1
|
Julio T, Fenerich BA, Halpern G, Carrera-Bastos P, Schor E, Kopelman A. The effects of oral nutritional supplements on endometriosis-related pain: A narrative review of clinical studies. J Gynecol Obstet Hum Reprod 2024; 53:102830. [PMID: 39067786 DOI: 10.1016/j.jogoh.2024.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Endometriosis is a condition that can cause significant pain and discomfort for women, and the clinical and surgical treatments available have variable efficacy and can have adverse effects. These drawbacks often lead to poor adherence and therapeutic failure. Consequently, there has been increasing interest in the use of nutritional supplements as an adjuvant therapy for endometriosis. To facilitate clinical decision-making in managing women with endometriosis, a narrative review of clinical studies was conducted to investigate the effects of oral nutritional supplements on endometriosis-related pain. A literature search of the English-language PubMed/MEDLINE database was performed using appropriate keywords to identify clinical studies involving oral nutritional supplements and reporting on endometriosis-related pain. This narrative review included 20 studies published between 2013 and 2023, comprising 12 randomized controlled trials, six non-comparative trials, and two observational studies. The studies investigated the effects of various nutritional supplements on endometriosis-related pain, including vitamins, fatty acids, probiotics, medicinal plants, and bioactive compounds. A significant decrease in endometriosis-related pain was found in three out of five studies on vitamins, four out of six studies on fatty acids, one study on probiotics, two studies on medicinal plants, and five out of six studies on bioactive compounds. These nutritional supplements exhibited diverse biological activities, such as anti-inflammatory, antioxidant, antiproliferative, and antiangiogenic effects, all of which are relevant for managing endometriosis. These findings suggest that oral nutritional supplements could be included as part of a multidisciplinary treatment for endometriosis to decrease pain and enhance overall medical treatment.
Collapse
Affiliation(s)
- Tamiris Julio
- Division of Nutrition, Institute of Health Sciences, Paulista University, Ribeirão Preto, São Paulo, Brazil; Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.
| | - Bruna Alves Fenerich
- Division of Nutrition, Institute of Health Sciences, Paulista University, Ribeirão Preto, São Paulo, Brazil
| | - Gabriela Halpern
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro Carrera-Bastos
- Center for Primary Health Care Research, Department of Clinical Sciences, Lund University, Malmö, Sweden; Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain; Centro de Estudios Avanzados en Nutrición (CEAN), Cádiz, Spain
| | - Eduardo Schor
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexander Kopelman
- Department of Gynecology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Debler RA, Gallegos PL, Ojeda AC, Perttula AM, Lucio A, Chapkin RS, Safe S, Eitan S. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces depression-like phenotype. Neurotoxicology 2024; 103:71-77. [PMID: 38838945 PMCID: PMC11288769 DOI: 10.1016/j.neuro.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The etiology of major depressive disorder (MDD) remains poorly understood. Our previous studies suggest a role for the aryl hydrocarbon receptor (AhR) in depression. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a toxic environmental contaminant, with a high AhR binding affinity, and an established benchmark for assessing AhR activity. Therefore, this study examined the effect of TCDD on depression-like behaviors. Female mice were fed standard chow or a high-fat diet (HFD) for 11 weeks, and their weight was recorded. Subsequently, they were tested for baseline sucrose preference and splash test grooming. Then, TCDD (0.1 µg/kg/day) or vehicle was administered orally for 28 days, and mice were examined for their sucrose preference and performances in the splash test, forced swim test (FST), and Morris water maze (MWM) task. TCDD significantly decreased sucrose preference, increased FST immobility time, and decreased groom time in chow-fed mice. HFD itself significantly reduced sucrose preference. However, TCDD significantly increased FST immobility time and decreased groom time in HFD-fed mice. A small decrease in bodyweight was observed only at the fourth week of daily TCDD administration in chow-fed mice, and no significant effects of TCDD on bodyweights were observed in HFD-fed mice. TCDD did not have a significant effect on spatial learning in the MWM. Thus, this study demonstrated that TCDD induces a depression-like state, and the effects were not due to gross lethal toxicity. This study further suggests that more studies should examine a possible role for AhR and AhR-active environmental pollutants in precipitating or worsening MDD.
Collapse
Affiliation(s)
- Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Paula L Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Alexandra C Ojeda
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Andrea M Perttula
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Ashley Lucio
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA.
| |
Collapse
|
3
|
Guzmán EA, Peterson TA, Wright AE. The Marine Natural Compound Dragmacidin D Selectively Induces Apoptosis in Triple-Negative Breast Cancer Spheroids. Mar Drugs 2023; 21:642. [PMID: 38132962 PMCID: PMC10871089 DOI: 10.3390/md21120642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer cells grown in 3D spheroid cultures are considered more predictive for clinical efficacy. The marine natural product dragmacidin D induces apoptosis in MDA-MB-231 and MDA-MB-468 triple-negative breast cancer (TNBC) spheroids within 24 h of treatment while showing no cytotoxicity against the same cells grown in monolayers and treated for 72 h. The IC50 for cytotoxicity based on caspase 3/7 cleavage in the spheroid assay was 8 ± 1 µM in MDA-MB-231 cells and 16 ± 0.6 µM in MDA-MB-468 cells at 24 h. No cytotoxicity was seen at all in 2D, even at the highest concentration tested. Thus, the IC50 for cytotoxicity in the MTT assay (2D) in these cells was found to be >75 µM at 72 h. Dragmacidin D exhibited synergy when used in conjunction with paclitaxel, a current treatment for TNBC. Studies into the signaling changes using a reverse-phase protein array showed that treatment with dragmacidin D caused significant decreases in histones. Differential protein expression was used to hypothesize that its potential mechanism of action involves acting as a protein synthesis inhibitor or a ribonucleotide reductase inhibitor. Further testing is necessary to validate this hypothesis. Dragmacidin D also caused a slight decrease in an invasion assay in the MDA-MB-231 cells, although this failed to be statistically significant. Dragmacidin D shows intriguing selectivity for spheroids and has the potential to be a treatment option for triple-negative breast cancer, which merits further research into understanding this activity.
Collapse
Affiliation(s)
- Esther A. Guzmán
- Marine Biomedical and Biotechnology Research, Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA; (T.A.P.); (A.E.W.)
| | | | | |
Collapse
|
4
|
Debler RA, Madison CA, Hillbrick L, Gallegos P, Safe S, Chapkin RS, Eitan S. Selective aryl hydrocarbon receptor modulators can act as antidepressants in obese female mice. J Affect Disord 2023; 333:409-419. [PMID: 37084978 PMCID: PMC10561895 DOI: 10.1016/j.jad.2023.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Obese females are more likely to suffer from depression and are also more likely to be resistant to current medications. This study examined the potential antidepressant-like effects of 1,4-dihydroxy-2-napthoic acid (DHNA), a selective aryl hydrocarbon receptor modulator (SAhRM), in obese female mice. METHODS Obesity was established by feeding C57BL/6N female mice a high fat diet (HFD) for 9-10 weeks. Subsequently, mice were subjected to unpredictable chronic mild stress (UCMS) or remained unstressed. Daily administration of vehicle or 20 mg/kg DHNA began three weeks prior or on the third week of UCMS. Mice were examined for depression-like behaviors (sucrose preference, forced swim test (FST), splash and tape groom tests), anxiety (open-field test, light/dark test, novelty-induced hypophagia), and cognition (object location recognition, novel object recognition, Morris water maze). RESULTS UCMS did not alter, and DHNA slightly increased, weight gain in HFD-fed females. HFD decreased sucrose preference, increased FST immobility time, but did not alter splash and tape tests' grooming time. UCMS did not have additional effects on sucrose preference. UCMS further increased FST immobility time and decreased splash and tape tests' grooming time; these effects were prevented and reversed by DHNA treatment. HFD did not affect behaviors in the cognitive tests. UCMS impaired spatial learning; this effect was not prevented nor reversed by DHNA. CONCLUSIONS DHNA protected against UCMS-induced depression-like behaviors in HFD-fed female mice. DHNA neither improved nor worsened UCMS-induced impairment of spatial learning. Our findings indicate that DHNA has high potential to act as an antidepressant in obese females.
Collapse
Affiliation(s)
- Roanna A Debler
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Caitlin A Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Paula Gallegos
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
5
|
Amarakoon D, Lee WJ, Tamia G, Lee SH. Indole-3-Carbinol: Occurrence, Health-Beneficial Properties, and Cellular/Molecular Mechanisms. Annu Rev Food Sci Technol 2023; 14:347-366. [PMID: 36972159 DOI: 10.1146/annurev-food-060721-025531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Indole-3-carbinol (I3C) is a bioactive phytochemical abundant in cruciferous vegetables. One of its main in vivo metabolites is 3,3'-diindolylmethane (DIM), formed by the condensation of two molecules of I3C. Both I3C and DIM alter multiple signaling pathways and related molecules controlling diverse cellular events, including oxidation, inflammation, proliferation, differentiation, apoptosis, angiogenesis, and immunity. There is a growing body of evidence from both in vitro and in vivo models that these compounds possess strong potential to prevent several forms of chronic disease such as inflammation, obesity, diabetes, cardiovascular disease, cancer, hypertension, neurodegenerative diseases, and osteoporosis. This article reviews current knowledge of the occurrence of I3C in nature and foods, along with the beneficial effects of I3C and DIM concerning prevention and treatment of human chronic diseases, focusing on preclinical studies and their mechanisms of action at cellular and molecular levels.
Collapse
Affiliation(s)
- Darshika Amarakoon
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Wu-Joo Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Gillian Tamia
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
6
|
Sonowal R, Swimm AI, Cingolani F, Parulekar N, Cleverley TL, Sahoo A, Ranawade A, Chaudhuri D, Mocarski ES, Koehler H, Nitsche K, Mesiano S, Kalman D. A microbiota and dietary metabolite integrates DNA repair and cell death to regulate embryo viability and aneuploidy during aging. SCIENCE ADVANCES 2023; 9:eade8653. [PMID: 36827370 PMCID: PMC9956122 DOI: 10.1126/sciadv.ade8653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
During aging, environmental stressors and mutations along with reduced DNA repair cause germ cell aneuploidy and genome instability, which limits fertility and embryo development. Benevolent commensal microbiota and dietary plants secrete indoles, which improve healthspan and reproductive success, suggesting regulation of germ cell quality. We show that indoles prevent aneuploidy and promote DNA repair and embryo viability, which depends on age and genotoxic stress levels and affects embryo quality across generations. In young animals or with low doses of radiation, indoles promote DNA repair and embryo viability; however, in older animals or with high doses of radiation, indoles promote death of the embryo. These studies reveal a previously unknown quality control mechanism by which indole integrates DNA repair and cell death responses to preclude germ cell aneuploidy and ensure transgenerational genome integrity. Such regulation affects healthy aging, reproductive senescence, cancer, and the evolution of genetic diversity in invertebrates and vertebrates.
Collapse
Affiliation(s)
- Robert Sonowal
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyson I. Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Francesca Cingolani
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Noyonika Parulekar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Tesia L. Cleverley
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayush Ranawade
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Debalina Chaudhuri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward S. Mocarski
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Heather Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Karolina Nitsche
- Mouse Transgenic and Gene Targeting Core, Emory University, Atlanta, GA, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Tang H, Qin K, Wang A, Li S, Fang S, Gao W, Lu M, Huang W, Zhang H, Yin Z. 3,3'-diindolylmethane inhibits LPS-induced human chondrocytes apoptosis and extracellular matrix degradation by activating PI3K-Akt-mTOR-mediated autophagy. Front Pharmacol 2022; 13:999851. [PMID: 36438802 PMCID: PMC9684728 DOI: 10.3389/fphar.2022.999851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by articular cartilage destruction. The pathological mechanisms are complex; in particular, inflammation, autophagy, and apoptosis are often involved. 3,3-Diindolylmethane (DIM), a phytoconstituent extracted from cruciferous vegetables, has various effects such as anti-inflammatory, antioxidant and anti-apoptotic. However, the effects of DIM on osteoarthritic chondrocytes remain undetermined. In this study, we simulated a lipopolysaccharide (LPS)-induced osteoarthritis model in human primary chondrocytes. We found that LPS stimulation significantly inhibited autophagy, induced chondrocyte apoptosis and extracellular matrix (ECM) degradation, which could be ameliorated by DIM. DIM inhibited the expression of a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5), matrix metalloproteinase 13 (MMP13), cleaved caspase-3, Bax, and p62, and increased the expression level of collagen II, aggrecan, Bcl-2, light chain 3 Ⅱ (LC3 Ⅱ), and beclin-1. Mechanistic studies showed that DIM increased chondrocyte autophagy levels by inhibiting the activation of PI3K/AKT/mTOR pathway. In mice destabilization of the medial meniscus (DMM) model, immunohistochemical analysis showed that DIM inhibited the expression of p-PI3K and cleaved caspase-3, increased the expression of LC3 Ⅱ. Furthermore, DIM relieved joint cartilage degeneration. In conclusion, our findings demonstrate for the first time that DIM inhibits LPS-induced chondrocyte apoptosis and ECM degradation by regulating the PI3K/AKT/mTOR-autophagy axis and delays OA progression in vivo.
Collapse
Affiliation(s)
- Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Kunpeng Qin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Anquan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sheng Fang
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei, China
| | - Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Bacil GP, Cogliati B, Cardoso DR, Barbisan LF, Romualdo GR. Are isothiocyanates and polyphenols from Brassicaceae vegetables emerging as preventive/therapeutic strategies for NAFLD? The landscape of recent preclinical findings. Food Funct 2022; 13:8348-8362. [PMID: 35899794 DOI: 10.1039/d2fo01488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a lipid impairment-related chronic metabolic disease that affects almost 25% of the worldwide population and has become the leading cause of liver transplantation in the United States of America (USA). NAFLD may progress from simple hepatic steatosis (HS) to nonalcoholic steatohepatitis (NASH), which occurs simultaneously in an inflammatory and fibrotic microenvironment and affects approximately 5% of the global population. Recently, NASH has been suggested to be a relevant driver in progressive liver cirrhosis and a population-attributable factor in hepatocellular carcinoma patients. Moreover, predictions show that NAFLD-related annual health costs in the USA have reached ∼$100 bi., but effective therapies are still scarce. Thus, new preventative strategies for this hepatic disease urgently need to be developed. The Brassicaceae vegetable family includes almost 350 genera and 3500 species and these are one of the main types of vegetables harvested and produced worldwide. These vegetables are well-known sources of glucobrassicin-derivative molecules, such as isothiocyanates and phenolic compounds, which have shown antioxidant and antilipogenic effects in preclinical NAFLD data. In this review, we gathered prominent evidence of the in vivo and in vitro effects of these vegetable-derived nutraceutical compounds on the gut-liver-adipose axis, which is a well-known regulator of NAFLD and may represent a new strategy for disease control.
Collapse
Affiliation(s)
- Gabriel P Bacil
- São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Botucatu, SP, Brazil.
| | - Bruno Cogliati
- University of São Paulo (USP), School of Veterinary and Animal Science, Department of Pathology, São Paulo, SP, Brazil
| | - Daniel R Cardoso
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), São Carlos, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Department of Structural and Functional Biology, SP, Brazil
| | - Guilherme R Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Department of Pathology, Botucatu, SP, Brazil. .,São Paulo State University (UNESP), Department of Structural and Functional Biology, SP, Brazil
| |
Collapse
|
9
|
Madison CA, Kuempel J, Albrecht GL, Hillbrick L, Jayaraman A, Safe S, Chapkin RS, Eitan S. 3,3'-Diindolylmethane and 1,4-dihydroxy-2-naphthoic acid prevent chronic mild stress induced depressive-like behaviors in female mice. J Affect Disord 2022; 309:201-210. [PMID: 35461819 PMCID: PMC9153281 DOI: 10.1016/j.jad.2022.04.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/06/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Current pharmaceutical treatments for depression are sometimes ineffective and may have unwanted side effects that interfere with patient compliance. This study examined the potential antidepressant-like effects of dietary- and microbial-derived aryl hydrocarbon receptor (AhR) ligands, 3,3'-diindolylmethane (DIM) and 1,4-dihydroxy-2-naphthoic acid (1,4-DHNA). METHODS Female C57BL/6 mice were subjected to unpredictable chronic mild stress (UCMS) or were unstressed. For three weeks prior to UCMS mice were fed daily with vehicle or 20 mg/kg DIM, 1,4-DHNA or AhR-inactive isomer 3,7-DHNA; another group was subjected to two weeks UCMS before ligand administration began. Mice were examined for anhedonia-like behavior as measured by the sucrose preference test. Additionally, anxiety levels of the mice were examined before UCMS and ligand administration began and at the end in the open field, light/dark, elevated plus maze, novelty-induced hypophagia, and marble burying tests. At the end of the experiment they were also examined in the Morris water maze (MWM) task. RESULTS Both DIM and 1,4-DHNA, but not 3,7-DHNA, successfully prevented and reversed UCMS-induced anhedonia-like behavior. Furthermore, both DIM and DHNA had little to no effect on anxiety levels and did not induce spatial learning deficits. LIMITATIONS Additional studies are required to determine to what degree the antidepressant-like effects of DIM and 1,4-DHNA can be attributed to their activities as AhR ligands. CONCLUSIONS Our findings indicate that dietary and microbial-derived AhR ligands may have clinical applications as potential antidepressants. Future studies are necessary to elucidate the role of AhR in depression-like states and the underlying mechanisms of action.
Collapse
Affiliation(s)
- Caitlin A. Madison
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Jacob Kuempel
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Georgia Lee Albrecht
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Lauren Hillbrick
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Robert S. Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, College Station, 4235 TAMU, TX 77843, USA.
| |
Collapse
|
10
|
Oxone-Promoted Synthesis of Bis(indolyl)methanes from Arylmethylamines and Indoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Anti-Virulence Activity of 3,3′-Diindolylmethane (DIM): A Bioactive Cruciferous Phytochemical with Accelerated Wound Healing Benefits. Pharmaceutics 2022; 14:pharmaceutics14050967. [PMID: 35631553 PMCID: PMC9144697 DOI: 10.3390/pharmaceutics14050967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Antimicrobial resistance is among the top global health problems with antibacterial resistance currently representing the major threat both in terms of occurrence and complexity. One reason current treatments of bacterial diseases are ineffective is the occurrence of protective and resistant biofilm structures. Phytochemicals are currently being reviewed for newer anti-virulence agents. In the present study, we aimed to investigate the anti-virulence activity of 3,3′-diindolylmethane (DIM), a bioactive cruciferous phytochemical. Using a series of in vitro assays on major Gram-negative pathogens, including transcriptomic analysis, and in vivo porcine wound studies as well as in silico experiments, we show that DIM has anti-biofilm activity. Following DIM treatment, our findings show that biofilm formation of two of the most prioritized bacterial pathogens Acinetobacter baumannii and Pseudomonas aeruginosa was inhibited respectively by 65% and 70%. Combining the antibiotic tobramycin with DIM enabled a high inhibition (94%) of P. aeruginosa biofilm. A DIM-based formulation, evaluated for its wound-healing efficacy on P. aeruginosa-infected wounds, showed a reduction in its bacterial bioburden, and wound size. RNA-seq was used to evaluate the molecular mechanism underlying the bacterial response to DIM. The gene expression profile encompassed shifts in virulence and biofilm-associated genes. A network regulation analysis showed the downregulation of 14 virulence-associated super-regulators. Quantitative real-time PCR verified and supported the transcriptomic results. Molecular docking and interaction profiling indicate that DIM can be accommodated in the autoinducer- or DNA-binding pockets of the virulence regulators making multiple non-covalent interactions with the key residues that are involved in ligand binding. DIM treatment prevented biofilm formation and destroyed existing biofilm without affecting microbial death rates. This study provides evidence for bacterial virulence attenuation by DIM.
Collapse
|
12
|
Anti-inflammatory, antioxidant, antihypertensive, and antiarrhythmic effect of indole-3-carbinol, a phytochemical derived from cruciferous vegetables. Heliyon 2022; 8:e08989. [PMID: 35243102 PMCID: PMC8866897 DOI: 10.1016/j.heliyon.2022.e08989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/29/2021] [Accepted: 02/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background Cardiovascular inflammation and oxidative stress are determining factors in high blood pressure and arrhythmias. Indole-3-carbinol is a cruciferous-derived phytochemical with potential anti-inflammatory and antioxidant effects. However, its implications on the modulation of cardiovascular inflammatory-oxidative markers are unknown. Objectives To establish the effects of indole-3-carbinol on the oxidative-inflammatory-proarrhythmic conditions associated with hypertension. Materials Histological, biochemical, molecular, and functional aspects were evaluated in 1) Culture of mouse BV-2 glial cells subjected to oxidative-inflammatory damage by lipopolysaccharides (100 ng/mL) in the presence or absence of 40 μM indole-3-carbinol (n = 5); 2) Male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats receiving indole-3-carbinol (2000 ppm/day, orally) during the first 8 weeks of life (n = 15); 3) Isolated rat hearts were submitted to 10 min regional ischemia and 10 min reperfusion. Results 1) lipopolysaccharides induced oxidative stress and increased inflammatory markers; indole-3-carbinol reversed both conditions (interleukin 6, tumor necrosis factor α, the activity of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide, inducible nitric oxide synthase, heat shock protein 70, all p < 0.01 vs lipopolysaccharides). 2) SHR rats showed histological, structural, and functional changes with increasing systolic blood pressure (154 ± 8 mmHg vs. 122 ± 7 mmHg in Wistar Kyoto rats, p < 0.01); Inflammatory-oxidative markers also increased, and nitric oxide and heat shock protein 70 decreased. Conversely, indole-3-carbinol reduced oxidative-inflammatory markers and systolic blood pressure (133 ± 8 mmHg, p < 0.01 vs. SHR). 3) indole-3-carbinol reduced reperfusion arrhythmias from 8/10 in SHR to 0/10 (p = 0.0007 by Fisher's exact test). Conclusions Indole-3-carbinol reduces the inflammatory-oxidative-proarrhythmic process of hypertension. The nitric oxide and heat shock protein 70 are relevant mechanisms of indole-3-carbinol protective actions. Further studies with this pleiotropic phytochemical as a promising cardioprotective are guaranteed. Indole-3-carbinol, a cruciferous-derived compound, has cardioprotective potential. We confirmed its anti-inflammatory and antioxidant effects in vitro and in vivo. Oral administration reduced blood pressure and cardiac remodeling. In isolated hearts from hypertensive rats prevented ischemia-reperfusion arrhythmias. Heat shock protein 70 and NO contribute to indole-3-carbinol protective actions.
Collapse
|
13
|
Williams DE. Indoles Derived From Glucobrassicin: Cancer Chemoprevention by Indole-3-Carbinol and 3,3'-Diindolylmethane. Front Nutr 2021; 8:734334. [PMID: 34660663 PMCID: PMC8517077 DOI: 10.3389/fnut.2021.734334] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Hydrolysis of glucobrassicin by plant or bacterial myrosinase produces multiple indoles predominantly indole-3-carbinol (I3C). I3C and its major in vivo product, 3,3'-diindolylmethane (DIM), are effective cancer chemopreventive agents in pre-clinical models and show promise in clinical trials. The pharmacokinetics/pharmacodynamics of DIM have been studied in both rodents and humans and urinary DIM is a proposed biomarker of dietary intake of cruciferous vegetables. Recent clinical studies at Oregon State University show surprisingly robust metabolism of DIM in vivo with mono- and di-hydroxylation followed by conjugation with sulfate or glucuronic acid. DIM has multiple mechanisms of action, the most well-characterized is modulation of aryl hydrocarbon receptor (AHR) signaling. In rainbow trout dose-dependent cancer chemoprevention by dietary I3C is achieved when given prior to or concurrent with aflatoxin B1, polycyclic aromatic hydrocarbons, nitrosamines or direct acting carcinogens such as N-methyl-N'-nitro-nitrosoguanidine. Feeding pregnant mice I3C inhibits transplacental carcinogenesis. In humans much of the focus has been on chemoprevention of breast and prostate cancer. Alteration of cytochrome P450-dependent estrogen metabolism is hypothesized to be an important driver of DIM-dependent breast cancer prevention. The few studies done to date comparing glucobrassicin-rich crucifers such as Brussels sprouts with I3C/DIM supplements have shown the greater impact of the latter is due to dose. Daily ingestion of kg quantities of Brussels sprouts is required to produce in vivo levels of DIM achievable by supplementation. In clinical trials these supplement doses have elicited few if any adverse effects. Sulforaphane from glucoraphanin can act synergistically with glucobrassicin-derived DIM and this may lead to opportunities for combinatorial approaches (supplement and food-based) in the clinic.
Collapse
Affiliation(s)
- David E. Williams
- Department of Environmental and Molecular Toxicology, Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Zheng PF, Xiong Z, Liao CY, Zhang X, Feng M, Wu XZ, Lin J, Lei LS, Zhang YC, Wang SH, Xu XT. In vitro and in silico studies of bis (indol-3-yl) methane derivatives as potential α-glucosidase and α-amylase inhibitors. J Enzyme Inhib Med Chem 2021; 36:1938-1951. [PMID: 34459690 PMCID: PMC8409970 DOI: 10.1080/14756366.2021.1971976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this paper, bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated for their inhibitory activity against α-glucosidase and α-amylase. All synthesised compounds showed potential α-glucosidase and α-amylase inhibitory activities. Compounds 5 g (IC50: 7.54 ± 1.10 μM), 5e (IC50: 9.00 ± 0.97 μM), and 5 h (IC50: 9.57 ± 0.62 μM) presented strongest inhibitory activities against α-glucosidase, that were ∼ 30 times stronger than acarbose. Compounds 5 g (IC50: 32.18 ± 1.66 µM), 5 h (IC50: 31.47 ± 1.42 µM), and 5 s (IC50: 30.91 ± 0.86 µM) showed strongest inhibitory activities towards α-amylase, ∼ 2.5 times stronger than acarbose. The mechanisms and docking simulation of the compounds were also studied. Compounds 5 g and 5 h exhibited bifunctional inhibitory activity against these two enzymes. Furthermore, compounds showed no toxicity against 3T3-L1 cells and HepG2 cells.Highlights A series of bis (indol-3-yl) methanes (BIMs) were synthesised and evaluated inhibitory activities against α-glucosidase and α-amylase. Compound 5g exhibited promising activity (IC50 = 7.54 ± 1.10 μM) against α-glucosidase. Compound 5s exhibited promising activity (IC50 = 30.91 ± 0.86 μM) against α-amylase. In silico studies were performed to confirm the binding interactions of synthetic compounds with the enzyme active site.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Second Hospital of Lanzhou University, Lanzhou, PR China
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Cui-Ying Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Xin Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Mei Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Xiao-Zheng Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Jing Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| | - Lin-Sheng Lei
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, PR China
| | | | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, PR China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, PR China
| |
Collapse
|
15
|
Zhou H, Huang Z, Huang H, Song C, Chang J. Synthesis of bisindolylmethane, bispyrrolylmethane, and indolylpyrrolylmethane derivatives via reductive heteroarylation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Armeli F, Bonucci A, Maggi E, Pinto A, Businaro R. Mediterranean Diet and Neurodegenerative Diseases: The Neglected Role of Nutrition in the Modulation of the Endocannabinoid System. Biomolecules 2021; 11:biom11060790. [PMID: 34073983 PMCID: PMC8225112 DOI: 10.3390/biom11060790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress and neuronal depletion. The broad-spectrum neuroprotective activity of the Mediterranean diet is widely documented, but it is not yet known whether its nutritional and caloric balance can induce a modulation of the endocannabinoid system. In recent decades, many studies have shown how endocannabinoid tone enhancement may be a promising new therapeutic strategy to counteract the main hallmarks of neurodegeneration. From a phylogenetic point of view, the human co-evolution between the endocannabinoid system and dietary habits could play a key role in the pro-homeostatic activity of the Mediterranean lifestyle: this adaptive balance among our ancestors has been compromised by the modern Western diet, resulting in a “clinical endocannabinoid deficiency syndrome”. This review aims to evaluate the evidence accumulated in the literature on the neuroprotective, immunomodulatory and antioxidant properties of the Mediterranean diet related to the modulation of the endocannabinoid system, suggesting new prospects for research and clinical interventions against neurodegenerative diseases in light of a nutraceutical paradigm.
Collapse
Affiliation(s)
- Federica Armeli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessio Bonucci
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Elisa Maggi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
| | - Alessandro Pinto
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica, 79, 04100 Latina, Italy; (F.A.); (A.B.); (E.M.)
- Correspondence:
| |
Collapse
|
17
|
Copper Ferrite Superparamagnetic Nanoparticle-Catalyzed Cross-coupling Reaction to Form Diindolylmethane (DIM): Effect of Experimental Parameters. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2020. [DOI: 10.9767/bcrec.15.3.8228.631-640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Superparamagnetic copper ferrite (CuFe2O4) nanoparticles were utilized as a heterogenous catalyst for the cross-coupling reaction of indole to form 3,3’-diindolylmethane (DIM) as the desirable product. High reaction yield, at around 82%, was achieved under optimal conditions. The CuFe2O4 material could be easily separated from the reaction mixture by an external magnetic field and could be reutilized several times without a significant decrease in catalytic activity. We also showed that no sites of catalyst material leached into reaction solution was detected. To our best knowledge, the above cross-coupling reaction was not previously conducted under catalysis of superparamagnetic nanoparticles. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
18
|
Harmandar K, Kaya EN, Saglam MF, Sengul IF, Atilla D. Bis-indole substituted phthalocyanines: Photophysical and photochemical properties. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424620500522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Tetra substituted peripheral and non-peripheral Zn(II) phthalocyanines were successfully synthesized employing 4-(bis(3-methyl-1H-indol-2-yl)methyl)phenol as a starting material. The structure of these synthesized compounds was confirmed using 1H NMR, [Formula: see text]C NMR, infrared (IR), UV-vis, and MALDI-TOF spectral data. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation) properties of all synthesized peripheral and non-peripheral compounds were investigated in order to determine the potential of these compounds for application in photodynamic therapy.
Collapse
Affiliation(s)
- Kevser Harmandar
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Esra N. Kaya
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Mehmet F. Saglam
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Ibrahim F. Sengul
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| | - Devrim Atilla
- Gebze Technical University, Faculty of Science, Department of Chemistry, 41400, Gebze, Kocaeli, Turkey
| |
Collapse
|
19
|
Brassica Bioactives Could Ameliorate the Chronic Inflammatory Condition of Endometriosis. Int J Mol Sci 2020; 21:ijms21249397. [PMID: 33321760 PMCID: PMC7763502 DOI: 10.3390/ijms21249397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/26/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a chronic, inflammatory, hormone-dependent disease characterized by histological lesions produced by the presence of endometrial tissue outside the uterine cavity. Despite the fact that an estimated 176 million women are affected worldwide by this gynecological disorder, risk factors that cause endometriosis have not been properly defined and current treatments are not efficient. Although the interaction between diet and human health has been the focus of many studies, little information about the correlation of foods and their bioactive derivates with endometriosis is available. In this framework, Brassica crops have emerged as potential candidates for ameliorating the chronic inflammatory condition of endometriosis, due to their abundant content of health-promoting compounds such as glucosinolates and their hydrolysis products, isothiocyanates. Several inflammation-related signaling pathways have been included among the known targets of isothiocyanates, but those involving aquaporin water channels have an important role in endometriosis. Therefore, the aim of this review is to highlight the promising effects of the phytochemicals present in Brassica spp. as major candidates for inclusion in a dietary approach aiming to improve the inflammatory condition of women affected with endometriosis. This review points out the potential roles of glucosinolates and isothiocyanates from Brassicas as anti-inflammatory compounds, which might contribute to a reduction in endometriosis symptoms. In view of these promising results, further investigation of the effect of glucosinolates on chronic inflammatory diseases, either as diet coadjuvants or as therapeutic molecules, should be performed. In addition, we highlight the involvement of aquaporins in the maintenance of immune homeostasis. In brief, glucosinolates and the modulation of cellular water by aquaporins could shed light on new approaches to improve the quality of life for women with endometriosis.
Collapse
|
20
|
Laiakis EC, McCart EA, Deziel A, Rittase WB, Bouten RM, Jha J, Wilkins WL, Day RM, Fornace AJ. Effect of 3,3'-Diindolylmethane on Pulmonary Injury Following Thoracic Irradiation in CBA Mice. HEALTH PHYSICS 2020; 119:746-757. [PMID: 32384373 PMCID: PMC8579862 DOI: 10.1097/hp.0000000000001257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The molecule 3,3'-diindolylmethane (DIM) is small, a major bioactive metabolite of indole-3 carbinol (13C), and a phytochemical compound from cruciferous vegetables released upon exposure to the gut acid environment. DIM is a proposed anti-cancer agent and was previously demonstrated to prevent radiation damage in the bone marrow and the gastrointestinal tract. Here we investigated the effect of DIM on radiation-induced injury to the lung in a murine model through untargeted metabolomics and gene expression studies of select genes. CBA mice were exposed to thoracic irradiation (17.5 Gy). Mice were treated with vehicle or DIM (250 mg kg, subcutaneous injection) on days -1 pre-irradiation through +14 post-irradiation. DIM induced a significant improvement in survival by day 150 post-irradiation. Fibrosis-related gene expression and metabolomics were examined using lung tissue from days 15, 45, 60, 90, and 120 post-irradiation. Our qRT-PCR experiments showed that DIM treatment reduced radiation-induced late expression of collagen Iα and the cell cycle checkpoint proteins p21/waf1 (CDKN1A) and p16ink (CDKN2A). Metabolomic studies of lung tissue demonstrated a significant dampening of radiation-induced changes following DIM treatment. Metabolites associated with pro-inflammatory responses and increased oxidative stress, such as fatty acids, were suppressed by DIM treatment compared to irradiated samples. Together these data suggest that DIM reduces radiation-induced sequelae in the lung.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Oncology, Georgetown University, Washington, DC 20057, USA
| | - Elizabeth A. McCart
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Annabella Deziel
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
| | - W. Bradley Rittase
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Roxane M. Bouten
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Jyoti Jha
- Current address: Rise Therapeutics, Rockville, MD 20850, USA
| | - W. Louis Wilkins
- Division of Comparative Pathology, the Armed Forces Radiobiology Research Institute/Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Albert J. Fornace
- Department of Oncology, Georgetown University, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Oncology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
21
|
Indurthi HK, Virdi R, Koli P, Nageswara Rao D, Sharma DK. Seralite SRC-120 resin catalyzed synthesis of bis(indolyl)methanes using indoles and low/high boiling point carbonyl compounds under solvent free conditions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1849724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Harish K. Indurthi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, India
| | - Reena Virdi
- Overseas Healthcare Pvt Ltd, Phillaur, India
| | - Papita Koli
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, India
| | - Desaboini Nageswara Rao
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Deepak K Sharma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology-Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Fernandez-Colorado CP, Cammayo PLT, Flores RA, Nguyen BT, Kim WH, Kim S, Lillehoj HS, Min W. Anti-inflammatory activity of diindolylmethane alleviates Riemerella anatipestifer infection in ducks. PLoS One 2020; 15:e0242198. [PMID: 33175869 PMCID: PMC7657562 DOI: 10.1371/journal.pone.0242198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022] Open
Abstract
3,3’-Diindolylmethane (DIM) is found in cruciferous vegetables and is used to treat various inflammatory diseases because of its potential anti-inflammatory effects. To investigate effects of DIM in Riemerella anatipestifer-infected ducks which induce upregulation of inflammatory cytokines, ducks were treated orally with DIM at dose of 200 mg/kg/day and infected the following day with R. anatipestifer. Infected and DIM-treated ducks exhibited 14% increased survival rate and significantly decreased bacterial burden compared to infected untreated ducks. Next, the effect on the expression level of inflammatory cytokines (interleukin [IL]-17A, IL-17F, IL-6, IL-1β) of both in vitro and in vivo DIM-treated groups was monitored by quantitative reverse-transcription PCR (qRT-PCR). Generally, the expression levels of the cytokines were significantly reduced in DIM-treated splenic lymphocytes stimulated with killed R. anatipestifer compared to stimulated untreated splenic lymphocytes. Similarly, the expression levels of the cytokines were significantly reduced in the spleens and livers of DIM-treated R. anatipestifer–infected ducks compared to infected untreated ducks. This study demonstrated the ameliorative effects of DIM in ducks infected with R. anatipestifer. Thus, DIM can potentially be used to prevent and/or treat R. anatipestifer infection via inhibition of inflammatory cytokine expression.
Collapse
Affiliation(s)
- Cherry P. Fernandez-Colorado
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna, Philippines
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Paula Leona T. Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Binh T. Nguyen
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo H. Kim
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun S. Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States of America
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Alkarkoushi RR, Hui Y, Tavakoli AS, Singh U, Nagarkatti P, Nagarkatti M, Chatzistamou I, Bam M, Testerman TL. Immune and microRNA responses to Helicobacter muridarum infection and indole-3-carbinol during colitis. World J Gastroenterol 2020; 26:4763-4785. [PMID: 32921956 PMCID: PMC7459201 DOI: 10.3748/wjg.v26.i32.4763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Indole-3-carbinol (I3C) and other aryl hydrocarbon receptor agonists are known to modulate the immune system and ameliorate various inflammatory and autoimmune diseases in animal models, including colitis induced by dextran sulfate sodium (DSS). MicroRNAs (miRNAs) are also gaining traction as potential therapeutic agents or diagnostic elements. Enterohepatic Helicobacter (EHH) species are associated with an increased risk of inflammatory bowel disease, but little is known about how these species affect the immune system or response to treatment.
AIM To determine whether infection with an EHH species alters the response to I3C and how the immune and miRNA responses of an EHH species compare with responses to DSS and inflammatory bowel disease.
METHODS We infected C57BL/6 mice with Helicobacter muridarum (H. muridarum), with and without DSS and I3C treatment. Pathological responses were evaluated by histological examination, symptom scores, and cytokine responses. MiRNAs analysis was performed on mesenteric lymph nodes to further evaluate the regional immune response.
RESULTS H. muridarum infection alone caused colonic inflammation and upregulated proinflammatory, macrophage-associated cytokines in the colon similar to changes seen in DSS-treated mice. Further upregulation occurred upon treatment with DSS. H. muridarum infection caused broad changes in mesenteric lymph node miRNA expression, but colitis-associated miRNAs were regulated similarly in H. muridarum-infected and uninfected, DSS-treated mice. In spite of causing colitis exacerbation, H. muridarum infection did not prevent disease amelioration by I3C. I3C normalized both macrophage- and T cell-associated cytokines.
CONCLUSION Thus, I3C may be useful for inflammatory bowel disease patients regardless of EHH infection. The miRNA changes associated with I3C treatment are likely the result of, rather than the cause of immune response changes.
Collapse
Affiliation(s)
- Rasha Raheem Alkarkoushi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Abbas S Tavakoli
- College of Nursing, University of South Carolina, University of South Carolina, Columbia, SC 29208, United States
| | - Udai Singh
- Department of Medicine, Hematology and Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Traci L Testerman
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| |
Collapse
|
24
|
Amare DE. Anti-Cancer and Other Biological Effects of a Dietary Compound 3,3ʹ-Diindolylmethane Supplementation: A Systematic Review of Human Clinical Trials . NUTRITION AND DIETARY SUPPLEMENTS 2020. [DOI: 10.2147/nds.s261577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
25
|
Lei L, Wang B, Jin D, Gao Z, Huan‐Liang, Wang S, Xu X, Zhang K, Zhang X. Al(OTf)
3
‐Catalyzed Tandem Coupling Reaction between
N,N
‐Disubstituted Aminomalonitriles and Substituted Arenes: a Synthesis of 1‐Cyano‐bisindolylmethane Analogues
≠. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lin‐Sheng Lei
- School of Pharmacy & State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Bo‐Wen Wang
- School of Pharmacy & State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Da‐Ping Jin
- School of Pharmacy & State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Zhu‐Peng Gao
- School of Pharmacy & State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Huan‐Liang
- School of Pharmacy & State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| | - Shao‐Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
- School of Biotechnology and Health ScienceWuyi University Jiangmen 529020 People's Republic of China
| | - Xue‐Tao Xu
- School of Biotechnology and Health ScienceWuyi University Jiangmen 529020 People's Republic of China
| | - Kun Zhang
- School of Biotechnology and Health ScienceWuyi University Jiangmen 529020 People's Republic of China
| | - Xiao‐Yun Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
26
|
Zhu WJ, Gong JF, Song MP. Synthesis of Chiral Bis(3-indolyl)methanes Bearing a Trifluoromethylated All-Carbon Quaternary Stereocenter via Nickel-Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction. J Org Chem 2020; 85:9525-9537. [PMID: 32628848 DOI: 10.1021/acs.joc.0c00336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bis(3-indolyl)methanes are well-known natural products with a broad range of important biological functions including cancer cell growth inhibition and antimicrobial activity. Incorporation of a trifluoromethyl group is known to have a profound effect on the parent compound's biological activities. Here, an efficient method for the synthesis of chiral trifluoromethylated bis(3-indolyl)methanes via a catalytic asymmetric Friedel-Crafts (F-C) alkylation reaction has been established. Both enantiomers of the catalysis products can be obtained by tuning the chiral substituents of the catalyst. With 5 mol % of the Ni(II)/(imidazoline-oxazoline) complex as the catalyst, the F-C reaction of indoles with β-CF3-β-(3-indolyl)nitroalkenes proceeded well to afford a series of chiral bis(3-indolyl)methanes bearing a trifluoromethylated all-carbon quaternary stereocenter in generally good yields with excellent enantioselectivities (up to 98% yield and 94% ee). Furthermore, by interchanging the indole moieties of the two reactants, indole vs β-CF3-β-(3-indolyl)nitroalkene in the F-C reaction, both enantiomers of a given trifluoromethylated bis(3-indolyl)methane were obtained with high enantioselectivities (89-94% ee) upon removal of the indole N-protecting group in the F-C products. The current work represents the first general catalytic enantioselective approach to the important class of trifluoromethylated bis(3-indolyl)methanes.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jun-Fang Gong
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Mao-Ping Song
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
27
|
Matsumoto K, Kinoshita K, Yoshimizu A, Kurauchi Y, Hisatsune A, Seki T, Katsuki H. Laquinimod and 3,3'-diindolylemethane alleviate neuropathological events and neurological deficits in a mouse model of intracerebral hemorrhage. J Neuroimmunol 2020; 342:577195. [PMID: 32120083 DOI: 10.1016/j.jneuroim.2020.577195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/03/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023]
Abstract
We examined the effects of compounds shown to activate aryl hydrocarbon receptor (AhR) signaling on a mouse model of intracerebral hemorrhage (ICH). Daily oral administration of laquinimod (25 mg/kg) or 3,3'-diindolylmethane (250 mg/kg) from 3 h after ICH induction improved motor functions, prevented the decrease of neurons within the hematoma, and attenuated activation of microglia/macrophages and astrocytes in the perihematomal region as well as infiltration of neutrophils into the hematoma. Elevated expression of AhR was detected in microglia and neutrophils, and both drugs inhibited upregulation of interleukin-6 and CXCL1. These results propose AhR as a therapeutic target for ICH.
Collapse
Affiliation(s)
- Kosei Matsumoto
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan
| | - Keita Kinoshita
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan
| | - Ayaka Yoshimizu
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences and School of Pharmacy, Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
28
|
Chlojaponilactone B Attenuates Lipopolysaccharide-Induced Inflammatory Responses by Suppressing TLR4-Mediated ROS Generation and NF-κB Signaling Pathway. Molecules 2019; 24:molecules24203731. [PMID: 31623197 PMCID: PMC6832138 DOI: 10.3390/molecules24203731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
The lindenane-type sesquiterpenoid chlojaponilactone B (1), isolated from Chloranthus japonicus, has been reported to possess anti-inflammatory properties. The present study aimed to further explore the molecular mechanisms underlying the anti-inflammatory activity of 1. RNA-seq analyses revealed the significant changes in the expression levels of genes related to multiple inflammatory pathways upon treatment of lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages with 1. Real time PCR (RT-PCR) and Western blotting were used to confirm the modulations in the expression of essential molecules related to inflammatory responses. Compound 1 inhibited toll like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) activation upon LPS stimulation, influencing the expression of NF-κB and pro-inflammatory mediators. Molecular docking studies showed that 1 bound to TLR4 in a manner similar to that of TAK-242, a TLR4 inhibitor. Moreover, our results showed that 1 suppressed inflammatory responses by inhibiting TLR4 and subsequently decreasing reactive oxygen species (ROS) generation, downregulating the NF-κB, thus reducing the expression of the pro-inflammatory cytokines iNOS, NO, COX-2, IL-6 and TNF-α; these effects were similar to those of TAK-242. We proposed that 1 should be considered as a potential anti-inflammatory compound in future research.
Collapse
|
29
|
Kim JY, Le TAN, Lee SY, Song DG, Hong SC, Cha KH, Lee JW, Pan CH, Kang K. 3,3'-Diindolylmethane Improves Intestinal Permeability Dysfunction in Cultured Human Intestinal Cells and the Model Animal Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9277-9285. [PMID: 31353906 DOI: 10.1021/acs.jafc.9b03039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
3,3'-Diindolylmethane (DIM), a digestive metabolite originating from cruciferous vegetables, has dietary potential for the treatment of various human intestinal diseases. Although intestinal permeability dysfunction is closely related to the initiation and progression of human intestinal inflammatory diseases (IBDs), the effect of DIM on intestinal permeability is unclear. We evaluated the effect of DIM on the intestinal permeability of human intestinal cell monolayers and the animal model Caenorhabditis elegans, which were treated with IL-1β and Pseudomonas aeruginosa, respectively, to mimic IBD conditions. DIM substantially restored the intestinal permeability of differentiated Caco-2 cells by enhancing the expression of tight junction proteins (including occludin and ZO-1). Compared to the IL-1β single treatment (551.0 ± 49.0 Ω·cm2), DIM (10 μM) significantly increased the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers (919.0 ± 66.4 Ω·cm2, p < 0.001). DIM also ameliorated the impaired intestinal permeability and extended the lifespan of C. elegans fed P. aeruginosa. The mean lifespan of DIM-treated worms (10.8 ± 1.3 days) was higher than that of control-treated worms (9.7 ± 1.1 days, p < 0.01). Thus, DIM is a potential nutraceutical candidate for the treatment of leaky gut syndrome by improving intestinal permeability.
Collapse
Affiliation(s)
- Joo Yeon Kim
- Natural Product Informatics Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
| | - Tram Anh Ngoc Le
- Natural Product Informatics Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
| | - So Young Lee
- Natural Product Informatics Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
| | - Sung-Chul Hong
- Natural Product Informatics Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
| | - Jae Wook Lee
- Natural Products Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
| | - Kyungsu Kang
- Natural Product Informatics Research Center , Korea Institute of Science and Technology , Gangneung , Gangwon-do 25451 , Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , Seoul 02792 , Republic of Korea
| |
Collapse
|
30
|
He J, Huang T, Zhao L. 3,3'‑Diindolylmethane mitigates lipopolysaccharide‑induced acute kidney injury in mice by inhibiting NOX‑mediated oxidative stress and the apoptosis of renal tubular epithelial cells. Mol Med Rep 2019; 19:5115-5122. [PMID: 31059037 PMCID: PMC6522920 DOI: 10.3892/mmr.2019.10178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
3,3′-Diindolylmethane (DIM) is a naturally derived indole compound found in the Brassica family of vegetables. DIM has several beneficial effects, including anti-cancer, anti-inflammatory and anti-angiogenic functions. However, the effects of DIM on acute kidney injury (AKI) stimulated by lipopolysaccharide (LPS) are poorly studied. In this present study, male BALB/c mouse models of AKI were established using intraperitoneal injections of 10 mg/kg LPS. DIM (40 mg/kg) was administered intraperitoneally 24 and 2 h before LPS exposure. The results indicated that DIM significantly mitigated histopathological changes in the kidneys and improved the levels of blood urea nitrogen and serum creatinine. DIM also suppressed the LPS-induced production of reactive oxygen species and cell apoptosis. Furthermore, DIM treatment significantly decreased the expression of NADPH oxidase 2 (NOX2) and NOX4 in LPS-treated mice. Therefore, DIM may exert its renoprotective actions by inhibiting NOX-mediated oxidative stress and the apoptosis of renal tubular epithelial cells.
Collapse
Affiliation(s)
- Jin He
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Huang
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin Zhao
- Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
31
|
Ali R, Ahamad MZ, Singh S, Haq W. Regioselective Synthesis of Symmetrical and Unsymmetrical Bis(heteroaryl)methane (BHM)-Containing Amino Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rafat Ali
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; -226031 Lucknow India
| | - Mohd. Zisan Ahamad
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; -226031 Lucknow India
| | - Shalini Singh
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; -226031 Lucknow India
| | - Wahajul Haq
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; -226031 Lucknow India
- Academy of Scientific and Innovative Research; -11000 New Delhi India
| |
Collapse
|
32
|
Kim EA, Kim SY, Kim J, Oh JY, Kim HS, Yoon WJ, Kang DH, Heo SJ. Tuberatolide B isolated from Sargassum macrocarpum inhibited LPS-stimulated inflammatory response via MAPKs and NF-κB signaling pathway in RAW264.7 cells and zebrafish model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
33
|
Lu L, Jiang M, Zhu C, He J, Fan S. Amelioration of whole abdominal irradiation-induced intestinal injury in mice with 3,3'-Diindolylmethane (DIM). Free Radic Biol Med 2019; 130:244-255. [PMID: 30352304 DOI: 10.1016/j.freeradbiomed.2018.10.410] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 02/07/2023]
Abstract
Ionizing radiation-induced intestinal injury is a catastrophic disease with limited effective therapies. 3,3'-Diindolylmethane (DIM), a potent antioxidant agent, has previously been shown to ameliorate hematopoietic injury in a murine model of total body radiation injury, but its effects on ionizing radiation-induced intestinal damage are not clear. Here, we demonstrate that administration of DIM not only protects mice against whole abdominal irradiation (WAI)-induced lethality and weight loss but also ameliorates crypt-villus structural and functional injury of the small intestine. In addition, treatment with DIM significant enhances WAI-induced reductions in Lgr5+ ISCs and their progeny cells, including lysozyme+ Paneth cells, Villin+ enterocytes and Ki67+ instantaneous amplifying cells, thus promoting small intestine repair following WAI exposure. Notably, the expression of Nrf2 increased, while the number of apoptotic cells and the expression of γH2AX decreased in the small intestines of DIM-treated mice compared to mice treated with vehicle following WAI. In vitro, we demonstrated that DIM protected human intestinal epithelial cell-6 (HIEC-6) against ionizing radiation, leading to increased cell vitality. Mechanistically, the radioprotective effect of DIM was likely attributable to its anti-DNA damage effects in irradiated HIEC-6 cells. Moreover, these changes were related to reduction in reactive oxygen species (ROS) levels and increased the activities of antioxidant enzymatic in irradiated HIEC-6 cells. Additionally, the DIM radioprotective effects on the intestine resulted in the restoration of the WAI-shifted gut bacteria composition in mice. Collectively, our findings demonstrate that the beneficial properties of DIM mitigate intestinal radiation injury, which provides a novel strategy for improving the therapeutic effects of irradiation-induced intestinal injury.
Collapse
Affiliation(s)
- Lu Lu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Mian Jiang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Changchun Zhu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Junbo He
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
34
|
Luo Q, Yang A, Cao Q, Guan H. 3,3'-Diindolylmethane protects cardiomyocytes from LPS-induced inflammatory response and apoptosis. BMC Pharmacol Toxicol 2018; 19:71. [PMID: 30413180 PMCID: PMC6230279 DOI: 10.1186/s40360-018-0262-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND 3,3'-Diindolylmethane (DIM) has been extensively studied as a potential therapeutic drug with free radical scavenging, antioxidant and anti-angiogenic effects. However, whether DIM has similar effects on cardiomyocytes remains unknown. Here we evaluated DIM's influence on inflammation and apoptosis of H9C2 cardiomyocytes induced by LPS and to explore the possible mechanism of the effects. METHODS H9C2 cells were incubated with DIM (10, 20 and 30 μM) with or without LPS for 24 h. The cytotoxicity of DIM was detected by CCK-8. The levels of tumour necrosis factor (TNF)-α and interleukin (IL)-6 were then measured using RT-qPCR and ELISA. Cell apoptosis rate and reactive oxygen species (ROS) content after DIM treatment were measured by flow cytometry. Expressions of NFκB, P-NFκB, IκBa, P-IκBa, Bax and Bcl-2 after DIM treatment were detected by western blot. The rate of NFκB nuclear translocation after DIM treatment was determined by immunocytochemical analysis. RESULTS LPS stimulation promoted TNF-α and IL-6 mRNA expression. After treatment with various concentrations of DIM (10, 20 and 30 μM), TNF-α and IL-6 mRNA expression was clearly impaired, especially in the LPS + DIM30(μM) group. ELISA was used to measure TNF-α and IL-6 concentrations in cellular supernatant, and the result was verified to be consistent with RT-qPCR. Additionally, DIM treatment significantly blocked LPS-induced oxidative stress and inhibited LPS-induced apoptosis in H9C2 cardiomyocytes according to the results detected by flow cytometry. Moreover, compared with LPS alone, DIM significantly inhibited the LPS-induced phosphorylation of NFκB (p-NFκB) and Bax expression and increased Bcl-2 expression. CONCLUSIONS DIM may have a protective effect for H9C2 cardiomyocytes against LPS-induced inflammatory response and apoptosis. DIM may be a new insight into the treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Ankang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Quan Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| | - Hongjing Guan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060 People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060 People’s Republic of China
| |
Collapse
|
35
|
Pillaiyar T, Gorska E, Schnakenburg G, Müller CE. General Synthesis of Unsymmetrical 3,3'-(Aza)diindolylmethane Derivatives. J Org Chem 2018; 83:9902-9913. [PMID: 30025207 DOI: 10.1021/acs.joc.8b01349] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diindolylmethane (DIM) and its derivatives have recently been in the focus of interest due to their significant biological activities, specifically in cancer prevention and therapy. Molecular targets of DIM have been identified, e.g., the immunostimulatory G protein-coupled receptor GPR84. However, most of the reported and investigated DIM derivatives are symmetrical because general methods for obtaining unsymmetrical DIMs have been lacking. To optimize the interaction of DIM derivatives with their protein targets, unsymmetrical substitution is required. In the present study we developed a new, mild and efficient access to unsymmetrically substituted 3,3'-DIMs by reaction of (3-indolylmethyl)trimethylammonium iodides with a wide range of substituted indole derivatives. 7-Azaindole also led to the 3,3'-connected DIM analogue, while 4- and 5-azaindoles reacted at the N1-nitrogen atom as confirmed by X-ray crystallography. The reactions were performed in water without the requirement of a catalyst or other additives. Wide substrate scope, operational simplicity, environmentally benign workup, and high yields are further advantages of the new method. The synthetic protocol proved to be suitable for upscaling to yield gram amounts for pharmacological studies. This procedure will allow the preparation of a broad range of novel, unsymmetrical DIM derivatives to exploit their potential as novel drugs.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Ewelina Gorska
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry , University of Bonn , Gerhard-Domagk-Str. 1 , D-53121 Bonn , Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| |
Collapse
|
36
|
Hung LH, Wu CH, Lin BF, Hwang LS. Hyperimmune colostrum alleviates rheumatoid arthritis in a collagen-induced arthritis murine model. J Dairy Sci 2018; 101:3778-3787. [DOI: 10.3168/jds.2017-13572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/28/2017] [Indexed: 11/19/2022]
|
37
|
Lopez-Vazquez A, Garcia-Banuelos JJ, Gonzalez-Garibay AS, Urzua-Lozano PE, Del Toro-Arreola S, Bueno-Topete MR, Sanchez-Enriquez S, Munoz-Valle JF, Jave-Suarez LF, Armendariz-Borunda J, Bastidas-Ramirez BE. IRS-1 pY612 and Akt-1/PKB pT308 Phosphorylation and Antiinflammatory Effect of Diindolylmethane in Adipocytes Cocultured with Macrophages. Med Chem 2017; 13:727-733. [PMID: 28934926 PMCID: PMC5744426 DOI: 10.2174/1573406413666170922095011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Alfonso Lopez-Vazquez
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Jesus J Garcia-Banuelos
- Instituto de Biologia Molecular en Medicina y Terapia Genica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, puerta 7, 3er. piso, Calle Sierra Mojada # 950, Col. Independencia, Guadalajara, Jalisco, C.P. 44340. Mexico
| | - Angelica S Gonzalez-Garibay
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Pedro E Urzua-Lozano
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Miriam R Bueno-Topete
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Sergio Sanchez-Enriquez
- Laboratorio de Bioquimica, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Jose F Munoz-Valle
- Instituto de Investigacion en Ciencias Biomedicas, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Luis F Jave-Suarez
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco. Mexico
| | - Juan Armendariz-Borunda
- Instituto de Biologia Molecular en Medicina y Terapia Genica, Departamento de Biologia Molecular y Genomica, Universidad de Guadalajara, Guadalajara, Jalisco. Mexico
| | - Blanca E Bastidas-Ramirez
- Instituto de Investigacion en Enfermedades Cronico Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, puerta 7, 2do. piso., Calle Sierra Mojada # 950, Col. Independencia, Guadalajara, Jalisco, C.P. 44340. Mexico
| |
Collapse
|
38
|
Liang K, Qian WH, Zong J. 3,3'‑Diindolylmethane attenuates cardiomyocyte hypoxia by modulating autophagy in H9c2 cells. Mol Med Rep 2017; 16:9553-9560. [PMID: 29039568 DOI: 10.3892/mmr.2017.7788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/01/2017] [Indexed: 11/06/2022] Open
Abstract
Autophagy is activated in the ischemic heart and is a process that is essential for survival, differentiation, development and homeostasis. 3,3'‑Diindolylmethane (DIM) is a natural product of the acid‑catalyzed condensation of indole‑3‑carbinol in cruciferous vegetables. Numerous studies have suggested that DIM has various pharmacological effects, including antioxidant, antitumor, anti‑angiogenic and anti‑apoptotic properties. However, the function of DIM on hypoxia‑induced cardiac injury remains to be elucidated. In the present study, H9c2 cells were pretreated with DIM (1, 5 and 10 µM) for 12 h and exposed to hypoxia for 12 h. It was demonstrated that DIM markedly attenuated the increased transcription of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α induced by hypoxia. In addition, the transcription of autophagy associated genes increased in the DIM pretreated group, compared with the hypoxia group. DIM additionally attenuated the increased apoptosis, as determined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and regulated the relative protein expression level of B cell lymphoma (Bcl) 2 associated X protein, Bcl‑xL and cleaved caspase 3. Furthermore, the phosphorylation of the 5' AMP‑activated protein kinase a (AMPKa) was activated and the phosphorylation of c‑Jun N‑terminal kinase (JNK) was inhibited. The effect of DIM on hypoxia‑induced apoptosis was abolished following pretreatment with JNK activator (anisomycin, 40 ng/ml). The effect of DIM on autophagy was reversed following pretreatment with AMPKa inhibitor (CpC, 20 µM) following stimulation with hypoxia. The results demonstrated that DIM prevented hypoxia‑induced inflammation and apoptosis and activated cardiomyocyte autophagy, which may be mediated by activation of AMPKa and inhibition of JNK pathways.
Collapse
Affiliation(s)
- Kai Liang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Wen-Hao Qian
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jing Zong
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
39
|
Sonowal R, Swimm A, Sahoo A, Luo L, Matsunaga Y, Wu Z, Bhingarde JA, Ejzak EA, Ranawade A, Qadota H, Powell DN, Capaldo CT, Flacker JM, Jones RM, Benian GM, Kalman D. Indoles from commensal bacteria extend healthspan. Proc Natl Acad Sci U S A 2017; 114:E7506-E7515. [PMID: 28827345 PMCID: PMC5594673 DOI: 10.1073/pnas.1706464114] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple studies have identified conserved genetic pathways and small molecules associated with extension of lifespan in diverse organisms. However, extending lifespan does not result in concomitant extension in healthspan, defined as the proportion of time that an animal remains healthy and free of age-related infirmities. Rather, mutations that extend lifespan often reduce healthspan and increase frailty. The question arises as to whether factors or mechanisms exist that uncouple these processes and extend healthspan and reduce frailty independent of lifespan. We show that indoles from commensal microbiota extend healthspan of diverse organisms, including Caenorhabditis elegans, Drosophila melanogaster, and mice, but have a negligible effect on maximal lifespan. Effects of indoles on healthspan in worms and flies depend upon the aryl hydrocarbon receptor (AHR), a conserved detector of xenobiotic small molecules. In C. elegans, indole induces a gene expression profile in aged animals reminiscent of that seen in the young, but which is distinct from that associated with normal aging. Moreover, in older animals, indole induces genes associated with oogenesis and, accordingly, extends fecundity and reproductive span. Together, these data suggest that small molecules related to indole and derived from commensal microbiota act in diverse phyla via conserved molecular pathways to promote healthy aging. These data raise the possibility of developing therapeutics based on microbiota-derived indole or its derivatives to extend healthspan and reduce frailty in humans.
Collapse
Affiliation(s)
- Robert Sonowal
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Alyson Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Anusmita Sahoo
- Emory Vaccine Center, Emory University, Atlanta, GA 30329
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
- Yerkes National Primate Research Center, Lawrenceville, GA 30043
| | - Liping Luo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Yohei Matsunaga
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Ziqi Wu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Jui A Bhingarde
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Elizabeth A Ejzak
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Ayush Ranawade
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Hiroshi Qadota
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Domonica N Powell
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
- Immunology and Molecular Pathogenesis Graduate Program, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Jonathan M Flacker
- Division of Geriatric Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Rhienallt M Jones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Guy M Benian
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322;
| |
Collapse
|
40
|
Sturm C, Wagner AE. Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways. Int J Mol Sci 2017; 18:E1890. [PMID: 28862664 PMCID: PMC5618539 DOI: 10.3390/ijms18091890] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022] Open
Abstract
A high consumption of vegetables belonging to the Brassicaceae family has been related to a lower incidence of chronic diseases including different kinds of cancer. These beneficial effects of, e.g., broccoli, cabbage or rocket (arugula) intake have been mainly dedicated to the sulfur-containing glucosinolates (GLSs)-secondary plant compounds nearly exclusively present in Brassicaceae-and in particular to their bioactive breakdown products including isothiocyanates (ITCs). Overall, the current literature indicate that selected Brassica-derived ITCs exhibit health-promoting effects in vitro, as well as in laboratory mice in vivo. Some studies suggest anti-carcinogenic and anti-inflammatory properties for ITCs which may be communicated through an activation of the redox-sensitive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) that controls the expression of antioxidant and phase II enzymes. Furthermore, it has been shown that ITCs are able to significantly ameliorate a severe inflammatory phenotype in colitic mice in vivo. As there are studies available suggesting an epigenetic mode of action for Brassica-derived phytochemicals, the conduction of further studies would be recommendable to investigate if the beneficial effects of these compounds also persist during an irregular consumption pattern.
Collapse
Affiliation(s)
- Christine Sturm
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| |
Collapse
|
41
|
Hwang JH, Kim KJ, Lee BY. Crude Ecklonia cava Flake Extracts Attenuate Inflammation through the Regulation of TLR4 Signaling Pathway in LPS-Induced RAW264.7 Cells. Molecules 2017; 22:E777. [PMID: 28489052 PMCID: PMC6154687 DOI: 10.3390/molecules22050777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 12/23/2022] Open
Abstract
We investigated the beneficial effects of the crude Ecklonia cava flake (CEF), which is a residual product after polyphenol extraction from Ecklonia cava, on inflammation in LPS-stimulated RAW264.7 cells. A group of five different CEF extracts was obtained by a preparation process using water, hydrochloric acid or temperature. We observed that large-size (>19 kDa) CEF extract, which was extracted with water at 95 °C (CEF-W, 95 °C), suppressed the production of inflammatory cytokines by inhibiting its mRNA expression in LPS-induced RAW264.7 cells. TLR4 signaling involvements were negatively regulated by CEF-W, 95 °C. CEF-W, 95 °C repressed the translocation of NF-κB from cytoplasm into nucleus in LPS-induced RAW264.7 cells. CEF-W, 95 °C attenuated the phosphorylation of TBK1 and IRF3 by inhibiting the phosphorylation of ERK. Taken together, we demonstrated that large-size CEF-W, 95 °C may act as a negative regulator of inflammation through the suppression of TLR4 signaling constituents in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Ji-Hyun Hwang
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, CHA University, Seongnam, Gyeonggi 463-400, Korea.
| |
Collapse
|
42
|
Ampofo E, Lachnitt N, Rudzitis-Auth J, Schmitt BM, Menger MD, Laschke MW. Indole-3-carbinol is a potent inhibitor of ischemia-reperfusion-induced inflammation. J Surg Res 2017; 215:34-46. [PMID: 28688659 DOI: 10.1016/j.jss.2017.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/21/2017] [Accepted: 03/23/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) induces tissue inflammation, which is characterized by an increased leukocyte-endothelial cell interaction and leukocyte transmigration. These processes are mediated by the activation of the nuclear factor (NF)κB signaling pathway, resulting in an elevated expression of specific adhesion molecules. The phytochemical indole-3-carbinol (I3C) has been shown to exert anti-inflammatory effects by interfering with NFκB signal transduction. The aim of the present study was to investigate whether I3C is capable of counteracting the pathogenesis of I/R injury. MATERIALS AND METHODS We investigated the inhibitory effect of I3C on endothelial surface protein expression during hypoxia and reoxygenation by flow cytometry. Moreover, the subcellular localization of NFκB was analyzed by immunofluorescence and Western blot. Adhesion protein levels on leukocytes after tumor necrosis factor-α stimulation were determined using flow cytometry. Finally, leukocyte-endothelial cell interaction and leukocyte transmigration during I/R was investigated in dorsal skinfold chambers of BALB/c mice by means of repetitive intravital fluorescence microscopy and immunohistochemistry. RESULTS I3C suppressed the expression of E-selectin and intercellular adhesion molecule-1 on human dermal microvascular endothelial cells by reducing the transcriptional activity of NFκB. Furthermore, surface protein levels of macrophage-1 antigen as well as activated lymphocyte function-associated antigen-1 were markedly reduced on I3C-treated leukocytes. In vivo, I3C treatment decreased the numbers of adherent and transmigrated leukocytes. This was associated with a reduced macromolecular leakage when compared with vehicle-treated controls. CONCLUSIONS These novel results indicate that I3C reduces the expression of endothelial and leukocytic adhesion proteins, resulting in attenuated leukocyte-endothelial cell interactions during I/R. Accordingly, dietary supplements containing I3C may be beneficial for the treatment of I/R-induced inflammation.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany.
| | - Nico Lachnitt
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | | | - Beate M Schmitt
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
43
|
Lu L, Dong J, Li D, Zhang J, Fan S. 3,3'-diindolylmethane mitigates total body irradiation-induced hematopoietic injury in mice. Free Radic Biol Med 2016; 99:463-471. [PMID: 27609226 DOI: 10.1016/j.freeradbiomed.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/26/2016] [Accepted: 09/04/2016] [Indexed: 01/28/2023]
Abstract
We have reported that hematopoietic system injury induced by total body irradiation (TBI) leads to generation of intracellular reactive oxygen species (ROS) and DNA damage, which are ameliorated by antioxidant agents. In the present study, we reported that administration of DIM, a potent antioxidant agent, not only protected mice against TBI-induced lethality, also ameliorated TBI-induced hematopoietic injury. The latter effect was probably attributable to DIM's inhibition of TBI-induced increases in ROS production in hematopoietic stem cells (HSCs) and the phosphorylation of histone H2AX (γ-H2AX). In particular, DIM led to significant improvements in bone marrow (BM) HSC frequency, hematopoietic progenitor cell (HPC) clonogenic function, and multilineage engraftment after transplantation. A downregulation of NADPH oxidase 4 (NOX4) and an upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression were observed following DIM treatment. Notably, the anti-apoptotic potential of DIM was correlated with increased expression of the anti-apoptotic protein Bcl-2 and decreased expression of the pro-apoptotic protein Bax. These findings suggest that DIM attenuates TBI-induced hematopoietic injury through the inhibition of both oxidative stress in HSCs and hematopoietic cell apoptosis. Furthermore, we demonstrated that DIM protected BM hematopoietic cells against ionizing radiation and led to increased clonogenicity in vitro. Therefore, DIM has the potential to be used as an effective radioprotectant to ameliorate TBI-induced hematopoietic injury.
Collapse
Affiliation(s)
- Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
44
|
Olympiou M, Sargiannidou I, Markoullis K, Karaiskos C, Kagiava A, Kyriakoudi S, Abrams CK, Kleopa KA. Systemic inflammation disrupts oligodendrocyte gap junctions and induces ER stress in a model of CNS manifestations of X-linked Charcot-Marie-Tooth disease. Acta Neuropathol Commun 2016; 4:95. [PMID: 27585976 PMCID: PMC5009701 DOI: 10.1186/s40478-016-0369-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 11/10/2022] Open
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is a common form of inherited neuropathy resulting from different mutations affecting the gap junction (GJ) protein connexin32 (Cx32). A subset of CMT1X patients may additionally present with acute fulminant CNS dysfunction, typically triggered by conditions of systemic inflammation and metabolic stress. To clarify the underlying mechanisms of CNS phenotypes in CMT1X we studied a mouse model of systemic inflammation induced by lipopolysaccharide (LPS) injection to compare wild type (WT), connexin32 (Cx32) knockout (KO), and KO T55I mice expressing the T55I Cx32 mutation associated with CNS phenotypes. Following a single intraperitoneal LPS or saline (controls) injection at the age of 40-60 days systemic inflammatory response was documented by elevated TNF-α and IL-6 levels in peripheral blood and mice were evaluated 1 week after injection. Behavioral analysis showed graded impairment of motor performance in LPS treated mice, worse in KO T55I than in Cx32 KO and in Cx32 KO worse than WT. Iba1 immunostaining revealed widespread inflammation in LPS treated mice with diffusely activated microglia throughout the CNS. Immunostaining for the remaining major oligodendrocyte connexin Cx47 and for its astrocytic partner Cx43 revealed widely reduced expression of Cx43 and loss of Cx47 GJs in oligodendrocytes. Real-time PCR and immunoblot analysis indicated primarily a down regulation of Cx43 expression with secondary loss of Cx47 membrane localization. Inflammatory changes and connexin alterations were most severe in the KO T55I group. To examine why the presence of the T55I mutant exacerbates pathology even more than in Cx32 KO mice, we analyzed the expression of ER-stress markers BiP, Fas and CHOP by immunostaining, immunoblot and Real-time PCR. All markers were increased in LPS treated KO T55I mice more than in other genotypes. In conclusion, LPS induced neuroinflammation causes disruption of the main astrocyte-oligodendrocyte GJs, which may contribute to the increased sensitivity of Cx32 KO mice to LPS and of patients with CMT1X to various stressors. Moreover the presence of an intracellularly retained, misfolded CMT1X mutant such as T55I induces ER stress under inflammatory conditions, further exacerbating oligodendrocyte dysfunction and pathological changes in the CNS.
Collapse
Affiliation(s)
- Margarita Olympiou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriaki Markoullis
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Styliana Kyriakoudi
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, USA
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus.
- Neurology Clinics, The Cyprus Institute of Neurology and Genetics and Cyprus School of Molecular Medicine, 6 International Airport Avenue, P.O. Box 23462, , 1683, Nicosia, Cyprus.
| |
Collapse
|
45
|
Paltsev M, Kiselev V, Drukh V, Muyzhnek E, Kuznetsov I, Andrianova E, Baranovskiy P. First results of the double-blind randomized placebo-controlled multicenter clinical trial of DIM-based therapy designed as personalized approach to reverse prostatic intraepithelial neoplasia (PIN). EPMA J 2016; 7:5. [PMID: 27042242 PMCID: PMC4818865 DOI: 10.1186/s13167-016-0057-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
Abstract
Background Targeted pharmacological correction is used extensively in medical practice today. 3,3'-Diindolylmethane (DIM) is known as a substance with various anticancer properties. An interim study of the efficacy of a new drug Infemin on the basis of diindolylmethane (DIM) with improved bioavalability has been conducted. Methods The clinical trial had a multicenter, randomized, placebo-controlled, double-blind design and was carried out in two parallel groups. The interim analysis of data included 21 patients diagnosed with a high-grade prostatic intraepithelial neoplasia (PIN). Group 1 (11 patients) received Infemin in a dose of 900 mg of DIM a day, and group 2 (10 patients) received placebo. To assess the efficacy of therapy, the analysis of morphological index (MI) changes based on the results of histological examinations of prostate biopsy specimens was performed, and a proportion of patients with persistent PIN in 12 months after Infemin initiation was calculated. Researchers also evaluated prostate size, urodynamic parameters (Qmax, Qave, Vres), IPSS, and QoL (quality of life) indices and International Index of Erectile Function (IIEF) at 3, 6, 9, and 12 months after the Infemin administration start. Results After 12 months of treatment in the Infemin group, MI decreased from 0.50 to 0.08, while in the placebo group, it increased from 0.27 to 0.58; the difference between the groups was statistically significant (p = 0.0003, Mann-Whitney test). In 45.5 % of patients in the Infemin group, a complete regression of PIN was also observed, while in the placebo group, PIN regression was not observed in any patients (p = 0.053, Yates’ corrected chi-square). Study results in the Infemin group show improvement of maximal urinary flow rate Qmax (53.3 % increase compared to the initial value); however, the statistical significance was not reached (p = 0.180, Mann-Whitney test) due to the small sample size. Evaluation of other urodynamic parameters, prostate volume, quality of life, symptoms reflecting urination disorder, and erectile dysfunction symptoms did not reveal significant differences between the Infemin and placebo groups either which is probably due to the small sample size. Conclusions The intermediate results of the 21 patients in this multicenter, randomized, placebo-controlled, double-blind study show that Infemin may be a promising drug candidate in patients with high-grade PIN. Trial registration www.chictr.org.cnChiCTR-INR-15007496
Collapse
Affiliation(s)
- Mikhail Paltsev
- National Research Centre (NRC "Kurchatov Institute"), 1, Akademika Kurchatova Pl., Moscow, 123182 Russia
| | - Vsevolod Kiselev
- Peoples' Friendship University of Russia, Miklukho-Maklaya St., 6, Moscow, 117198 Russia
| | - Vadim Drukh
- Peoples' Friendship University of Russia, Miklukho-Maklaya St., 6, Moscow, 117198 Russia
| | - Ekaterina Muyzhnek
- MiraxBioPharma, Closed Joint Stock Company, 12 Kutuzovsky av., 121248 Moscow, Russia
| | - Igor Kuznetsov
- IlmixGroup, Closed Joint Stock Company, 12 Kutuzovsky av., 121248 Moscow, Russia
| | - Evgeniya Andrianova
- IlmixGroup, Closed Joint Stock Company, 12 Kutuzovsky av., 121248 Moscow, Russia
| | - Pavel Baranovskiy
- National Research Centre (NRC "Kurchatov Institute"), 1, Akademika Kurchatova Pl., Moscow, 123182 Russia
| |
Collapse
|
46
|
Hwang JH, Kim KJ, Ryu SJ, Lee BY. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chem Biol Interact 2016; 248:1-7. [DOI: 10.1016/j.cbi.2016.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
|
47
|
Neshat A. Synthesis, characterization and photophysical properties of some 3,3′-bisindolyl(aryl)methanes. RSC Adv 2016. [DOI: 10.1039/c6ra01391k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of 3,3′-bisindolyl(aryl)methanes were synthesized and fully characterized by a combination of1H and13C NMR spectroscopy and in one case using X-ray crystallography.
Collapse
Affiliation(s)
- Abdollah Neshat
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-6731
- Iran
| |
Collapse
|
48
|
Tomar S, Nagarkatti M, Nagarkatti PS. 3,3'-Diindolylmethane attenuates LPS-mediated acute liver failure by regulating miRNAs to target IRAK4 and suppress Toll-like receptor signalling. Br J Pharmacol 2015; 172:2133-47. [PMID: 25521277 DOI: 10.1111/bph.13036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/13/2014] [Accepted: 12/03/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute liver failure (ALF) is a severe and potentially lethal clinical syndrome. 3,3'-Diindolylmethane (DIM) is a natural plant-derived compound with anti-cancer activities. Recently, DIM has also been shown to have anti-inflammatory properties. Here, we tested the hypothesis that DIM would suppress endotoxin-induced ALF. EXPERIMENTAL APPROACH We investigated the therapeutic potential of DIM in a mouse model of D-galactosamine/Lipopolysaccharide (GalN/LPS)-induced ALF. The efficacy of DIM treatment was assessed by survival, liver histopathology, serum levels of alanine transaminase, pro-inflammatory cytokines and number of activated liver macrophages. Effects of DIM on the expression of two miRNAs, 106a and 20b, and their predicted target gene were measured by qRT-PCR and Western blotting. Effects of DIM on the release of TNF-α from RAW264.7 macrophages transfected with mimics of these miRNAs and activated by LPS was assessed by elisa. KEY RESULTS DIM treatment protected mice from ALF symptoms and reduced the number of activated liver macrophages. DIM increased expression of miR-106a and miR-20b in liver mononuclear cells and decreased expression of their predicted target gene IL-1 receptor-associated kinase 4 (IRAK4), involved in signalling from Toll-like receptor 4 (TLR4). In vitro transfection of RAW264.7 cells using miRNA mimics of miR-106a and 20b decreased expression of IRAK4 and of TNF-α secretion, following LPS stimulation. CONCLUSIONS AND IMPLICATIONS DIM attenuated GalN/LPS-induced ALF by regulating the expression of unique miRNAs that target key molecules in the TLR4 inflammatory pathway. DIM may represent a potential novel hepatoprotective agent.
Collapse
Affiliation(s)
- S Tomar
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | |
Collapse
|
49
|
Lee HS, Kim DH, Hong JE, Lee JY, Kim EJ. Oxyresveratrol suppresses lipopolysaccharide-induced inflammatory responses in murine macrophages. Hum Exp Toxicol 2014; 34:808-18. [PMID: 25425548 DOI: 10.1177/0960327114559989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Excessive inflammation is considered a critical factor in many human diseases. Oxyresveratrol(trans-2,3',4,5'-tetrahydroxystilbene), a natural hydroxystilbene, has been shown to possess antioxidant and free radical-scavenging activity. In this study, we investigated the effects of oxyresveratrol (OxyR) on the lipopolysaccharide (LPS)-induced production of inflammatory cytokines and mediators and further explored the mechanism of action in RAW264.7 murine macrophage cell line. Production of nitric oxide (NO), prostaglandin E2 (PGE2), messenger RNA (mRNA) and protein expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), and granulocyte macrophage colony-stimulating factor (GM-CSF), phosphorylation of mitogen-activated protein kinases (MAPKs; extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38), and the activation of nuclear factor κ-light chain enhancer of activated B cells (NFκB) with OxyR were assayed in LPS-stimulated RAW264.7 cells. OxyR inhibited the productions of NO, PGE2, IL-6, and GM-CSF significantly in LPS-stimulated RAW264.7 cells. OxyR suppressed mRNA and protein expressions of iNOS, COX-2, IL-6, and GM-CSF in LPS-stimulated RAW264.7 cells. OxyR suppressed the phosphorylation of Akt and JNK and p38 MAPKs and the translocation of NFκB p65 subunit into the nucleus. These results indicate that OxyR inhibits LPS-stimulated inflammatory responses though the blocking of MAPK and NFκB signaling pathway in macrophages, and suggest that OxyR possesses anti-inflammatory effects.
Collapse
Affiliation(s)
- H S Lee
- Department of Food Science and Nutrition, Dongseo University, Busan, Republic of Korea
| | - D H Kim
- Center for Efficacy Assessment and Development of Functional Food and Drugs, Hallym University, Chuncheon, Republic of Korea
| | - J E Hong
- Center for Efficacy Assessment and Development of Functional Food and Drugs, Hallym University, Chuncheon, Republic of Korea
| | - J-Y Lee
- Center for Efficacy Assessment and Development of Functional Food and Drugs, Hallym University, Chuncheon, Republic of Korea Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - E J Kim
- Center for Efficacy Assessment and Development of Functional Food and Drugs, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
50
|
Jung YJ, Jung JI, Cho HJ, Choi MS, Sung MK, Yu R, Kang YH, Park JHY. Berteroin present in cruciferous vegetables exerts potent anti-inflammatory properties in murine macrophages and mouse skin. Int J Mol Sci 2014; 15:20686-705. [PMID: 25393510 PMCID: PMC4264190 DOI: 10.3390/ijms151120686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 01/01/2023] Open
Abstract
Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.
Collapse
Affiliation(s)
- Yoo Jin Jung
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Jae In Jung
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Han Jin Cho
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Korea.
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research and Department of Food Science and Nutrition, Kyungpook National University, Daegu 702-701, Korea.
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Seoul 140-742, Korea.
| | - Rina Yu
- Department of Food Science and Nutrition, University of Ulsan, Ulsan 680-749, Korea.
| | - Young-Hee Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| | - Jung Han Yoon Park
- Department of Food Science and Nutrition, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|