose correlated compound (AHCC) modulates immunity and increases survival in response to a broad spectrum of acute infections, including influenza virus infection. However, dose-response data are nonexistent. Therefore, the aims of this study were to evaluate AHCC supplementation at various doses and determine the effects of low-dose supplementation on the immune response in a mouse model of influenza virus infection. We hypothesized that AHCC supplementation would influence the immune response to influenza infection in a dose-dependent manner. Male C57BL/6 mice were supplemented with AHCC at daily doses of 0.05, 0.1, 0.5, and 1 g/kg and infected intranasally with influenza A virus (H1N1, PR8). Supplemented mice demonstrated a dose-dependent increase in survival and reduction in the loss of body weight. To further evaluate the effects of low-dose AHCC supplementation on the immune response to influenza infection, mice were supplemented with 0.1 g/kg per day and infected with a sublethal dose of influenza virus. Supplemented mice exhibited enhanced virus clearance and decreased weight loss compared to controls. Low-dose supplementation did not influence total natural killer (NK) cell cytotoxicity, although lytic efficiency was increased in the spleens of AHCC-supplemented mice, indicating enhanced NK cell function per cell. In conclusion, these data suggest that the effects of AHCC on the immune response to influenza infection are dose dependent and that low-dose AHCC supplementation improves the response to influenza infection despite no effect on total NK cell cytotoxicity.
Collapse
|
33
|
Wang S, Welte T, Fang H, Chang GJJ, Born WK, O'Brien RL, Sun B, Fujii H, Kosuna KI, Wang T. Oral administration of active hexose correlated compound enhances host resistance to West Nile encephalitis in mice. J Nutr 2009; 139:598-602. [PMID: 19141700 PMCID: PMC2646222 DOI: 10.3945/jn.108.100297] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
West Nile virus (WNV) poses a serious threat to public health, especially to the elderly and the immuno-compromised. Neither vaccines nor treatments are available for humans. Active hexose correlated compound (AHCC) is an extract of Lentinula edodes of the Basidiomycete family of fungi rich in alpha-glucans. In this study, we evaluated the effect of AHCC on host susceptibility in the murine model of WNV infection. Mice orally administered with AHCC (600 mg/kg) every other day for 1 wk before and at d 1 and 3 postinfection were assessed using viremia levels, survival rate, and protective immunity. AHCC administration in young (6- to 8-wk-old) mice attenuated viremia and mortality following lethal WNV infection. WNV-specific IgM and IgG production and gammadelta T cell expansion were also enhanced in these mice. Aged (21- to 22-mo-old) mice were more susceptible to WNV infection than young mice, partially due to the dysfunction of gammadelta T cell subsets. AHCC administration in aged mice enhanced the protective Vgamma1(+) T cell response as well as WNV-specific IgG but not IgM antibodies production. AHCC administration in aged mice attenuated viremia levels but led to no difference in mortality rate. Overall, our data suggests that AHCC enhances protective host immune responses against WNV infection in young and aged mice. Dietary supplementation with AHCC may be potentially immunotherapeutic for WNV-susceptible populations.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Thomas Welte
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Hao Fang
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Gwong-Jen J. Chang
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Willi K. Born
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Rebecca L. O'Brien
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Buxiang Sun
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Hajime Fujii
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Ken-Ichi Kosuna
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| | - Tian Wang
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523; Division of Vector-Borne Infectious Diseases, CDC, CDC-Foothills Campus, Fort Collins, CO 80521; Department of Immunology, National Jewish Medical and Research Center, Denver, CO 80206; and Research and Development Division, Amino Up Chemical Co., Ltd, 004-0839 Sapporo, Japan
| |
Collapse
|
34
|
Ritz BW, Aktan I, Nogusa S, Gardner EM. Energy restriction impairs natural killer cell function and increases the severity of influenza infection in young adult male C57BL/6 mice. J Nutr 2008; 138:2269-75. [PMID: 18936230 PMCID: PMC2635521 DOI: 10.3945/jn.108.093633] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 06/27/2008] [Accepted: 08/15/2008] [Indexed: 11/14/2022] Open
Abstract
Energy restriction (ER) without malnutrition extends lifespan in mice and postpones age-related changes in immunity. However, we have previously shown that aged (22 mo old) ER mice exhibit increased mortality, impaired viral clearance, and reduced natural killer (NK) cell cytotoxicity following influenza infection compared with aged mice that consumed food ad libitum (AL). To determine whether the detrimental effects of ER in response to influenza infection occur independently of advanced age, young adult (6 mo) male C57BL/6 mice consuming an AL or ER diet were infected with influenza A virus (H1N1, PR8). Young adult ER mice exhibited increased mortality (P < 0.05) and weight loss (P < 0.01) in response to infection. ER mice exhibited decreased total (P < 0.001) and NK1.1+ lymphocytes (P < 0.05) in lung and reduced influenza-induced NK cell cytotoxicity in both lung (P < 0.01) and spleen (P < 0.05). Importantly, the mRNA expression of interferon (IFN)alpha/beta (P < 0.05) was also reduced in the lungs of ER mice in response to infection, and in vitro stimulation of NK cells from ER mice with type I IFN resulted in cytotoxicity comparable to that in NK cells from AL mice. In contrast, NK cell activation was enhanced in ER mice, determined as an increase in the percentage of NK cells expressing B220 (P < 0.001) and increased intracellular production of IFNgamma (P < 0.01). These data describe an age-independent and detrimental effect of ER on the innate immune response to influenza infection and suggest that a decrease in NK cell number and alterations in the NK cell-activating environment may contribute to decreased innate immunity in ER mice.
Collapse
Affiliation(s)
- Barry W Ritz
- Department of Bioscience and Biotechnology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
35
|
Ritz BW. Supplementation with active hexose correlated compound increases survival following infectious challenge in mice. Nutr Rev 2008; 66:526-31. [DOI: 10.1111/j.1753-4887.2008.00085.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Active hexose correlated compound activates immune function to decrease bacterial load in a murine model of intramuscular infection. Am J Surg 2008; 195:537-45. [PMID: 18304499 DOI: 10.1016/j.amjsurg.2007.05.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/11/2007] [Accepted: 05/11/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND Infection is a serious, costly, and common complication of surgery and constitutes the principal cause of late death in patients undergoing surgery. The objective of this study was to clarify the mechanisms by which active hexose correlated compound (AHCC) increases survival in a murine model of intramuscular infection. METHODS Food-deprived mice receiving either AHCC or excipient were infected with bacteria. Kinetics of bacterial load, white blood cell counts, cytokine levels, and antibody levels were compared between groups. RESULTS AHCC-treated mice had reduced bacterial load at day 5 and cleared bacteria entirely at day 6. Levels of interleukin-12, tumor necrosis factor-alpha, and interleukin-6 peaked earlier in this group (day 3) compared with controls (day 5). Increased percentages of peripheral lymphocytes and monocytes and decreased numbers of polymorphonuclear cells were detected in the AHCC group. CONCLUSIONS AHCC appears to induce an early activation of the immune response, leading to an effective clearance of bacteria and rapid recovery.
Collapse
|