1
|
Zhao K, Zhang Y, Sui W. Association Between Whole Blood Selenium Levels and Triglyceride-to-High-Density Lipoprotein Cholesterol Ratio Among the General Population. Biol Trace Elem Res 2024; 202:1998-2007. [PMID: 37684489 DOI: 10.1007/s12011-023-03839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Our study aimed to examine whether whole blood selenium (WBSe) levels are related to the triglyceride-to-high-density lipoprotein cholesterol (TG/HDL-C) ratio among the general population. A total of 13,470 adults were included and analyzed from the National Health and Nutrition Examination Survey (NHANES) 2011-2018. In multivariable analyses, LnWBSe levels were significantly related to Ln(TG/HDL-C) ratio in fully adjusted model (β = 0.35; 95% confidence interval (CI): 0.22, 0.48; P < 0.001). Furthermore, the highest quartile of LnWBSe levels was positively correlated with Ln(TG/HDL-C) ratio compared with the lowest quartile (β = 0.15; 95% CI: 0.10, 0.20; P for trend < 0.001). In the dose-response analyses, the correlation was non-linear. While LnWBSe levels < 1.10, LnWBSe levels were positively related to Ln(TG/HDL-C) ratio (β = 0.41; 95% CI: 0.31, 0.50; P < 0.001), whereas LnWBSe levels ≥ 1.10, the relationship was not significantly (β = - 0.20; 95% CI: - 0.54, 0.13; P = 0.228). The interaction test was significant for age, sex, total cholesterol (TC), and diastolic blood pressure (DBP) (all P for interaction < 0.05). Overall, WBSe levels were positively related to TG/HDL-C ratio, with a non-linear trend. Further research is required to determine these underlying mechanisms.
Collapse
Affiliation(s)
- Kunsheng Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Wang L, Yin J, Liao C, Cheng R, Chen F, Yu H, Zhang X. Selenium deficiency-induced high concentration of reactive oxygen species restricts hypertrophic growth of skeletal muscle in juvenile zebrafish by suppressing TORC1-mediated protein synthesis. Br J Nutr 2023; 130:1841-1851. [PMID: 37246564 DOI: 10.1017/s0007114523000934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Se deficiency causes impaired growth of fish skeletal muscle due to the retarded hypertrophy of muscle fibres. However, the inner mechanisms remain unclear. According to our previous researches, we infer this phenomenon is associated with Se deficiency-induced high concentration of reactive oxygen species (ROS), which could suppress the target of rapamycin complex 1 (TORC1) pathway-mediated protein synthesis by inhibiting protein kinase B (Akt), an upstream protein of TORC1. To test this hypothesis, juvenile zebrafish (45 d post-fertilisation) were fed a basal Se-adequate diet or a basal Se-deficient diet or them supplemented with an antioxidant (DL-α-tocopherol acetate, designed as VE) or a TOR activator (MHY1485) for 30 d. Zebrafish fed Se-deficient diets exhibited a clear Se-deficient status in skeletal muscle, which was not influenced by dietary VE and MHY1485. Se deficiency significantly elevated ROS concentrations, inhibited Akt activity and TORC1 pathway, suppressed protein synthesis in skeletal muscle, and impaired hypertrophy of skeletal muscle fibres. However, these negative effects of Se deficiency were partly (except that on ROS concentration) alleviated by dietary MHY1485 and completely alleviated by dietary VE. These data strongly support our speculation that Se deficiency-induced high concentration of ROS exerts a clear inhibiting effect on TORC1 pathway-mediated protein synthesis by regulating Akt activity, thereby restricting the hypertrophy of skeletal muscle fibres in fish. Our findings provide a mechanistic explanation for Se deficiency-caused retardation of fish skeletal muscle growth, contributing to a better understanding of the nutritional necessity and regulatory mechanisms of Se in fish muscle physiology.
Collapse
Affiliation(s)
- Li Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- National R&D Center for Se-rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan430048, People's Republic of China
- School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan430048, People's Republic of China
| | - Jiaojiao Yin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
| | - Chenlei Liao
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Rui Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Feifei Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan430070, People's Republic of China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan430070, People's Republic of China
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan430070, People's Republic of China
| |
Collapse
|
3
|
Demircan K, Hybsier S, Chillon TS, Vetter VM, Rijntjes E, Demuth I, Schomburg L. Sex-specific associations of serum selenium and selenoprotein P with type 2 diabetes mellitus and hypertension in the Berlin Aging Study II. Redox Biol 2023; 65:102823. [PMID: 37516012 PMCID: PMC10405093 DOI: 10.1016/j.redox.2023.102823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Selenium is essential for expression and proper function of a set of redox active selenoproteins implicated in aging-relevant diseases, e.g. type 2 diabetes mellitus (T2D) and hypertension. However, data in cohorts of older adults, particularly with respect to different Se biomarkers and sex-specific analyses are sparse. OBJECTIVE To assess associations of serum Se and selenoprotein P (SELENOP) concentrations with T2D and hypertension in a cohort of older females and males. METHODS This study included 1500 participants from the Berlin Aging Study II. Diagnosis of T2D was made in case of antidiabetic medication, self-reported T2D, or laboratory parameters. Diagnosis of hypertension was based on self-report, blood pressure measurement, or anti-hypertensive medication. Se was measured by spectroscopy, and SELENOP by ELISA. Multiple adjusted regression models quantified dose-dependent associations. RESULTS Participants had a median(IQR) age of 68 (65,71) years, and 767 (51%) were women. 191 (13%) participants had T2D and 1126 (75%) had hypertension. Se and SELENOP correlated significantly (r = 0.59, p < 0.001), and were elevated in those with self-reported Se supplementation. Serum Se and SELENOP were not associated with T2D in the whole cohort. In men, SELENOP was positively associated with T2D, OR (95%CI) for one mg/L increase in SELENOP was 1.22 (1.00,1.48). Se was non-linearly associated with hypertension, comparing to the lowest quartile (Q1), and participants with higher Se levels (Q3) had a lower OR (95%CI) of 0.66 (0.45,0.96), which was specific for men. SELENOP positively associated with hypertension, and OR (95%CI) per one mg/L increase was 1.15 (1.01,1.32). CONCLUSIONS The data suggest a sex-specific interrelationship of Se status with T2D and hypertension, with apparent biomarker-specific associations.
Collapse
Affiliation(s)
- Kamil Demircan
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, D-10115, Berlin, Germany
| | - Sandra Hybsier
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, D-10115, Berlin, Germany
| | - Thilo Samson Chillon
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, D-10115, Berlin, Germany
| | - Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging Working Group, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, And Berlin Institute of Health (BIH), Berlin, Germany
| | - Eddy Rijntjes
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, D-10115, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging Working Group, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, And Berlin Institute of Health (BIH), Berlin, Germany.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, D-10115, Berlin, Germany.
| |
Collapse
|
4
|
Zhao L, Liu M, Sun H, Yang JC, Huang YX, Huang JQ, Lei X, Sun LH. Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2056-2069. [PMID: 36795182 DOI: 10.1007/s11427-022-2226-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/15/2022] [Indexed: 02/17/2023]
Abstract
Broiler chicks are fast-growing and susceptible to dietary selenium (Se) deficiency. This study sought to reveal the underlying mechanisms of how Se deficiency induces key organ dysfunctions in broilers. Day-old male chicks (n=6 cages/diet, 6 chicks/cage) were fed with a Se-deficient diet (Se-Def, 0.047 mg Se/kg) or the Se-Def+0.3 mg Se/kg (Control, 0.345 mg Se/kg) for 6 weeks. The serum, liver, pancreas, spleen, heart, and pectoral muscle of the broilers were collected at week 6 to assay for Se concentration, histopathology, serum metabolome, and tissue transcriptome. Compared with the Control group, Se deficiency induced growth retardation and histopathological lesions and reduced Se concentration in the five organs. Integrated transcriptomics and metabolomics analysis revealed that dysregulation of immune and redox homeostasis related biological processes and pathways contributed to Se deficiency-induced multiple tissue damage in the broilers. Meanwhile, four metabolites in the serum, daidzein, epinephrine, L-aspartic acid and 5-hydroxyindoleacetic acid, interacted with differentially expressed genes with antioxidative effects and immunity among all the five organs, which contributed to the metabolic diseases induced by Se deficiency. Overall, this study systematically elucidated the underlying molecular mechanisms in the pathogenesis of Se deficiency-related diseases, which provides a better understanding of the significance of Se-mediated heath in animals.
Collapse
Affiliation(s)
- Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jia-Qiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Xingen Lei
- Department of Animal Science, Cornell University, Ithaca, 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Xu ZJ, Liu M, Niu QJ, Huang YX, Zhao L, Lei XG, Sun LH. Both selenium deficiency and excess impair male reproductive system via inducing oxidative stress-activated PI3K/AKT-mediated apoptosis and cell proliferation signaling in testis of mice. Free Radic Biol Med 2023; 197:15-22. [PMID: 36731804 DOI: 10.1016/j.freeradbiomed.2023.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/02/2023]
Abstract
Selenium (Se) deficiency or excess impairs testicular development and spermatogenesis, while the underlying mechanisms in this regard remain unclear. This study was designed to explore the molecular biology of Se deficiency or excess in spermatogenesis in mice. Three-week-old male mice (n = 10 mice/diet) were fed with Se-deficient diet (SeD, 0.02 mg Se/kg), adequate-Se diet (SeA, 0.2 mg Se/kg), or excess-Se diet (SeE, 2.0 mg Se/kg) for 5 months. Compared with SeA, SeD reduced (P < 0.05) the body weight (10.4%) and sperm density (84.3%) but increased (P < 0.05) sperm deformity (32.8%); SeE decreased (P < 0.05) the sperm density (78.5%) and sperm motility (35.9%) of the mice. Meanwhile, both SeD and SeE increased (P < 0.05) serum FSH concentrations (10.4-25.6%) and induced testicular damage in mice in comparison with the SeA. Compared with SeA, SeD increased (P < 0.05) the 8-OHdG concentration by 25.5%; SeE increased (P < 0.05) both MDA and 8-OHdG concentrations by 118.8-180.3% in testis. Furthermore, transcriptome analysis showed that there 1325 and 858 transcripts were altered (P < 0.05) in the testis by SeD and SeE, respectively, compared with SeA. KEGG pathway analysis revealed that these differentially expressed genes were mainly enriched in the PI3K-AKT signaling pathway, which is regulated by oxidative stress. Moreover, western blotting analysis revealed that SeD and SeE dysregulated PI3K-AKT-mediated apoptosis and cell proliferation signaling, including upregulating (P < 0.05) caspase 3, cleaved-caspase 3, BCL-2 and (or) P53 and downregulating (P < 0.05) PI3K, p-AKT, p-mTOR, 4E-BP1, p-4E-BP1 and (or) p-p70S6K in the testis of mice compared with SeA. Additionally, compared with SeA, both SeD and SeE increased (P < 0.05) GPX3 and SELENOO; SeD decreased (P < 0.05) GPX1, TXRND3 and SELENOW, but SeE increased (P < 0.05) production of three selenoproteins in the testis. Conclusively, both Se deficiency and excess impairs male reproductive system in mice, potentially with the induction of oxidative stress and activation of PI3K/AKT-mediated apoptosis and cell proliferation signaling in the testis.
Collapse
Affiliation(s)
- Zi-Jian Xu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qin-Jian Niu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
6
|
Yang JC, Huang YX, Sun H, Liu M, Zhao L, Sun LH. Selenium Deficiency Dysregulates One-Carbon Metabolism in Nutritional Muscular Dystrophy of Chicks. J Nutr 2023; 153:47-55. [PMID: 36913478 DOI: 10.1016/j.tjnut.2022.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Nutritional muscular dystrophy (NMD) in animals is induced by dietary selenium (Se) deficiency. OBJECTIVES This study was conducted to explore the underlying mechanism of Se deficiency-induced NMD in broilers. METHODS One-day-old male Cobb broilers (n = 6 cages/diet, 6 birds/cage) were fed a Se-deficient diet (Se-Def, 47 μg Se/kg) or the Se-Def supplemented with 0.3 mg Se/kg (control) for 6 wk. Thigh muscles of broilers were collected at week 6 for measuring Se concentration, histopathology, and transcriptome and metabolome assays. The transcriptome and metabolome data were analyzed with bioinformatics tools and other data were analyzed with Student's t tests. RESULTS Compared with the control, Se-Def induced NMD in broilers, including reduced (P < 0.05) final body weight (30.7%) and thigh muscle size, reduced number and cross-sectional area of fibers, and loose organization of muscle fibers. Compared with the control, Se-Def decreased (P < 0.05) the Se concentration in the thigh muscle by 52.4%. It also downregulated (P < 0.05) GPX1, SELENOW, TXNRD1-3, DIO1, SELENOF, H, I, K, M, and U by 23.4-80.3% in the thigh muscle compared with the control. Multi-omics analyses indicated that the levels of 320 transcripts and 33 metabolites were significantly altered (P < 0.05) in response to dietary Se deficiency. Integrated transcriptomics and metabolomics analysis revealed that one-carbon metabolism, including the folate and methionine cycle, was primarily dysregulated by Se deficiency in the thigh muscles of broilers. CONCLUSIONS Dietary Se deficiency induced NMD in broiler chicks, potentially with the dysregulation of one-carbon metabolism. These findings may provide novel treatment strategies for muscle disease.
Collapse
Affiliation(s)
- Jia-Cheng Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu-Xuan Huang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hua Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meng Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lv-Hui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Gu H, Liang L, Zhu XP, Jiang X, Du M, Wang Z. Optimization of enzymatic extraction, characterization and bioactivities of Se-polysaccharides from Se-enriched Lentinus edodes. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Huang YC, Combs GF, Wu TL, Zeng H, Cheng WH. Selenium status and type 2 diabetes risk. Arch Biochem Biophys 2022; 730:109400. [PMID: 36122760 PMCID: PMC9707339 DOI: 10.1016/j.abb.2022.109400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Optimal selenium (Se) status is necessary for overall health. That status can be affected by food intake pattern, age, sex, and health status. At nutritional levels of intake, Se functions metabolically as an essential constituent of some two dozen selenoproteins, most, if not all, of which have redox functions. Insufficient dietary intake of Se reduces, to varying degrees, the expression of these selenoproteins. Recent clinical and animal studies have indicated that both insufficient and excessive Se intakes may increase risk of type 2 diabetes mellitus (T2D), perhaps by way of selenoprotein actions. In this review, we discuss the current evidence linking Se status and T2D risk, and the roles of 14 selenoproteins and other proteins involved in selenoprotein biosynthesis. Understanding such results can inform the setting of safe and adequate Se intakes.
Collapse
Affiliation(s)
- Ying-Chen Huang
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA
| | - Gerald F Combs
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Tung-Lung Wu
- Department of Mathematics and Statistics, Mississippi State University, Mississippi State, MS, USA
| | - Huawei Zeng
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND, USA
| | - Wen-Hsing Cheng
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
9
|
Carmean CM, Mimoto M, Landeche M, Ruiz D, Chellan B, Zhao L, Schulz MC, Dumitrescu AM, Sargis RM. Dietary Selenium Deficiency Partially Mimics the Metabolic Effects of Arsenic. Nutrients 2021; 13:2894. [PMID: 34445052 PMCID: PMC8398803 DOI: 10.3390/nu13082894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic arsenic exposure via drinking water is associated with diabetes in human pop-ulations throughout the world. Arsenic is believed to exert its diabetogenic effects via multiple mechanisms, including alterations to insulin secretion and insulin sensitivity. In the past, acute arsenicosis has been thought to be partially treatable with selenium supplementation, though a potential interaction between selenium and arsenic had not been evaluated under longer-term exposure models. The purpose of the present study was to explore whether selenium status may augment arsenic's effects during chronic arsenic exposure. To test this possibility, mice were exposed to arsenic in their drinking water and provided ad libitum access to either a diet replete with selenium (Control) or deficient in selenium (SelD). Arsenic significantly improved glucose tolerance and decreased insulin secretion and β-cell function in vivo. Dietary selenium deficiency resulted in similar effects on glucose tolerance and insulin secretion, with significant interactions between arsenic and dietary conditions in select insulin-related parameters. The findings of this study highlight the complexity of arsenic's metabolic effects and suggest that selenium deficiency may interact with arsenic exposure on β-cell-related physiological parameters.
Collapse
Affiliation(s)
- Christopher M. Carmean
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Chicago Center for Health and Environment (CACHET), Chicago, IL 60612, USA
| | - Mizuho Mimoto
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (M.M.); (A.M.D.)
| | - Michael Landeche
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL 60637, USA;
| | - Bijoy Chellan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Lidan Zhao
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
| | - Margaret C. Schulz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Division of Epidemiology and Biostatistics, School of Public Health, Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexandra M. Dumitrescu
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL 60637, USA; (M.M.); (A.M.D.)
| | - Robert M. Sargis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; (C.M.C.); (M.L.); (B.C.); (L.Z.); (M.C.S.)
- Chicago Center for Health and Environment (CACHET), Chicago, IL 60612, USA
| |
Collapse
|
10
|
Lamarche J, Ronga L, Szpunar J, Lobinski R. Characterization and Quantification of Selenoprotein P: Challenges to Mass Spectrometry. Int J Mol Sci 2021; 22:ijms22126283. [PMID: 34208081 PMCID: PMC8230778 DOI: 10.3390/ijms22126283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein P (SELENOP) is an emerging marker of the nutritional status of selenium and of various diseases, however, its chemical characteristics still need to be investigated and methods for its accurate quantitation improved. SELENOP is unique among selenoproteins, as it contains multiple genetically encoded SeCys residues, whereas all the other characterized selenoproteins contain just one. SELENOP occurs in the form of multiple isoforms, truncated species and post-translationally modified variants which are relatively poorly characterized. The accurate quantification of SELENOP is contingent on the availability of specific primary standards and reference methods. Before recombinant SELENOP becomes available to be used as a primary standard, careful investigation of the characteristics of the SELENOP measured by electrospray MS and strict control of the recoveries at the various steps of the analytical procedures are strongly recommended. This review critically discusses the state-of-the-art of analytical approaches to the characterization and quantification of SELENOP. While immunoassays remain the standard for the determination of human and animal health status, because of their speed and simplicity, mass spectrometry techniques offer many attractive and complementary features that are highlighted and critically evaluated.
Collapse
Affiliation(s)
- Jérémy Lamarche
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- Correspondence:
| | - Luisa Ronga
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Joanna Szpunar
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
| | - Ryszard Lobinski
- IPREM UMR5254, E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l’Adour, Hélioparc, 64053 Pau, France; (L.R.); (J.S.); (R.L.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
- Chair of Analytical Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|