1
|
Lee JE, Lee JH, Koh JM, Im DS. Free Fatty Acid 4 Receptor Activation Attenuates Collagen-Induced Arthritis by Rebalancing Th1/Th17 and Treg Cells. Int J Mol Sci 2024; 25:5866. [PMID: 38892051 PMCID: PMC11172425 DOI: 10.3390/ijms25115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) has been found to be beneficial in rodent rheumatoid arthritis models and human trials. However, the molecular targets of n-3 PUFAs and their beneficial effects on rheumatoid arthritis are under-researched. Free fatty acid receptor 4 (FFA4, also known as GPR120) is a receptor for n-3 PUFA. We aim to investigate whether FFA4 activation reduces collagen-induced rheumatoid arthritis (CIA) by using an FFA4 agonist, compound A (CpdA), in combination with DBA-1J Ffa4 gene wild-type (WT) and Ffa4 gene knock-out (KO) mice. CIA induced an increase in the arthritis score, foot edema, synovial hyperplasia, pannus formation, proteoglycan loss, cartilage damage, and bone erosion, whereas the administration of CpdA significantly suppressed those increases in Ffa4 WT mice but not Ffa4 gene KO mice. CIA increased mRNA expression levels of pro-inflammatory Th1/Th17 cytokines, whereas CpdA significantly suppressed those increases in Ffa4 WT mice but not Ffa4 gene KO mice. CIA induced an imbalance between Th1/Th17 and Treg cells, whereas CpdA rebalanced them in spleens from Ffa4 WT mice but not Ffa4 gene KO mice. In SW982 synovial cells, CpdA reduced the LPS-induced increase in pro-inflammatory cytokine levels. In summary, the present results suggest that the activation of FFA4 in immune and synovial cells could suppress the characteristics of rheumatoid arthritis and be an adjuvant therapy.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/pathology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/drug therapy
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Th17 Cells/drug effects
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/agonists
- Mice
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/drug effects
- Mice, Knockout
- Mice, Inbred DBA
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Male
- Cytokines/metabolism
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
| | - Ju-Hyun Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea;
| | - Dong-Soon Im
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-E.L.); (J.-H.L.)
- Division of Endocrinology and Metabolism, Asan Medical Center, College of Medicine, University of Ulsan, Seoul 05505, Republic of Korea;
| |
Collapse
|
2
|
Reilly NA, Lutgens E, Kuiper J, Heijmans BT, Jukema JW. Effects of fatty acids on T cell function: role in atherosclerosis. Nat Rev Cardiol 2021; 18:824-837. [PMID: 34253911 DOI: 10.1038/s41569-021-00582-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
T cells are among the most common cell types present in atherosclerotic plaques and are increasingly being recognized as a central mediator in atherosclerosis development and progression. At the same time, triglycerides and fatty acids have re-emerged as crucial risk factors for atherosclerosis. Triglycerides and fatty acids are important components of the milieu to which the T cell is exposed from the circulation to the plaque, and increasing evidence shows that fatty acids influence T cell function. In this Review, we discuss the effects of fatty acids on four components of the T cell response - metabolism, activation, proliferation and polarization - and the influence of these changes on the pathogenesis of atherosclerosis. We also discuss how quiescent T cells can undergo a type of metabolic reprogramming induced by exposure to fatty acids in the circulation that influences the subsequent functions of T cells after activation, such as in atherosclerotic plaques.
Collapse
Affiliation(s)
- Nathalie A Reilly
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
- Department of Cardiology, Leiden University Medical Centre, Leiden, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam University Medical Centre, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians Universität, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, Netherlands.
- Netherlands Heart Institute, Utrecht, Netherlands.
| |
Collapse
|
3
|
Liddle DM, Hutchinson AL, Monk JM, Power KA, Robinson LE. Dietary ω-3 polyunsaturated fatty acids modulate CD4 + T-cell subset markers, adipocyte antigen-presentation potential, and NLRP3 inflammasome activity in a coculture model of obese adipose tissue. Nutrition 2021; 91-92:111388. [PMID: 34298481 DOI: 10.1016/j.nut.2021.111388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Chronic low-grade inflammation in obesity is partly driven by inflammatory cross talk between adipocytes and interferon-γ-secreting CD4+ T-helper (Th)1 cells, a process we have shown may be mitigated by long-chain (LC) ω-3 polyunsaturated fatty acids (PUFAs). Our objective was to study pivotal mediators of interactions between Th1 cells and adipocytes as potential mechanisms underlying the antiinflammatory effects of LC ω-3 PUFAs. METHODS Using an in vitro model, 3T3-L1 adipocytes were cocultured with purified splenic CD4+ T cells from C57BL/6 mice consuming one of two isocaloric high-fat (HF) diets (60% kcal fat), containing either 41.2% kcal from lard + 18.7% kcal from corn oil (control, HF) or 41.2% kcal from lard + 13.4% kcal from corn oil + 5.3% kcal from fish oil (HF+FO). Cocultures were stimulated for 48 h with lipopolysaccharide (10 ng/mL). RESULTS Compared with HF cocultures, HF+FO reduced Th1-cell markers (including secreted interferon-γ) and increased Th2-cell markers, consistent with reduced expression of genes related to major histocompatibility complex II (P < 0.05). HF+FO also blunted markers of priming and activity of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome (P < 0.05). In confirmatory work, 3T3-L1 adipocyte pretreatment with the LC ω-3 PUFA docosahexaenoic acid (100 μM, 24 h) blunted interferon-γ-induced (5 ng/mL, 24 h) expression of genes related to major histocompatibility complex II and priming and activity markers of the NLRP3 inflammasome compared with control (P < 0.05). CONCLUSIONS Inflammatory interactions between CD4+ T cells and adipocytes may provide a target for LC ω-3 PUFAs to mitigate obesity-associated inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Amber L Hutchinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Krista A Power
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Lindsay E Robinson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
4
|
|
5
|
Liddle DM, Hutchinson AL, Monk JM, DeBoer AA, Ma DWL, Robinson LE. Dietary long-chain n-3 PUFAs mitigate CD4 + T cell/adipocyte inflammatory interactions in co-culture models of obese adipose tissue. J Nutr Biochem 2020; 86:108488. [PMID: 32827664 DOI: 10.1016/j.jnutbio.2020.108488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/14/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Obese adipose tissue (AT) inflammation is partly driven by accumulation of CD4+ T helper (Th)1 cells and reduced Th2 and T regulatory subsets, which promotes macrophage chemotaxis and ensuing AT metabolic dysfunction. This study investigated CD4+ T cell/adipocyte cytokine-mediated paracrine interactions (cross talk) as a target for dietary intervention to mitigate obese AT inflammation. Using an in vitro co-culture model designed to recapitulate CD4+ T cell accumulation in obese AT (5% of stromal vascular cellular fraction), 3T3-L1 adipocytes were co-cultured with purified splenic CD4+ T cells from C57Bl/6 mice consuming one of two isocaloric diets containing either 10% w/w safflower oil (control, CON) or 7% w/w safflower oil+3% w/w fish oil (FO) for 4 weeks (n=8-11/diet). The FO diet provided 1.9% kcal from the long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid and docosahexaenoic acid, a dose that can be achieved by supplementation. Co-cultures were stimulated for 48 h with lipopolysaccharide (LPS) to mimic in vivo obese endotoxin levels or with conditioned media collected from LPS-stimulated visceral AT isolated from CON-fed mice. In both stimulation conditions, FO reduced mRNA expression and/or secreted protein levels of Th1 markers (T-bet, IFN-γ) and increased Th2 markers (GATA3, IL-4), concomitant with reduced inflammatory cytokines (IL-1β, IL-6, IL-12p70, TNF-α), macrophage chemokines (MCP-1, MCP-3, MIP-1α, MIP-2) and levels of activated central regulators of inflammatory signaling (NF-κB, STAT-1, STAT-3) (P<.05). Therefore, CD4+ T cell/adipocyte cross talk represents a potential target for LC n-3 PUFAs to mitigate obese AT inflammation.
Collapse
Affiliation(s)
- Danyelle M Liddle
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Amber L Hutchinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Jennifer M Monk
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Anna A DeBoer
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - David W L Ma
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - Lindsay E Robinson
- Department of Hsuman Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
6
|
Xia DN, Tan YQ, Yang JY, Zhou G. Omega-3 polyunsaturated fatty acids: a promising approach for the management of oral lichen planus. Inflamm Res 2020; 69:989-999. [PMID: 32770320 DOI: 10.1007/s00011-020-01388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Oral lichen planus (OLP) is a T-cell-mediated inflammatory disease with a risk of malignant transformation. Although the etiology of OLP is still uncertain, growing evidence suggests that oral microbiota, antigen-specific, and non-specific mechanisms are involved in the pathogenesis of OLP. Antigen-specific mechanisms include antigen presentation, T-cell activation, nuclear factor-kappa B signaling pathway, and cytokine secretion, while non-specific mechanisms consist of matrix metalloproteinases (MMP)-9 upregulation, psychological pressure, oxidative damage, aberrant expression of microRNAs (miRNAs), and autophagy. Till now, there is no cure for OLP, and the main purpose of OLP therapy is symptomatic control. FINDING Seafood and its derivative omega-3 polyunsaturated fatty acids (n-3 PUFAs) can suppress antigen presentation, T-cell activation, and nuclear factor-kappa B signaling pathway, modulate the overexpressed inflammatory cytokines, inhibit the expression of MMP-9, as well as regulate the expression of miRNAs and autophagy. And they are possible agents for ameliorating psychological disorder and oxidative damage. Moreover, n-3 PUFAs supplementation has a beneficial effect on preventing tumorigenesis. CONCLUSION n-3 PUFAs consumption may provide a non-toxic, inexpensive administration for OLP.
Collapse
Affiliation(s)
- Duo-Na Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Jing-Ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Luoyu Road 237, 430070, Wuhan, China. .,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Lim Y, Kim S, Kim S, Kim DI, Kang KW, Hong SH, Lee SM, Koh HR, Seo YJ. n-3 Polyunsaturated Fatty Acids Impede the TCR Mobility and the TCR-pMHC Interaction of Anti-Viral CD8+ T Cells. Viruses 2020; 12:v12060639. [PMID: 32545480 PMCID: PMC7354506 DOI: 10.3390/v12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022] Open
Abstract
The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Seyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Sehoon Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
| | - Dong-In Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - So-Hee Hong
- Department of Biotechnology, the Catholic University of Korea, Bucheon 14662, Korea;
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (H.R.K.); (Y.-J.S.)
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
- Correspondence: (H.R.K.); (Y.-J.S.)
| |
Collapse
|
8
|
Zhao C, Zhou J, Meng Y, Shi N, Wang X, Zhou M, Li G, Yang Y. DHA Sensor GPR120 in Host Defense Exhibits the Dual Characteristics of Regulating Dendritic Cell Function and Skewing the Balance of Th17/Tregs. Int J Biol Sci 2020; 16:374-387. [PMID: 32015675 PMCID: PMC6990895 DOI: 10.7150/ijbs.39551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
In addition to functioning as an antioxidant, anti-inflammatory and age-defying cellular component, DHA impacts the immune system by facilitating the pathogen invasion. The mechanism through which DHA regulates immune suppression remains obscure. In our study, we postulated that DHA might interact with GPR120 to shape the dendritic cell (DC) differentiation and subsequently drive T cell proliferation during the virus infection. In vitro, the proportion of costimulatory molecules and HLA-DR on DC that generated from exogenous and endogenous (fad3b expression) DHA supplemented mice were significantly lower than wild-type mice. Given the importance of FAs, DHA is not only a critical cellular constituent but also a cell signaling molecule and FA deficiency reduces DC generation; we used GPR120-/- mice to determine whether DHA receptor deficiency disorders DC maturation processing. Novelty, the expression of GPR120 on DC from wild-type (WT) mice was inversely related to DC activation and DC from the GPR120-/- mice maintained a spontaneous maturation status. In vivo, both the excessive activation of GPR120 by DHA and the deletion of GPR120 effectively skewed the balance of Th17/Tregs and reduced the production of VNA and protection of vaccination. Overall, our results revealed a mechanism that the GPR120 self-regulation plays a crucial role in sensing DHA variation, which provides a new prospect for therapeutic manipulation in autoimmune diseases and the design of a vaccine adjuvant.
Collapse
Affiliation(s)
- Caiquan Zhao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Jinxiu Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yanqing Meng
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Niu Shi
- Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, CN 010017
| | - Xiao Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ming Zhou
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangpeng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yang Yang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
9
|
Sekikawa A, Cui C, Sugiyama D, Fabio A, Harris WS, Zhang X. Effect of High-Dose Marine Omega-3 Fatty Acids on Atherosclerosis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Nutrients 2019; 11:nu11112599. [PMID: 31671524 PMCID: PMC6893789 DOI: 10.3390/nu11112599] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022] Open
Abstract
A recent randomized controlled trial (RCT), the Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT), reported that high-dose marine omega-3 fatty acids (OM3) significantly reduce cardiovascular disease (CVD) outcomes, yet the mechanisms responsible for this benefit remain unknown. To test the hypothesis that high-dose OM3 is anti-atherosclerotic, we performed a systematic review and meta-analysis of RCT of high-dose OM3 on atherosclerosis. The protocol of this systematic review was registered with PROSPERO (CRD42019125566). PubMed, Embase, Cochran Central Register for Controlled Trials, and Clinicaltrials.gov databases were searched using the following criteria: adult participants, high-dose OM3 (defined as ≥3.0 g/day, or in Japan 1.8 g/day and purity ≥90%) as the intervention, changes in atherosclerosis as the outcome, and RCTs with an intervention duration of ≥6 months. A random-effects meta-analysis was used to pool estimates across studies. Among the 598 articles retrieved, six articles met our criteria. Four RCTs evaluated atherosclerosis in the coronary and two in the carotid arteries. High-dose OM3 significantly slowed the progression of atherosclerosis (standardized mean difference −1.97, 95% confidence interval −3.01, −0.94, p < 0.001). The results indicate that anti-atherosclerotic effect of high-dose OM3 is one potential mechanism in reducing CVD outcomes demonstrated in the REDUCE-IT trial.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Chendi Cui
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Daisuke Sugiyama
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- Faculty of Nursing and Medical Care, Keio University, 4411 Endo, Fujisawa, 252-0883 Kanagawa, Japan.
| | - Anthony Fabio
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - William S Harris
- OmegaQuant Analytics, LLC and Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57106, USA.
| | - Xiao Zhang
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
10
|
Abstract
The prevalence of food allergy is raising in industrialized countries, but the mechanisms behind this increased incidence are not fully understood. Environmental factors are believed to play a role in allergic diseases, including lifestyle influences, such as diet. There is a close relationship between allergens and lipids, with many allergenic proteins having the ability to bind lipids. Dietary lipids exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to cells of the adaptive immunity. In addition to modifying the immunostimulating properties of proteins, lipids also alter their digestibility and intestinal absorption, changing allergen bioavailability. This study provides an overview of the role of dietary lipids in food allergy, taking into account epidemiological information, as well as results of mechanistic investigations using in vivo, ex vivo and in vitro models. The emerging link among high-fat diets, obesity, and allergy is also discussed.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
11
|
Huo W, Li M, Wang J, Wang Z, Huang Y, Chen W. On growth performance, nutrient digestibility, blood T lymphocyte subsets, and cardiac antioxidant status of broilers. ACTA ACUST UNITED AC 2018; 5:68-73. [PMID: 30899812 PMCID: PMC6407071 DOI: 10.1016/j.aninu.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Abstract
Different lipid sources differ in the fatty acid profiles and differently affect growth performance as well as immune function of broilers. The influences of different dietary lipid sources on growth performance, nutrient digestibility, blood T lymphocyte population, and cardiac antioxidant status were investigated of broilers. A total of 360 one-day-old male broilers (BW = 44 ± 3 g) were randomized into 3 treatment groups, consisting of 6 replicates with 20 birds in each group. Broilers received standard diets supplemented with 5% (wt/wt) of lard (LD, as a control diet), sesame oil (SO), or flaxseed oil (FO). Broilers in both SO and FO treatment groups had lower (P < 0.05) feed conversion ratios from 22 to 42 d and during the overall phase compared to those in LD treatment group. Meanwhile, the apparent total tract nutrient digestibility of crude fat in SO and FO treatment groups was higher than that in LD treatment group. Both FO and SO treatments decreased (P < 0.05) abdominal fat percentage compared to LD treatment. Total triglycerides and total cholesterol in chicken blood were decreased (P < 0.05) by SO and FO treatments compared to LD treatment. Feeding broilers with FO and SO led to a decrease (P < 0.05) in blood CD4+ T lymphocyte count and in CD4+:CD8+ ratio compared to LD treatment. Sesame oil and FO treatments increased cardiac glutathione peroxidase (P < 0.05) compared to LD treatment. It is concluded that addition of 5% SO and FO to the standard corn-soybean meal diet improved feed efficiency, increased the activities of cardiac glutathione peroxidase, and affected the T lymphocytes ratio of fast growing broilers.
Collapse
Affiliation(s)
- Wenying Huo
- Feed Nutrition Engineering Laboratory of Henan Province, Henan Agricultural University, Zhengzhou, 450002, China.,College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Min Li
- Feed Nutrition Engineering Laboratory of Henan Province, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zhixiang Wang
- Feed Nutrition Engineering Laboratory of Henan Province, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanqun Huang
- Feed Nutrition Engineering Laboratory of Henan Province, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wen Chen
- Feed Nutrition Engineering Laboratory of Henan Province, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
12
|
Kim JY, Lim K, Kim KH, Kim JH, Choi JS, Shim SC. N-3 polyunsaturated fatty acids restore Th17 and Treg balance in collagen antibody-induced arthritis. PLoS One 2018; 13:e0194331. [PMID: 29543869 PMCID: PMC5854360 DOI: 10.1371/journal.pone.0194331] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/01/2018] [Indexed: 12/22/2022] Open
Abstract
N-3 polyunsaturated fatty acids (PUFA) have anti-inflammatory effects and were considered useful for the treatment of rheumatoid arthritis (RA). Recently, several studies suggested that n-3 PUFAs attenuated arthritis in animal model and human, however the mechanism is still unclear. Interleukin 17 (IL-17) is a pro-inflammatory cytokine mainly produced by T helper 17 (Th17) cells which cause tissue inflammation and bone erosion leading to joint destruction. In contrast, regulatory T (Treg) cells down-regulate various immune responses by suppression of naïve T cells. The imbalance between Th17 cells and Tregs cell is important for the pathogenesis of RA. Here, we investigated whether n-3 PUFAs attenuate arthritis in collagen antibody-induced arthritis (CAIA) model. We used fat-1 transgenic mice expressing the Caenorhabditis elegans fat-1 gene encoding an n-3 fatty acid desaturase that converts n-6 to n-3 fatty acids, leading to abundant n-3 fatty acids without the need of a dietary n-3 supply. Clinical arthritis score was significantly attenuated in fat-1 mice compared to wild type (WT) mice on day 7 (1.6±1.8, p = 0.012) and day 9 (1.5±1.6, p = 0.003). Ankle thickness also decreased significantly in fat-1 mice compared to WT mice (1.82±0.11, p = 0.008). The pathologic finding showed that inflammatory cell infiltration and bone destruction were reduced in fat-1 mice compared to WT. The expression levels of IL-17 and related cytokines including IL-6 and IL-23 decreased in the spleen and ankle joint tissue of fat-1 mice compared to WT mice. Furthermore, Treg cells were expanded in the spleen of fat-1 mice and Treg cell differentiation was significantly higher in fat-1 mice than in wild type (p = 0.038). These data suggest that n-3 PUFAs could attenuate arthritis through increasing the expression of FoxP3 and the differentiation of Treg, while reducing IL-17 production. Therefore, dietary supplementation of n-3 PUFAs could have a therapeutic potential for the treatment of RA.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/metabolism
- Anti-Inflammatory Agents/therapeutic use
- Antibodies/immunology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/metabolism
- Cell Differentiation/drug effects
- Collagen/antagonists & inhibitors
- Collagen/immunology
- Cytokines/metabolism
- Dietary Supplements
- Fatty Acid Desaturases/genetics
- Fatty Acid Desaturases/metabolism
- Fatty Acids, Omega-3/metabolism
- Fatty Acids, Omega-3/therapeutic use
- Fatty Acids, Omega-6/metabolism
- Forkhead Transcription Factors/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Spleen/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th17 Cells/drug effects
- Th17 Cells/immunology
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Kyu Lim
- Department of Biochemistry and Cancer Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kyung Hee Kim
- Department of Pathology, Cancer Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Hyun Kim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Sun Choi
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Seung-Cheol Shim
- Division of Rheumatology, Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction. Nutrients 2017; 9:nu9121289. [PMID: 29186929 PMCID: PMC5748740 DOI: 10.3390/nu9121289] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein.
Collapse
|
14
|
|
15
|
Filler G, Melk A, Marks SD. Practice recommendations for the monitoring of renal function in pediatric non-renal organ transplant recipients. Pediatr Transplant 2016; 20:352-63. [PMID: 26917052 DOI: 10.1111/petr.12685] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2016] [Indexed: 02/04/2023]
Abstract
The management of non-renal pediatric solid organ transplant recipients has become complex over the last decade with innovations in immunosuppression and surgical techniques. Post-transplantation follow-up is essential to ensure that children have functioning allografts for as long as possible. CKD is highly prevalent in these patients, often under recognized, and has a profound impact on patient survival. These practice recommendations focus on the early detection and management of hypertension, proteinuria, and renal dysfunction in non-renal pediatric solid organ transplant recipients. We present seven practice recommendations. Renal function should be monitored regularly in organ transplant recipients, utilizing assessment of serum creatinine and cystatin C. GFR should be calculated using the new Schwartz formula. Transplant physicians should also monitor blood pressure using automated oscillometric devices and confirm repeated abnormal measures with manual blood pressure readings and ambulatory 24-h blood pressure monitoring. Proteinuria and microalbuminuria should also be assessed regularly. Referrals to a pediatric nephrologist should be made for non-renal organ transplant recipients with repeated blood pressures >95th percentile using the Fourth Task Force reference intervals, microalbumin/creatinine ratio >32.5 mg/g (3.7 mg/mmol) creatinine on repeated testing and/or GFR <90 mL/min/1.73 m(2) .
Collapse
Affiliation(s)
- Guido Filler
- Department of Paediatrics, Schulich School of Medicine & Dentistry, London, ON, Canada.,Department of Medicine, Schulich School of Medicine & Dentistry, London, ON, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Whelan J, Gowdy KM, Shaikh SR. N-3 polyunsaturated fatty acids modulate B cell activity in pre-clinical models: Implications for the immune response to infections. Eur J Pharmacol 2015; 785:10-17. [PMID: 26022530 DOI: 10.1016/j.ejphar.2015.03.100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/15/2015] [Accepted: 03/05/2015] [Indexed: 12/12/2022]
Abstract
B cell antigen presentation, cytokine production, and antibody production are targets of pharmacological intervention in inflammatory and infectious diseases. Here we review recent pre-clinical evidence demonstrating that pharmacologically relevant levels of n-3 polyunsaturated fatty acids (PUFA) derived from marine fish oils influence key aspects of B cell function through multiple mechanisms. N-3 PUFAs modestly diminish B cell mediated stimulation of classically defined naïve CD4(+) Th1 cells through the major histocompatibility complex (MHC) class II pathway. This is consistent with existing data showing that n-3 PUFAs suppress the activation of Th1/Th17 cells through direct effects on helper T cells and indirect effects on antigen presenting cells. Mechanistically, n-3 PUFAs lower antigen presentation and T cell signaling by disrupting the formation of lipid microdomains within the immunological synapse. We then review data to show that n-3 PUFAs boost B cell activation and antibody production in the absence and presence of antigen stimulation. This has potential benefits for several clinical populations such as the aged and obese that have poor humoral immunity. The mode of action by which n-3 PUFA boost B cell activation and antibody production remains unclear, but may involve Th2 cytokines, enhanced production of specialized proresolving lipid mediators, and targeting of protein lateral organization in lipid microdomains. Finally, we highlight evidence to show that different n-3 PUFAs are not biologically equivalent, which has implications for the development of future interventions to target B cell activity.
Collapse
Affiliation(s)
- Jarrett Whelan
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Kymberly M Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Microbiology & Immunology, East Carolina Diabetes & Obesity Institute, East Carolina Heart Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
17
|
Kim YS, Sayers TJ, Colburn NH, Milner JA, Young HA. Impact of dietary components on NK and Treg cell function for cancer prevention. Mol Carcinog 2015; 54:669-78. [PMID: 25845339 DOI: 10.1002/mc.22301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/09/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023]
Abstract
An important characteristic of cancer is that the disease can overcome the surveillance of the immune system. A possible explanation for this resistance arises from the ability of tumor cells to block the tumoricidal activity of host immune cells such as natural killer (NK) cells by inducing the localized accumulation of regulatory T (Treg) cells. Evidence exists that components in commonly consumed foods including vitamins A, D, and E, water-soluble constituents of mushrooms, polyphenolics in fruits and vegetables, and n-3 fatty acids in fish oil can modulate NK cell activities, Treg cell properties, and the interactions between those two cell types. Thus, it is extremely important for cancer prevention to understand the involvement of dietary components with the early stage dynamics of interactions among these immune cells. This review addresses the potential significance of diet in supporting the function of NK cells, Treg cells, and the balance between those two cell types, which ultimately results in decreased cancer risk.
Collapse
Affiliation(s)
- Young S Kim
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland
| | - Thomas J Sayers
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - Nancy H Colburn
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| | - John A Milner
- Human Nutrition Research Center, USDA/ARS, Beltsville, Maryland
| | - Howard A Young
- Frederick National Laboratory, Center for Cancer Research, NCI, Frederick, Maryland
| |
Collapse
|
18
|
Allen MJ, Fan YY, Monk JM, Hou TY, Barhoumi R, McMurray DN, Chapkin RS. n-3 PUFAs reduce T-helper 17 cell differentiation by decreasing responsiveness to interleukin-6 in isolated mouse splenic CD4⁺ T cells. J Nutr 2014; 144:1306-13. [PMID: 24944284 PMCID: PMC4093987 DOI: 10.3945/jn.114.194407] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cluster of differentiation 4(+) (CD4(+)) effector T-cell subsets [e.g., T-helper (Th) 1 and Th17] are implicated in autoimmune and inflammatory disorders such as multiple sclerosis, psoriasis, and rheumatoid arthritis. Interleukin (IL)-6 is a pleiotropic cytokine that induces Th17 polarization via signaling through the membrane-bound transducer glycoprotein 130 (GP130). Previously, we demonstrated that n-3 (ω-3) polyunsaturated fatty acids (PUFAs) reduce CD4(+) T-cell activation and differentiation into pathogenic Th17 cells by 25-30%. Here we report that n-3 PUFAs alter the response of CD4(+) T cells to IL-6 in a lipid raft membrane-dependent manner. Naive splenic CD4(+) T cells from fat-1 transgenic mice exhibited 30% lower surface expression of the IL-6 receptor. This membrane-bound receptor is known to be shed during cellular activation, but the release of soluble IL-6 receptor after treatment with anti-CD3 and anti-CD28 was not changed in the CD4(+) T cells from fat-1 mice, suggesting that the decrease in surface expression was not due to ectodomain release. We observed a significant 20% decrease in the association of GP130 with lipid rafts in activated fat-1 CD4(+) T cells and a 35% reduction in GP130 homodimerization, an obligate requirement for downstream signaling. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream target of IL-6-dependent signaling, was also decreased by 30% in response to exogenous IL-6 in fat-1 CD4(+) T cells. Our results suggest that n-3 PUFAs suppress Th17 cell differentiation in part by reducing membrane raft-dependent responsiveness to IL-6, an essential polarizing cytokine.
Collapse
Affiliation(s)
- M. Jeannie Allen
- Program in Integrative Nutrition and Complex Diseases,,Nutrition and Food Science
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases,,Nutrition and Food Science
| | - Jennifer M. Monk
- Program in Integrative Nutrition and Complex Diseases,,Nutrition and Food Science
| | - Tim Y. Hou
- Program in Integrative Nutrition and Complex Diseases,,Biochemistry and Biophysics
| | - Rola Barhoumi
- College of Veterinary Medicine and Biomedical Sciences Image Analysis Laboratory, and
| | - David N. McMurray
- Program in Integrative Nutrition and Complex Diseases,,Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, College Station, TX
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases,,Nutrition and Food Science,,Center for Translational Environmental Health Research, Texas A&M University, College Station, TX; and,Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University Health Science Center, College Station, TX,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
19
|
Antagonizing arachidonic acid-derived eicosanoids reduces inflammatory Th17 and Th1 cell-mediated inflammation and colitis severity. Mediators Inflamm 2014; 2014:917149. [PMID: 25136149 PMCID: PMC4127240 DOI: 10.1155/2014/917149] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/26/2014] [Indexed: 01/07/2023] Open
Abstract
During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA-) derived eicosanoids, such as prostaglandin E2 (PGE2), promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS-) induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23), decreased percentages of Th17 cells and, improved colon injury scores (P ≤ 0.05). Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.
Collapse
|
20
|
Filler G, Yasin A, Medeiros M. Methods of assessing renal function. Pediatr Nephrol 2014; 29:183-92. [PMID: 23417278 DOI: 10.1007/s00467-013-2426-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/15/2022]
Abstract
Accurate assessment of renal function is critical for appropriate drug dosing of renally excreted compounds. Glomerular filtration rate (GFR) is considered the best marker of kidney function. Inulin clearance forms the gold standard for measuring GFR, both in adults and in children. The method is invasive, cumbersome, and smaller children require urinary catheterization for accurate timed urine collections. Nuclear medicine methods replaced inulin clearance in the 1970s after (51)Cr EDTA clearance was introduced. Inulin has no plasma protein binding, whereas all commonly used radioisotopes have a small amount of plasma protein binding that leads to lower values. Only iohexol does not have significant plasma protein binding. The underestimation due to plasma protein binding is partially offset by overestimation due to the use of non-compartmental pharmacokinetic modeling of the plasma disappearance of the radioisotope. The problem could be overcome with a urinary nuclear medicine clearance method, but these have not been validated in children. Endogenous markers of GFR include serum creatinine and low molecular weight proteins such as cystatin C and beta-trace protein. Of these, estimation of GFR using cystatin C appears to be the most promising, although its accuracy in pregnancy and in the neonatal period may be limited.
Collapse
Affiliation(s)
- Guido Filler
- Department of Pediatrics, Children's Hospital, London Health Science Centre, University of Western Ontario, 800 Commissioners Road East, London, Ontario, Canada, N6A 5W9,
| | | | | |
Collapse
|
21
|
Jang HY, Lim K, Lee SM, Park BH. Effects of n-3 PUFA on the CD4⁺ type 2 helper T-cell-mediated immune responses in Fat-1 mice. Mol Nutr Food Res 2013; 58:365-75. [PMID: 24019303 DOI: 10.1002/mnfr.201300194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 07/01/2013] [Accepted: 07/11/2013] [Indexed: 02/06/2023]
Abstract
SCOPE It has been suggested that n-3 PUFA can be used as a preventive or therapeutic strategy to control allergic asthma. But little is known about the exact mechanisms by which n-3 PUFA modulates it. Here, the effects of elevated n-3 PUFA on ovalbumin (OVA) induced airway inflammation were investigated using Fat-1 transgenic mice that can convert n-6 PUFA to n-3 PUFA endogenously. METHODS AND RESULTS First, we tested whether Fat-1 expression modulates CD4⁺ T-cell activation, proliferation, and differentiation in vitro and found that the Fat-1 expression attenuated all of these CD4⁺ T-cell responses by suppression of T-cell receptor mediated signaling and cytokine-mediated phosphorylation of STATs. When the Fat-1 mice were sensitized and challenged with the OVA, they showed a significant decrease in the recruitment of inflammatory cells into airway, the production of Th2 cytokines, eotaxin, and mucin in the lung, and the concentration of OVA-specific IgE in the serum. Furthermore, the differentiation of CD4⁺ T cells into Th2 was also decreased in the spleen of Fat-1 mice. CONCLUSION Our results showed that an elevated level of n-3 PUFA was effective in preventing allergic airway inflammation by modulating the activation and differentiation of CD4⁺ T cells in Fat-1 mice.
Collapse
Affiliation(s)
- Hyun-Young Jang
- Department of Biochemistry and Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | | | | | | |
Collapse
|
22
|
Monk JM, Hou TY, Turk HF, McMurray DN, Chapkin RS. n3 PUFAs reduce mouse CD4+ T-cell ex vivo polarization into Th17 cells. J Nutr 2013; 143:1501-8. [PMID: 23864512 PMCID: PMC3743278 DOI: 10.3945/jn.113.178178] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/03/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022] Open
Abstract
Little is known about the impact of n3 (ω3) PUFAs on polarization of CD4(+) T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs. pectin (P)] (2 × 2 design) in male C57BL/6 mice fed CO-C, CO-P, FO-C, or FO-P diets for 3 wk on the ex vivo polarization of purified splenic CD4(+) T cells (using magnetic microbeads) into regulatory T cells [Tregs; forkhead box P3 (Foxp3(+)) cells] or Th17 cells [interleukin (IL)-17A(+) and retinoic acid receptor-related orphan receptor (ROR) γτ(+) cells] by flow cytometry. Treg polarization was unaffected by diet; however, FO independently reduced the percentage of both CD4(+) IL-17A(+) (P < 0.05) and CD4(+) RORγτ(+) cells (P < 0.05). Moreover, expression of another critical Th17-cell-related transcription factor, signal transducer and activator of transcription 3, was reduced by FO. Dietary FO reduced the surface expression of both IL-6R and IL-23R on polarized Th17 cells (P ≤ 0.05), thus interfering with the promotive effects of these critical cytokines on Th17 polarization. Additionally, C57BL/6 mice fed diets enriched in eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or DHA + EPA similarly reduced Th17-cell polarization in comparison to CO by reducing expression of the Th17-cell signature cytokine (IL-17A; P = 0.0015) and transcription factor (RORγτ P = 0.02), whereas Treg polarization was unaffected. Collectively, these data show that n3 PUFAs exert a direct effect on the development of Th17 cells in healthy mice, implicating a novel n3 PUFA-dependent, anti-inflammatory mechanism of action via the suppression of the initial development of this inflammatory T-cell subset.
Collapse
Affiliation(s)
- Jennifer M. Monk
- Program in Integrative Nutrition and Complex Diseases
- Department of Nutrition and Food Science, and
| | - Tim Y. Hou
- Program in Integrative Nutrition and Complex Diseases
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX; and
| | - Harmony F. Turk
- Program in Integrative Nutrition and Complex Diseases
- Department of Nutrition and Food Science, and
| | - David N. McMurray
- Department of Nutrition and Food Science, and
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, TX
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases
- Department of Nutrition and Food Science, and
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX; and
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, College Station, TX
| |
Collapse
|
23
|
Dietary fish oil and DHA down-regulate antigen-activated CD4+ T-cells while promoting the formation of liquid-ordered mesodomains. Br J Nutr 2013; 111:254-60. [PMID: 23962659 DOI: 10.1017/s0007114513002444] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have demonstrated previously that n-3 PUFA endogenously produced by fat-1 transgenic mice regulate CD4+ T-cell function by affecting the formation of lipid rafts, liquid-ordered mesodomains in the plasma membrane. In the present study, we tested the effects of dietary sources of n-3 PUFA, i.e. fish oil (FO) or purified DHA, when compared with an n-6 PUFA-enriched maize oil control diet in DO11.10 T-cell receptor transgenic mice. Dietary n-3 PUFA were enriched in CD4+ T-cells, resulting in the increase of the n-3:n-6 ratio. Following antigen-specific CD4+ T-cell activation by B-lymphoma cells pulsed with the ovalbumin 323-339 peptide, the formation of liquid-ordered mesodomains at the immunological synapse relative to the whole CD4+ T-cell, as assessed by Laurdan labelling, was increased (P< 0·05) in the FO-fed group. The FO diet also suppressed (P< 0·05) the co-localisation of PKCθ with ganglioside GM1 (monosialotetrahexosylganglioside), a marker for lipid rafts, which is consistent with previous observations. In contrast, the DHA diet down-regulated (P< 0·05) PKCθ signalling by moderately affecting the membrane liquid order at the immunological synapse, suggesting the potential contribution of the other major n-3 PUFA components of FO, including EPA.
Collapse
|
24
|
Hekmatdoost A, Wu X, Morampudi V, Innis SM, Jacobson K. Dietary oils modify the host immune response and colonic tissue damage following Citrobacter rodentium infection in mice. Am J Physiol Gastrointest Liver Physiol 2013; 304:G917-28. [PMID: 23518681 DOI: 10.1152/ajpgi.00292.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Inflammatory bowel disease is an intestinal inflammatory disorder of multifactorial origin, in which diets that favor high n-6 and low n-3 fatty acids have been implicated. The present study addressed whether dietary n-6 and n-3 fatty acids alter colonic mucosal response to Citrobacter rodentium (C. rodentium) infection. Mice were fed diets identical except for fatty acids, with an energy percentage of 15% 18:2n-6 and <0.06% 18:3n-3, 4.2% 18:2n-6 and 1.9% 18:3n-3, or 1.44% 20:5n-3, 4.9% 22:6n-3, 0.32% 18:2n-6, and 0.12% 18:3n-3 from safflower, canola, or fish oil, respectively for 3 wk before infection. Dietary oils had no effect on colonic C. rodentium growth but altered colon 20:4n-6/(20:5n-3+22:6n-3) with 9.40 ± 0.06, 1.94 ± 0.08, and 0.32 ± 0.03% in colon phosphatidylcholine and 3.82 ± 0.18, 1.14 ± 0.02, and 0.30 ± 0.02% in phosphatidylethanolamine of mice fed safflower, canola, or fish oil, respectively. At 10 days postinfection, histological damage, F4/80-positive macrophages, and myeloperoxidase-positive neutrophils in colonic mucosa were higher in infected mice fed safflower than fish oil. Colon gene transcripts for macrophage inflammatory protein 2, keratinocyte cytokine, and monocyte chemoattractant protein 1 expression were significantly higher in infected mice fed safflower than canola or fish oil; IFN-γ, IL-6, and IL-17A expression were significantly elevated in mice fed safflower rather than fish oil; and IL-10 was significantly higher in mice fed fish oil rather than canola or safflower oil. This study demonstrates that oils high in 18:2n-6 with minimal n-3 fatty acids exacerbate mucosal immune response, whereas oils high in n-3 fatty acids attenuate mucosal immune response to C. rodentium. These studies implicate dietary oils as environmental modifiers of intestinal inflammation in response to infection.
Collapse
Affiliation(s)
- Azita Hekmatdoost
- Div. of Gastroenterology, B.C. Children's Hospital, 4480 Oak St., Rm. K4-181, Vancouver, BC, Canada V6H 3V4
| | | | | | | | | |
Collapse
|
25
|
Chen W, Wang J, Huang Y. Effects of dietary n-6:n-3 polyunsaturated fatty acid ratio on cardiac antioxidative status, T-cell and cytokine mRNA expression in the thymus, and blood T lymphocyte subsets of broilers. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Al Hashmi S, Sadeghi B, Hassan Z, Abedi-Valugerdi M, Lindskog M, Hassan M. Omega-3 from fish oil augments GVHD through the enhancement of chemotherapy conditioning regimen and selective FoxP3 depletion. Bone Marrow Transplant 2012. [DOI: 10.1038/bmt.2012.227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
27
|
Dietary n-3 polyunsaturated fatty acids (PUFA) decrease obesity-associated Th17 cell-mediated inflammation during colitis. PLoS One 2012; 7:e49739. [PMID: 23166761 PMCID: PMC3500317 DOI: 10.1371/journal.pone.0049739] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/11/2012] [Indexed: 01/04/2023] Open
Abstract
Clinical and experimental evidence suggests that obesity-associated inflammation increases disease activity during colitis, attributed in part to the effects of Th17 cells. Using a model of concurrent obesity and colitis, we monitored changes in critical immune cell subsets and inflammatory biomarker expression in three key tissues: visceral adipose tissue, colon (local inflammatory site) and spleen (systemic inflammatory site), and we hypothesized that n-3 PUFA would reduce the percentage of inflammatory immune cell subsets and suppress inflammatory gene expression, thereby improving the disease phenotype. Obesity was induced in C57BL/6 mice by feeding a high fat (HF) diet (59.2% kcal) alone or an isocaloric HF diet supplemented with fish oil (HF-FO) for 12 weeks. Colitis was induced via a 2.5% trinitrobenzene sulfonic acid (TNBS) enema. The HF-FO diet improved the obese phenotype by reducing i) serum hormone concentrations (leptin and resistin), ii) adipose tissue mRNA expression of inflammatory cytokines (MCP-1, IFNγ, IL-6, IL17F and IL-21) and iii) total (F4/80⁺ CD11b⁺) and inflammatory adipose tissue M1 (F4/80⁺ CD11c⁺) macrophage content compared to HF (P<0.05). In addition, the HF-FO diet reduced both colitis-associated disease severity and colonic mRNA expression of the Th17 cell master transcription factor (RORγτ) and critical cytokines (IL-6, IL-17A, IL-17F, IL-21, IL-23 and IFNγ) versus HF (P<0.05). Compared to HF, the percentage of both splenic Th17 and Th1 cells were reduced by the HF-FO group (P<0.05). Under ex vivo polarizing conditions, the percentage of HF-FO derived CD4⁺ T cells that reached Th17 cell effector status was suppressed (P = 0.05). Collectively, these results indicate that n-3 PUFA suppress Th1/Th17 cells and inflammatory macrophage subsets and reconfigure the inflammatory gene expression profile in diverse tissue sites in obese mice following the induction of colitis.
Collapse
|
28
|
Monk JM, Jia Q, Callaway E, Weeks B, Alaniz RC, McMurray DN, Chapkin RS. Th17 cell accumulation is decreased during chronic experimental colitis by (n-3) PUFA in Fat-1 mice. J Nutr 2012; 142:117-24. [PMID: 22131549 PMCID: PMC3237233 DOI: 10.3945/jn.111.147058] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During colon inflammation, Th17 cells and immunosuppressive regulatory T cells (Treg) are thought to play promotive and preventative roles, respectively. Dietary (n-3) PUFA favorably modulate intestinal inflammation in part by downregulating T-cell activation and functionality. We used the Fat-1 mouse, a genetic model that synthesizes long-chain (n-3) PUFA de novo, to test the hypothesis that (n-3) PUFA protect against colonic inflammation by modulating the polarization of Treg and Th17 cells during colitis. Male and female wild-type (WT) and Fat-1 mice were administered dextran sodium sulfate (DSS) in the drinking water (2.5%) to induce acute (5 d DSS) or chronic (3 cycles DSS) colitis and the percentage of Treg and Th17 cells residing locally [colonic lamina propria (cLP)] and systemically (spleen) was determined by flow cytometry. The percentage of Treg in either tissue site was unaffected by genotype (P > 0.05); however, during chronic colitis, the percentage of Th17 cells residing in both the spleen and cLP was lower in Fat-1 mice compared to WT mice (P < 0.05). Colonic mucosal mRNA expression of critical Th17 cell cytokines and chemokine receptors (IL-17F, IL-21, and CCR6) were lower, whereas expression of the Th17 cell suppressive cytokine, IL-27, was greater in Fat-1 mice compared to WT mice during chronic colitis (P < 0.05). Moreover, colon histological scores were improved in Fat-1 mice (P < 0.05). Collectively, these results demonstrate for the first time, to our knowledge, that (n-3) PUFA can modulate the colonic mucosal microenvironment to suppress Th17 cell accumulation and inflammatory damage following the induction of chronic colitis.
Collapse
Affiliation(s)
- Jennifer M. Monk
- Program in Integrative Nutrition and Complex Diseases,Intercollegiate Faculty of Nutrition
| | - Qian Jia
- Program in Integrative Nutrition and Complex Diseases,Intercollegiate Faculty of Nutrition
| | - Evelyn Callaway
- Program in Integrative Nutrition and Complex Diseases,Intercollegiate Faculty of Nutrition
| | - Brad Weeks
- Department of Veterinary Pathobiology, and
| | - Robert C. Alaniz
- Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, Texas A&M University, College Station, TX
| | - David N. McMurray
- Program in Integrative Nutrition and Complex Diseases,Intercollegiate Faculty of Nutrition,Department of Microbial and Molecular Pathogenesis, Texas A&M University System Health Science Center, Texas A&M University, College Station, TX
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases,Intercollegiate Faculty of Nutrition,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Monk JM, Kim W, Callaway E, Turk HF, Foreman JE, Peters JM, He W, Weeks B, Alaniz RC, McMurray DN, Chapkin RS. Immunomodulatory action of dietary fish oil and targeted deletion of intestinal epithelial cell PPARδ in inflammation-induced colon carcinogenesis. Am J Physiol Gastrointest Liver Physiol 2012; 302:G153-67. [PMID: 21940900 PMCID: PMC3345959 DOI: 10.1152/ajpgi.00315.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR)-δ is highly expressed in colonic epithelial cells; however, the role of PPARδ ligands, such as fatty acids, in mucosal inflammation and malignant transformation has not been clarified. Recent evidence suggests that the anti-inflammatory/chemoprotective properties of fish oil (FO)-derived n-3 polyunsaturated fatty acids (PUFAs) may be partly mediated by PPARδ. Therefore, we assessed the role of PPARδ in modulating the effects of dietary n-3 PUFAs by targeted deletion of intestinal epithelial cell PPARδ (PPARδ(ΔIEpC)). Subsequently, we documented changes in colon tumorigenesis and the inflammatory microenvironment, i.e., local [mesenteric lymph node (MLN)] and systemic (spleen) T cell activation. Animals were fed chemopromotive [corn oil (CO)] or chemoprotective (FO) diets during the induction of chronic inflammation/carcinogenesis. Tumor incidence was similar in control and PPARδ(ΔIEpC) mice. FO reduced mucosal injury, tumor incidence, colonic STAT3 activation, and inflammatory cytokine gene expression, independent of PPARδ genotype. CD8(+) T cell recruitment into MLNs was suppressed in PPARδ(ΔIEpC) mice. Similarly, FO reduced CD8(+) T cell numbers in the MLN. Dietary FO independently modulated MLN CD4(+) T cell activation status by decreasing CD44 expression. CD11a expression by MLN CD4(+) T cells was downregulated in PPARδ(ΔIEpC) mice. Lastly, splenic CD62L expression was downregulated in PPARδ(ΔIEpC) CD4(+) and CD8(+) T cells. These data demonstrate that expression of intestinal epithelial cell PPARδ does not influence azoxymethane/dextran sodium sulfate-induced colon tumor incidence. Moreover, we provide new evidence that dietary n-3 PUFAs attenuate intestinal inflammation in an intestinal epithelial cell PPARδ-independent manner.
Collapse
Affiliation(s)
- Jennifer M. Monk
- 1Program in Integrative Nutrition and Complex Diseases, ,2Intercollegiate Faculty of Nutrition, and
| | - Wooki Kim
- 1Program in Integrative Nutrition and Complex Diseases, ,2Intercollegiate Faculty of Nutrition, and
| | - Evelyn Callaway
- 1Program in Integrative Nutrition and Complex Diseases, ,2Intercollegiate Faculty of Nutrition, and
| | - Harmony F. Turk
- 1Program in Integrative Nutrition and Complex Diseases, ,2Intercollegiate Faculty of Nutrition, and
| | - Jennifer E. Foreman
- 3Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania
| | - Jeffrey M. Peters
- 3Department of Veterinary and Biomedical Science and Center for Molecular Toxicology and Carcinogenesis, Pennsylvania State University, University Park, Pennsylvania
| | - Weimin He
- 4Institute of Biosciences and Technology and
| | - Brad Weeks
- 5Department of Veterinary Pathobiology, Texas A & M University,
| | - Robert C. Alaniz
- 6Department of Microbial and Molecular Pathogenesis, Texas A & M University System Health Science Center, College Station, Texas; and
| | - David N. McMurray
- 2Intercollegiate Faculty of Nutrition, and ,6Department of Microbial and Molecular Pathogenesis, Texas A & M University System Health Science Center, College Station, Texas; and
| | - Robert S. Chapkin
- 1Program in Integrative Nutrition and Complex Diseases, ,2Intercollegiate Faculty of Nutrition, and
| |
Collapse
|
30
|
Shaikh SR, Jolly CA, Chapkin RS. n-3 Polyunsaturated fatty acids exert immunomodulatory effects on lymphocytes by targeting plasma membrane molecular organization. Mol Aspects Med 2011; 33:46-54. [PMID: 22020145 DOI: 10.1016/j.mam.2011.10.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/04/2011] [Accepted: 10/09/2011] [Indexed: 01/26/2023]
Abstract
Fish oil, enriched in bioactive n-3 polyunsaturated fatty acids (PUFA), has therapeutic value for the treatment of inflammation-associated disorders. The effects of n-3 PUFAs are pleiotropic and complex; hence, an understanding of their cellular targets and molecular mechanisms of action remains incomplete. Here we focus on recent data indicating n-3 PUFAs exert immunosuppressive effects on the function of effector and regulatory CD4(+) T cells. In addition, we also present emerging evidence that n-3 PUFAs have immunomodulatory effects on B cells. We then focus on one multifaceted mechanism of n-3 PUFAs, which is the alteration of the biophysical and biochemical organization of the plasma membrane. This mechanism is central for downstream signaling, eicosanoid production, transcriptional regulation and cytokine secretion. We highlight recent work demonstrating n-3 PUFA acyl chains in the plasma membrane target the lateral organization of membrane signaling assemblies (i.e. lipid rafts or signaling networks) and de novo phospholipid biosynthesis. We conclude by proposing new functional and mechanistic questions in this area of research that will aid in the development of fish oil as adjuvant therapy for treating unresolved chronic inflammation.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA.
| | | | | |
Collapse
|
31
|
Abstract
Nutritional factors, as sources of luminal antigens, have been thought to be important factors in the immunopathogenesis of numerous gastrointestinal diseases. In some diseases, the role of the nutritional component is causal in the susceptible host. Such diseases include celiac disease, a common heritable chronic inflammatory condition of the small intestine induced by dietary wheat, rye and barley, in susceptible individuals. Specific HLA-DQ2 and HLA-DQ8 risk alleles are necessary, but not sufficient, for disease development. The well-defined role of HLA-DQ heterodimers encoded by these alleles is to present cereal peptides to CD4+ T cells, activating an inflammatory immune response in the intestine. Genome-wide association studies have been performed which identified the IL2-IL21 risk locus and other genes with immune functions and key roles in thymic T-cell selection. Another example for this group is Wilson's disease, an autosomal recessive disorder of copper metabolism caused by mutation of the ATP7B gene, resulting in a defect of biliary copper excretion and toxic accumulation in the body, especially in the liver, brain and cornea, resulting in hepatic and/or neurological symptoms. In other diseases, however, the association is less well established. In such endeavor, epidemiological observations may become a valuable part of the overall investigations aimed at identifying dietary factors, which are involved in the initiation and perpetuation of the specific disease. As an example, relationships between nutrition and colorectal cancer have been hypothesized early on (e.g. folate, calcium, vitamin D, red meat). Similarly, intake of certain diet constituents like fat, refined sugar, fruits, vegetables and fiber was reported to be associated with the expression of inflammatory bowel diseases. In addition, in children with active Crohn's disease, enteral nutrition was found to be equally effective as corticosteroids in induction of remission, with mucosal healing induced by downregulation of mucosal pro-inflammatory cytokine profiles in both the ileum and the colon after enteral nutrition. However, the particular effect of the consumption of each type of food remains questionable in most cases, at least in part because of insufficient data and serious methodological limitations (e.g. recall bias, heterogeneity between collected data, lack of correction for covariates, difficulties in double blinding).
Collapse
|
32
|
Yog R, Barhoumi R, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids suppress mitochondrial translocation to the immunologic synapse and modulate calcium signaling in T cells. THE JOURNAL OF IMMUNOLOGY 2010; 184:5865-73. [PMID: 20393134 DOI: 10.4049/jimmunol.0904102] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent studies indicate that the process of Ag presentation induces cytoskeleton-dependent mitochondrial redistribution to the immediate vicinity of the immunologic synapse (IS). This redistribution of mitochondria to the IS in T cells is necessary to maintain Ca(2+) influx and Th cell activation. Recently, we demonstrated that n-3 polyunsaturated fatty acids (PUFAs) suppress the localization and activation of signaling proteins at the IS. Therefore, we hypothesized that n-3 PUFAs suppress CD4(+) T cell mitochondrial translocation during the early stages of IS formation and downmodulate Ca(2+)-dependent Th cell activation. CD4(+) cells derived from fat-1 mice, a transgenic model that synthesizes n-3 PUFA from n-6 PUFA, were cocultured with anti-CD3-expressing hybridoma cells (145-2C11) for 15 min at 37 degrees C, and mitochondrial translocation to the IS was assessed by confocal microscopy. Fat-1 mice exhibited a significantly (p < 0.05) reduced percentage of T cells with mitochondria which translocated to the IS; fat-1 (30%) versus wild type control (82%). Regarding the effect on the mitochondrial-to-cytosolic Ca(2+) ratio, wild type cells showed significant increases at the IS (71%) and total cell (60%) within 30 min of IS formation. In contrast, fat-1 CD4(+) T cells remained at basal levels following the IS formation. A similar blunting of the mitochondrial-to-cytosolic Ca(2+) ratio was observed in wild type cells that were coincubated with inhibitors of the mitochondrial uniporter, RU360 or calcium release-activated Ca(2+) (CRAC) channels, BTP2. These observations provide evidence that n-3 PUFAs modulate Th cell activation by limiting mitochondrial translocation to the IS and reducing Ca(2+) entry.
Collapse
|
33
|
Kim W, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids--physiological relevance of dose. Prostaglandins Leukot Essent Fatty Acids 2010; 82:155-8. [PMID: 20188532 PMCID: PMC2875929 DOI: 10.1016/j.plefa.2010.02.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Indexed: 12/16/2022]
Abstract
n-3 polyunsaturated fatty acids (PUFA) are widely used for chemotheraphy/chemoprevention of chronic diseases. However, the molecular mechanism(s) by which the bioactive n-3 PUFA (eicosapentaenoic acid and docosahexaenoic acid) modulate effector pathways are not fully elucidated. Multiple experimental approaches, including use of animal models, cell lines, and human clinical trials, have been utilized to dissect the complex effectors. It is imperative to link these different experimental approaches together in order to interpret outcomes in the context of human physiology and pathophysiology. Unfortunately, the adoption of a broad array of model systems and a wide range of fatty acid exposures (i.e. doses) has made it difficult to interpret biological outcomes. Therefore, in this mini-review we discuss the impact of (a) molecular structure of bioactive fatty acids, (b) dose relevance relative to human consumption, (c) enrichment of fatty acids in sera and tissues following dietary intake, and (d) limitations of cell/tissue culture studies.
Collapse
Affiliation(s)
- Wooki Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843
- Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX 77843
| | - David N. McMurray
- Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX 77843
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843
- Department of Microbial & Molecular Pathogenesis, Texas A&M University Health Science Center, College Station, TX 77843
| | - Robert S. Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843
- Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX 77843
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843
- Vegetable & Fruit Improvement Center, Texas A&M University, College Station, TX 77843
- Address correspondence to this author at Dr. Robert S. Chapkin, Room 321, Kleberg Biotechnology Center, MS 2253, Texas A&M University, College Station TX 77843-2253, USA; Tel: +1-979-845-0419; Fax: +1-979-862-2378;
| |
Collapse
|
34
|
Kim W, Khan NA, McMurray DN, Prior IA, Wang N, Chapkin RS. Regulatory activity of polyunsaturated fatty acids in T-cell signaling. Prog Lipid Res 2010; 49:250-61. [PMID: 20176053 DOI: 10.1016/j.plipres.2010.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/06/2010] [Accepted: 01/19/2010] [Indexed: 12/25/2022]
Abstract
n-3 Polyunsaturated fatty acids (PUFA) are considered to be authentic immunosuppressors and appear to exert beneficial effects with respect to certain immune-mediated diseases. In addition to promoting T-helper 1 (Th1) cell to T-helper 2 (Th2) cell effector T-cell differentiation, n-3 PUFA may also exert anti-inflammatory actions by inducing apoptosis in Th1 cells. With respect to mechanisms of action, effects range from the modulation of membrane receptors to gene transcription via perturbation of a number of second messenger cascades. In this review, the putative targets of anti-inflammatory n-3 PUFA, activated during early and late events of T-cell activation will be discussed. Studies have demonstrated that these fatty acids alter plasma membrane micro-organization (lipid rafts) at the immunological synapse, the site where T-cells and antigen-presenting cells (APC) form a physical contact for antigen initiated T-cell signaling. In addition, the production of diacylglycerol and the activation of different isoforms of protein kinase C (PKC), mitogen-activated protein kinase (MAPK), calcium signaling, and nuclear translocation/activation of transcriptional factors, can be modulated by n-3 PUFA. Advantages and limitations of diverse methodologies to study the membrane lipid raft hypothesis, as well as apparent contradictions regarding the effect of n-3 PUFA on lipid rafts will be critically presented.
Collapse
Affiliation(s)
- Wooki Kim
- Program in Integrative Nutrition and Complex Diseases, Center for Environmental and Rural Health, Texas A&M University, USA
| | | | | | | | | | | |
Collapse
|
35
|
Transgenic mice enriched in omega-3 fatty acids are more susceptible to pulmonary tuberculosis: impaired resistance to tuberculosis in fat-1 mice. J Infect Dis 2010; 201:399-408. [PMID: 20053136 DOI: 10.1086/650344] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND. Besides their health benefits, dietary omega-3 fatty acids (n-3 PUFAs) can impair host resistance to intracellular pathogens. Previously, we and others have showed that n-3 PUFA-treated macrophages poorly control Mycobacterium tuberculosis infection in vitro. METHODS. Wild-type and fat-1 transgenic mice were infected with virulent H37Rv M. tuberculosis via the aerosol route. We evaluated bacteriological and histopathological changes in lungs, as well as differences in activation and antimycobacterial capacity in primary macrophages ex vivo. RESULTS. fat-1 mice were more susceptible to tuberculosis, as demonstrated by higher bacterial loads and less robust inflammatory responses in lungs. Macrophages obtained from fat-1 mice were more readily infected with M. tuberculosis in vitro, compared with wild-type macrophages. This impaired bacterial control in cells from fat-1 mice correlated with reduced proinflammatory cytokine secretion, impaired oxidative metabolism, and diminished M. tuberculosis-lysotracker colocalization within phagosomes. CONCLUSIONS. We showed that endogenous production of n-3 PUFAs in fat-1 mice increases their susceptibility to tuberculosis, which could be explained in part by diminished activation and antimycobacterial responses in cells from fat-1 mice. These data suggest that n-3 PUFA-supplemented diets might have a detrimental effect on immunity to M. tuberculosis and raise concerns regarding the safety of omega-3 dietary supplementation in humans.
Collapse
|
36
|
Rockett BD, Salameh M, Carraway K, Morrison K, Shaikh SR. n-3 PUFA improves fatty acid composition, prevents palmitate-induced apoptosis, and differentially modifies B cell cytokine secretion in vitro and ex vivo. J Lipid Res 2010; 51:1284-97. [PMID: 20071694 DOI: 10.1194/jlr.m000851] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
n-3 polyunsaturated fatty acids (PUFAs) modify T-cell activation, in part by remodeling lipid composition; however, the relationship between n-3 PUFA and B-cell activation is unknown. Here we tested this relationship in vitro and ex vivo by measuring upregulation of B-cell surface molecules, the percentage of cells activated, and cytokine secreted in response to lipopolysaccharide (LPS) activation. In vitro, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) improved the membrane n-6/n-3 PUFA ratio, and DHA lowered interleukin (IL)-6 secretion; overall, n-3 PUFAs did not suppress B-cell activation compared with BSA, oleate, or elaidate treatment. Palmitate treatment suppressed the percentage of B cells activated through lipoapoptosis, which was differentially prevented by cosupplementing cells with MUFAs and PUFAs. Ex vivo, we tested the hypothesis with mice fed a control or high-fat saturated, hydrogenated, MUFA or n-3 PUFA diets. n-3 PUFAs had no effect on the percentage of B cells activated. Unexpectedly, the n-3 PUFA diet increased B-cell CD69 surface expression, IL-6 and IFNgamma secretion, and it significantly increased body weight gain. Overall, we propose that changes in lipid composition with n-3 PUFA and suppression of lymphocyte activation is not universal. The study highlights that high-fat n-3 PUFA diets can promote pro-inflammatory responses, at least from one cell type.
Collapse
Affiliation(s)
- Benjamin Drew Rockett
- Department of Biochemistry and Molecular Biology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, 600 Moye Blvd, Brody 5S-18, Greenville, NC 27834, USA
| | | | | | | | | |
Collapse
|
37
|
Chapkin RS, Kim W, Lupton JR, McMurray DN. Dietary docosahexaenoic and eicosapentaenoic acid: emerging mediators of inflammation. Prostaglandins Leukot Essent Fatty Acids 2009; 81:187-91. [PMID: 19502020 PMCID: PMC2755221 DOI: 10.1016/j.plefa.2009.05.010] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The inflammatory response is designed to help fight and clear infection, remove harmful chemicals, and repair damaged tissue and organ systems. Although this process, in general, is protective, the failure to resolve the inflammation and return the target tissue to homeostasis can result in disease, including the promotion of cancer. A plethora of published literature supports the contention that dietary n-3 polyunsaturated fatty acids (PUFA), and eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) in particular, are important modulators of a host's inflammatory/immune responses. The following review describes a mechanistic model that may explain, in part, the pleiotropic anti-inflammatory and immunosuppressive properties of EPA and DHA. In this review, we focus on salient studies that address three overarching mechanisms of n-3 PUFA action: (i) modulation of nuclear receptor activation, i.e., nuclear factor-kappaB (NF-kappaB) suppression; (ii) suppression of arachidonic acid-cyclooxygenase-derived eicosanoids, primarily prostaglandin E(2)-dependent signaling; and (iii) alteration of the plasma membrane micro-organization (lipid rafts), particularly as it relates to the function of Toll-like receptors (TLRs), and T-lymphocyte signaling molecule recruitment to the immunological synapse (IS). We propose that lipid rafts may be targets for the development of n-3 PUFA-containing dietary bioactive agents to down-modulate inflammatory and immune responses and for the treatment of autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Robert S Chapkin
- Department of Nutrition and Food Science, Faculty of Nutrition, Kleberg Biotechnology Center, MS 2253, Texas A&M University, College Station, TX 77843-2253, USA.
| | | | | | | |
Collapse
|
38
|
Schwerbrock NMJ, Karlsson EA, Shi Q, Sheridan PA, Beck MA. Fish oil-fed mice have impaired resistance to influenza infection. J Nutr 2009; 139:1588-94. [PMID: 19549756 PMCID: PMC2709305 DOI: 10.3945/jn.109.108027] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dietary fish oils, rich in (n-3) PUFA, including eicosapentaenoic acid and docosahexaenoic acid, have been shown to have antiinflammatory properties. Although the antiinflammatory properties of fish oil may be beneficial during a chronic inflammatory illness, the same antiinflammatory properties can suppress the inflammatory responses necessary to combat acute viral infection. Given that (n-3) fatty acid-rich fish oil supplementation is on the rise and with the increasing threat of an influenza pandemic, we tested the effect of fish oil feeding for 2 wk on the immune response to influenza virus infection. Male C57BL/6 mice fed either a menhaden fish oil/corn oil diet (4 g fish oil:1 g corn oil, wt:wt at 5 g/100 g diet) or a control corn oil diet were infected with influenza A/PuertoRico/8/34 and analyzed for lung pathology and immune function. Although fish oil-fed mice had lower lung inflammation compared with controls, fish oil feeding also resulted in a 40% higher mortality rate, a 70% higher lung viral load at d 7 post infection, and a prolonged recovery period following infection. Although splenic natural killer (NK) cell activity was suppressed in fish oil-fed mice, lung NK activity was not affected. Additionally, lungs of infected fish oil-fed mice had significantly fewer CD8+ T cells and decreased mRNA expression of macrophage inflammatory protein-1-alpha, tumor necrosis factor-alpha, and interleukin-6. These results suggest that the antiinflammatory properties of fish oil feeding can alter the immune response to influenza infection, resulting in increased morbidity and mortality.
Collapse
Affiliation(s)
- Nicole M. J. Schwerbrock
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Erik A. Karlsson
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Qing Shi
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Patricia A. Sheridan
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Melinda A. Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Kim W, Fan YY, Smith R, Patil B, Jayaprakasha GK, McMurray DN, Chapkin RS. Dietary curcumin and limonin suppress CD4+ T-cell proliferation and interleukin-2 production in mice. J Nutr 2009; 139:1042-8. [PMID: 19321585 PMCID: PMC2714386 DOI: 10.3945/jn.108.102772] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/16/2009] [Accepted: 02/12/2009] [Indexed: 11/14/2022] Open
Abstract
Phytochemicals may reduce chronic inflammation and cancer risk in part by modulating T-cell nuclear factor-kappaB (NF-kappaB) activation. Therefore, we examined the effects of curcumin (Cur) and limonin (Lim) feeding on NF-kappaB-dependent CD4(+) T-cell proliferation. DO11.10 transgenic mice (n = 5-7) were fed diets containing 1% Cur or 0.02% Lim combined with either (n-6) PUFA [5% corn oil (CO)] or (n-3) PUFA [4% fish oil+1% corn oil (FO)] for 2 wk, followed by splenic CD4(+) T-cell isolation and stimulation with ovalbumin peptide 323-339 (OVA) and antigen-presenting cells from mice fed a conventional nonpurified rodent diet. Both Cur and Lim diets suppressed (P < 0.05) NF-kappaB p65 nuclear translocation in activated CD4(+) T-cells. In contrast, activator protein-1 (c-Jun) and nuclear factor of activated T-cells c1 were not affected compared with the CO control diet (no Cur or Lim). CD4(+) T-cell proliferation in response to either mitogenic anti-CD3/28 monoclonal antibodies (mAb) or antigenic stimulation by OVA was also suppressed (P < 0.05) by Cur as assessed by carboxyfluorescein succinimidyl ester staining. In contrast, interleukin-2 production was not directly associated with NF-kappaB status. Interestingly, dietary combination with FO enhanced the suppressive effects (P < 0.05) of Cur or Lim with respect to CD4(+) T-cell proliferation in response to anti-CD3/28 mAb. These results suggest that combination chemotherapy (FO+Cur or Lim) may favorably modulate CD4(+) T-cell-mediated inflammation.
Collapse
Affiliation(s)
- Wooki Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Kim W, McMurray DN, Chapkin RS. Chemotherapeutic Properties of n-3 Polyunsaturated Fatty Acids - Old Concepts and New Insights. ACTA ACUST UNITED AC 2009; 9:38-44. [PMID: 19823600 DOI: 10.2174/187152209788009841] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the past several decades, data from both experimental animal studies and human clinical trials have shown that dietary n-3 polyunsaturated fatty acids (PUFA) exhibit anti-inflammatory bioactive properties, compared to n-6 PUFA. Collectively, these studies have identified multiple mechanisms by which n-3 PUFA affect immune cell responses. In this review, we discuss the putative targets of anti-inflammatory n-3 PUFA, specifically, cytokine production, antagonism of n-6 PUFA metabolism, binding to nuclear receptors as ligands, and the alteration of signaling protein acylation. In addition, we investigate the effect of n-3 PUFA on the coalescence of lipid rafts, specialized signaling platforms in the plasma membrane.
Collapse
Affiliation(s)
- Wooki Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
41
|
Kim W, Fan YY, Barhoumi R, Smith R, McMurray DN, Chapkin RS. n-3 polyunsaturated fatty acids suppress the localization and activation of signaling proteins at the immunological synapse in murine CD4+ T cells by affecting lipid raft formation. THE JOURNAL OF IMMUNOLOGY 2009; 181:6236-43. [PMID: 18941214 DOI: 10.4049/jimmunol.181.9.6236] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The molecular properties of immunosuppressive n-3 polyunsaturated fatty acids (PUFA) have not been fully elucidated. Using CD4(+) T cells from wild-type control and fat-1 transgenic mice (enriched in n-3 PUFA), we show that membrane raft accumulation assessed by Laurdan (6-dodecanoyl-2-dimethyl aminonaphthalene) labeling was enhanced in fat-1 cells following immunological synapse (IS) formation by CD3-specific Ab expressing hybridoma cells. However, the localization of protein kinase Ctheta, phospholipase Cgamma-1, and F-actin into the IS was suppressed. In addition, both the phosphorylation status of phospholipase Cgamma-1 at the IS and cell proliferation as assessed by CFSE labeling and [(3)H]thymidine incorporation were suppressed in fat-1 cells. These data imply that lipid rafts may be targets for the development of dietary agents for the treatment of autoimmune and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Wooki Kim
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | |
Collapse
|
42
|
Fan YY, Kim W, Callaway E, Smith R, Jia Q, Zhou L, McMurray DN, Chapkin RS. fat-1 transgene expression prevents cell culture-induced loss of membrane n-3 fatty acids in activated CD4+ T-cells. Prostaglandins Leukot Essent Fatty Acids 2008; 79:209-14. [PMID: 18977126 PMCID: PMC2718534 DOI: 10.1016/j.plefa.2008.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/09/2008] [Accepted: 09/11/2008] [Indexed: 12/16/2022]
Abstract
In order to evaluate the effects of fatty acids on immune cell membrane structure and function, it is often necessary to maintain cells in culture. However, cell culture conditions typically reverse alterations in polyunsaturated fatty acid (PUFA) composition achieved by dietary lipid manipulation. Therefore, we hypothesized that T-cells from transgenic mice expressing the Caenorhabditis elegans n-3 desaturase (fat-1) gene would be resistant to the culture-induced loss of n-3 PUFA and, therefore, obviate the need to incorporate fatty acids or homologous serum into the medium. CD4+ T-cells were isolated from (i) control wild type (WT) mice fed a safflower oil-n-6 PUFA enriched diet (SAF) devoid of n-3 PUFA, (ii) fat-1 transgenic mice (enriched with endogenous n-3 PUFA) fed a SAF diet, or (iii) WT mice fed a fish oil (FO) based diet enriched in n-3 PUFA. T-cell phospholipids isolated from WT mice fed FO diet (enriched in n-3 PUFA) and fat-1 transgenic mice fed a SAF diet (enriched in n-6 PUFA) were both enriched in n-3 PUFA. As expected, the mol% levels of both n-3 and n-6 PUFA were decreased in cultures of CD4+ T-cells from FO-fed WT mice after 3d in culture. In contrast, the expression of n-3 desaturase prevented the culture-induced decrease of n-3 PUFA in CD4+ T-cells from the transgenic mice. Carboxyfluorescein succinidyl ester (CFSE) -labeled CD4+ T-cells from fat-1/SAF vs. WT/SAF mice stimulated with anti-CD3 and anti-CD28 for 3d, exhibited a reduced (P<0.05) number of cell divisions. We conclude that fat-1-containing CD4+ T-cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty acid composition which is resistant to conventional cell culture-induced depletion.
Collapse
Affiliation(s)
- Yang-Yi Fan
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
- Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX, USA
| | - Wooki Kim
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
- Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Evelyn Callaway
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Roger Smith
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Qian Jia
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
- Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, USA
| | - David N. McMurray
- Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX, USA
- Department of Microbial & Molecular Pathogenesis, Texas A&M University Health Science Center, College Station, TX, USA
| | - Robert S. Chapkin
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
- Intercollegiate Faculty of Nutrition, Texas A&M University, College Station, TX, USA
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX, USA
- Corresponding author at: Department of Nutrition and Food Science, Center for Environmental and Rural Health, Kleberg Biotechnology Center, MS 2253, Texas A&M University, College Station, TX 77843-2253, USA. Tel.: +1979 845 0419; fax: +1979 862 2378. E-mail address: (R.S. Chapkin)
| |
Collapse
|
43
|
Dietary fish oil decreases secretion of T helper (Th) 1-type cytokines by a direct effect on murine splenic T cells but enhances secretion of a Th2-type cytokine by an effect on accessory cells. Br J Nutr 2008; 101:1040-6. [DOI: 10.1017/s0007114508048290] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dietary fish oil is considered to have anti-inflammatory effects based primarily on its effects on T-cell proliferation and IL-2 secretion. Its effects on the secretion of T helper (Th) 1-type cytokines vary and few studies have examined its effects on the secretion of Th2-type cytokines. In the present study, we examined the effects of dietary fish oil on the secretion of Th1 and Th2-type cytokines by splenocytes and the mechanism by which dietary fish oil affects Th2-type cytokine secretion. Mice were fed diets supplemented with 18 % fish oil (w/w) +2 % maize oil or 20 % maize oil for 6 weeks. Spleen cells, isolated splenic T cells and accessory cells (splenocytes depleted of T cells) were stimulated with anti-CD3/anti-CD28. The secretion of interferon (IFN)-γ, TNF-α, IL-4 and IL-10 was measured by ELISA. Dietary fish oil decreased the secretion of IFN-γ and TNF-α by total splenocytes and isolated T cells. In contrast, dietary fish oil increased the secretion of IL-4 by total splenocytes but had no effect on IL-4 secretion by isolated T cells. When isolated T cells were cultured with CD11b+cells (mainly macrophages), cells from mice fed the fish oil diet secreted more IL-4 than cells from mice fed the maize oil diet. These results demonstrate that dietary fish oil directs cytokine secretion by splenocytes towards a Th2 phenotype and that the effects of dietary fish oil on the secretion of a Th2-type cytokine are mediated by its effect on CD11b+accessory cells.
Collapse
|
44
|
Jia Q, Lupton JR, Smith R, Weeks BR, Callaway E, Davidson LA, Kim W, Fan YY, Yang P, Newman RA, Kang JX, McMurray DN, Chapkin RS. Reduced colitis-associated colon cancer in Fat-1 (n-3 fatty acid desaturase) transgenic mice. Cancer Res 2008; 68:3985-91. [PMID: 18483285 DOI: 10.1158/0008-5472.can-07-6251] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioactive food components containing n-3 polyunsaturated fatty acids (PUFA) modulate multiple determinants that link inflammation to cancer initiation and progression. Therefore, in this study, fat-1 transgenic mice, which convert endogenous n-6 PUFA to n-3 PUFA in multiple tissues, were injected with azoxymethane followed by three cycles of dextran sodium sulfate (DSS) to induce colitis-associated cancer. Fat-1 mice exhibited a reduced number of colonic adenocarcinomas per mouse (1.05 +/- 0.29 versus 2.12 +/- 0.51, P = 0.033), elevated apoptosis (P = 0.03), and a decrease in n-6 PUFA-derived eicosanoids, compared with wild-type (wt) mice. To determine whether the chemoprotective effects of n-3 PUFA could be attributed to its pleiotropic anti-inflammatory properties, colonic inflammation and injury scores were evaluated 5 days after DSS exposure followed by either a 3-day or 2-week recovery period. There was no effect of n-3 PUFA at 3 days. However, following a 2-week recovery period, colonic inflammation and ulceration scores returned to pretreatment levels compared with 3-day recovery only in fat-1 mice. For the purpose of examining the specific reactivity of lymphoid elements in the intestine, CD3(+) T cells, CD4(+) T helper cells, and macrophages from colonic lamina propria were quantified. Comparison of 3-day versus 2-week recovery time points revealed that fat-1 mice exhibited decreased (P < 0.05) CD3(+), CD4(+) T helper, and macrophage cell numbers per colon as compared with wt mice. These results suggest that the antitumorigenic effect of n-3 PUFA may be mediated, in part, via its anti-inflammatory properties.
Collapse
Affiliation(s)
- Qian Jia
- Department of Nutrition and Food Science, Intercollegiate Faculty of Nutrition, Texas A&M University, Houston, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chang HH, Chen CS, Lin JY. Dietary Perilla Oil Inhibits Proinflammatory Cytokine Production in the Bronchoalveolar Lavage Fluid of Ovalbumin-Challenged Mice. Lipids 2008; 43:499-506. [DOI: 10.1007/s11745-008-3171-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/02/2008] [Indexed: 01/10/2023]
|
46
|
Abstract
PURPOSE OF REVIEW Nutrition plays a significant role in the pathogenesis and treatment of the two major forms of inflammatory bowel disease: Crohn's disease and ulcerative colitis. In addition, patients with inflammatory bowel disease are often found to have nutrient deficiencies at the time of diagnosis, whereas others develop features of malnutrition over the course of their illness. Therefore, an understanding of the relationship between nutrients and inflammatory bowel disease is important if these patients are to receive optimal care. RECENT FINDINGS Epidemiologic and basic research has helped to shed light on the interaction between diet and the pathogenesis of inflammatory bowel disease. Numerous clinical trials utilizing various types of lipids, including fish oil and short chain fatty acids, suggest that fats play an important role in the inflammatory response that characterizes inflammatory bowel disease. Vitamins and other micronutrients involved in nutrient metabolism and modulation of oxidative stress are also considered in this review. SUMMARY This update discusses nutritional issues that can be used to help prevent and treat nutrient deficiencies and ameliorate disease activity in individuals with inflammatory bowel disease.
Collapse
Affiliation(s)
- Razvi Razack
- Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA
| | | |
Collapse
|
47
|
Chapkin RS, Davidson LA, Ly L, Weeks BR, Lupton JR, McMurray DN. Immunomodulatory effects of (n-3) fatty acids: putative link to inflammation and colon cancer. J Nutr 2007; 137:200S-204S. [PMID: 17182826 DOI: 10.1093/jn/137.1.200s] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic inflammation and colorectal cancer are closely linked. Although the overall mechanisms of inflammation-associated gastrointestinal carcinogenesis are complex, it is clear that antiinflammatory therapy is efficacious against neoplastic progression and malignant conversion. From a dietary perspective, fish oil containing (n-3) polyunsaturated fatty acids (PUFAs) has antiinflammatory properties, but for years the mechanism has remained obscure. Of relevance to the immune system in the intestine, we showed that (n-3) PUFA feeding alters the balance between CD4+ T-helper (Th1 and Th2) subsets by directly suppressing Th1 cell development (i.e., clonal expansion). This is noteworthy because Th1 cells mediate inflammatory diseases and resistance to intracellular pathogens or allergic hypersensitivity, and Th2 cells mediate resistance to extracellular pathogens. Therefore, any changes induced by (n-3) PUFAs in T-cell subset balance and function are important because the outcome is expected to suppress the development of autoimmune diseases and possibly the occurrence of colon cancer. Precisely how the immunomodulatory effects of (n-3) PUFAs influence inflammation-associated colonic tumor development is the subject of an ongoing investigation.
Collapse
Affiliation(s)
- Robert S Chapkin
- Faculty of Nutrition, Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|