1
|
Shao YHJ, Liao CS, Hsu YC, Chiu YC, Lu TJ, Ou YC, Hsiao TH. Clinical relevance of protein-truncating variants of germline DNA repair genes in prostate cancer. BMC Cancer 2024; 24:1319. [PMID: 39455978 PMCID: PMC11520037 DOI: 10.1186/s12885-024-13045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Interpreting genetic variants remains a challenge in prostate cancer (PCa). Although many annotation tools are available for prioritizing causal variants, the clinical relevance of these variants is rarely studied. METHODS We collected a cohort study that included 274 PCa patients from June 2017 to December 2020 and sequenced 19 DNA damage repair (DDR) genes in these patients and explored the clinical consequence of these different approaches. We also examined all-cause and PCa-specific survival in DDR gene mutation carriers compared to non-carriers after androgen receptor (AR)-directed therapy. RESULTS We identified 13 variants from 19 DDR genes in a total of 14 (5.1%) patients who had at least one presumed pathogenic mutation using different annotation methods. Four variants were annotated as pathogenic, 11 variants were predicted as protein-truncating variants (PTVs), four variants received proxy-deleterious (Combined Annotation-Dependent Depletion scores of > 30), and only one variant was identified as a pathogenic variant or as having a functional effect by all three methods. PCa patients with PTVs were significantly associated with early onset, high cancer stage, and a worse response to AR-directed treatment. However, patients carrying a proxy-deleterious variant were only associated with a higher T (tumor) stage and N (node) stage than those without such a variant, but not associated with other clinical characteristics. In patients treated with AR-directed therapy, patients with a PTV showed an increased risk of all-cause death (adjusted hazard ratio (aHR) = 3.51, 95% confidence interval (CI): 1.06 ~ 11.56) and PCa-specific death (aHR = 4.49, 95% CI: 1.87 ~ 10.77) compared to non-PTV carriers after adjustment. We were unable to examine gene-specific risks due to the small number of patients. CONCLUSIONS PTVs may assist in guiding treatment and early screening in PCa, while population-specific data for pathogenic variants are still being amassed.
Collapse
Affiliation(s)
- Yu-Hsuan Joni Shao
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, 10675, Taiwan
| | - Cai-Sian Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Yu-Ching Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, 106319, Taiwan
| | - Yu-Chiao Chiu
- Department of Medicine, Division of Hematology/Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Tsai-Jung Lu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs' Taichung MetroHarbor Hospital, Taichung, 43503, Taiwan.
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.
- Department of Public Health, Fu Jen Catholic University, New Taipei City, 24205, Taiwan.
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402202, Taiwan.
| |
Collapse
|
2
|
Osler TS, Brandenburg JT, Schoeman M, Chen WC, Urban MF, Mathew CG. Prevalence and Reclassification of Genetic Variants in South African Populations with Breast Cancer. Genes Chromosomes Cancer 2024; 63:e23275. [PMID: 39324485 DOI: 10.1002/gcc.23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Concurrent testing of numerous genes for hereditary breast cancer (BC) is available but can result in management difficulties. We evaluated use of an expanded BC gene panel in women of diverse South African ancestries and assessed use of African genomic data to reclassify variants of uncertain significance (VUS). A total of 331 women of White, Black African, or Mixed Ancestry with BC had a 9-gene panel test, with an additional 75 genes tested in those without a pathogenic/likely pathogenic (P/LP) variant. The proportion of VUS reclassified using ClinGen gene-specific allele frequency (AF) thresholds or an AF > 0.001 in nonguidelines genes in African genomic data was determined. The 9-gene panel identified 58 P/LP variants, but only two of the P/LP variants detected using the 75-gene panel were in confirmed BC genes, resulting in a total of 60 (18.1%) in all participants. P/LP variant prevalence was similar across ancestry groups, but VUS prevalence was higher in Black African and Mixed Ancestry than in White participants. In total, 611 VUS were detected, representing 324 distinct variants. 10.8% (9/83) of VUS met ClinGen AF thresholds in genomic data while 10.8% (26/240) in nonguideline genes had an AF > 0.001. Overall, 27.0% of VUS occurrences could potentially be reclassified using African genomic data. Thus, expanding the gene panel yielded few clinically actionable variants but many VUS, particularly in participants of Black African and Mixed Ancestry. However, use of African genomic data has the potential to reclassify a significant proportion of VUS.
Collapse
Affiliation(s)
- Tabitha S Osler
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mardelle Schoeman
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, University of Stellenbosch and Tygerberg Hospital, Cape Town, Parow, South Africa
| | - Wenlong Carl Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Institute for Communicable Diseases a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Michael F Urban
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, University of Stellenbosch and Tygerberg Hospital, Cape Town, Parow, South Africa
| | - Christopher G Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Yadav S, Couch FJ, Domchek SM. Germline Genetic Testing for Hereditary Breast and Ovarian Cancer: Current Concepts in Risk Evaluation. Cold Spring Harb Perspect Med 2024; 14:a041318. [PMID: 38151326 PMCID: PMC11293548 DOI: 10.1101/cshperspect.a041318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our understanding of hereditary breast and ovarian cancer has significantly improved over the past two decades. In addition to BRCA1/2, pathogenic variants in several other DNA-repair genes have been shown to increase the risks of breast and ovarian cancer. The magnitude of cancer risk is impacted not only by the gene involved, but also by family history of cancer, polygenic risk scores, and, in certain genes, pathogenic variant type or location. While estimates of breast and ovarian cancer risk associated with pathogenic variants are available, these are predominantly based on studies of high-risk populations with young age at diagnosis of cancer, multiple primary cancers, or family history of cancer. More recently, breast cancer risk for germline pathogenic variant carriers has been estimated from population-based studies. Here, we provide a review of the field of germline genetic testing and risk evaluation for hereditary breast and ovarian cancers in high-risk and population-based settings.
Collapse
Affiliation(s)
- Siddhartha Yadav
- Department of Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55901, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Wyatt Castillo RB, Nielsen SM, Chen E, Heald B, Ellsworth RE, Esplin ED, Tomlinson GE. Disparate Rates of Germline Variants in Cancer Predisposition Genes in African American/Black Compared With Non-Hispanic White Individuals Between 2015 and 2022. JCO Precis Oncol 2024; 8:e2300715. [PMID: 38991178 DOI: 10.1200/po.23.00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/02/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
PURPOSE African American/Black (AA/B) individuals are under-represented in genomic databases and thus less likely to receive definitive information from germline genetic testing (GGT) than non-Hispanic White (NHW) individuals. With nearly 500,000 AA/B and NHW individuals having undergone multigene panel testing (MGPT) for hereditary cancer risk at a single commercial laboratory, to our knowledge, we present the largest study to date investigating cancer GGT results in AA/B and NHW individuals. METHODS MGPT results from a retrospective cohort of AA/B (n = 48,684) and NHW (n = 444,831) patients were evaluated. Frequencies of pathogenic germline variants (PGVs) and variants of uncertain significance (VUS) were compared between AA/B and NHW individuals. Changes in frequency of VUS over time were determined. Pearson's chi-squared test was used to compare categorical variables among groups. All significance tests were two-tailed, and P < .05 was considered statistically significant. RESULTS Between 2015 and 2022, rates of VUS decreased 2.3-fold in AA/B and 1.8-fold in NHW individuals; however, frequencies of VUS and PGV remained significantly higher (46% v 32%; P < .0001) and lower (9% v 13%; P < .0001) in AA/B compared with NHW individuals. Rates of VUS in ATM, BRCA1, BRCA2, PALB2, and PMS2 were significantly higher in AA/B compared with NHW individuals, whereas rates of PGV in BRCA1, BRCA2, and PALB2 were higher in AA/B compared with NHW individuals (P < .001). CONCLUSION Despite reductions in VUS frequencies over time, disparities in definitive GGT results persist. Increasing inclusion of AA/B populations in both testing and research will further increase knowledge of genetic variants across these racial groups.
Collapse
Affiliation(s)
- Rachel B Wyatt Castillo
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX
| | | | | | | | | | | | - Gail E Tomlinson
- Department of Pediatrics, UT Health San Antonio, San Antonio, TX
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, TX
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX
| |
Collapse
|
5
|
Badran O, Campisi-Pinto S, Amna MA, Turgeman I, Yosef S, Bar-Sela G. Breast cancer insights from Northern Israel: a comprehensive analysis of survival rates among Jewish and Arab women. Front Oncol 2024; 14:1337521. [PMID: 38720806 PMCID: PMC11076725 DOI: 10.3389/fonc.2024.1337521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/03/2024] [Indexed: 05/12/2024] Open
Abstract
This study investigates breast cancer survival rates between 2000 and 2022 in northern Israel, focusing on ethnicity, socioeconomic status, age at diagnosis, and the Charlson Comorbidity Index. Analyzing data from Clalit Health Services, we studied 8,431 breast cancer patients (6,395 Jewish, 2,036 Arab). We compared five- and ten-year survival rates across different demographics. Ethnicity showed a minor impact on survival (OR 1.12, 95% CI: 0.93 - 1.35). Socioeconomic status had a significant effect, with a higher level of improving survival (OR 2.50, 95% CI: 2.04 - 3.08). Age was crucial; women 18-39 had better survival than 60-100, but no significant difference was found between the 18-39 and 40-59 age groups [OR (CI 0.90 - 1.53, p = 0.231)]. For the Charlson Comorbidity Index, women with scores of 3-10 showed lower survival compared to scores of 0 and 1-2. There was a notable improvement in five-year survival rates among patients aged 18-59 diagnosed from 2009-2018 (90.7%) compared to 2000-2008 (86.9%) (p = 0.0046), but not in patients aged 60-100. The study highlights that socioeconomic status, age, and comorbidity scores are significant in determining survival rates for breast cancer. The improvement in survival rates for younger patients diagnosed more recently reflects advancements in treatment and care. This research provides valuable insights into the factors affecting breast cancer survival rates, underscoring the role of socioeconomic status, age, and comorbidities while also highlighting the progress in breast cancer treatment over recent years.
Collapse
Affiliation(s)
- Omar Badran
- Department of Oncology, Emek Medical Center, Afula, Israel
| | | | - Mahmoud Abu Amna
- Department of Oncology, Emek Medical Center, Afula, Israel
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Ilit Turgeman
- Department of Oncology, Emek Medical Center, Afula, Israel
| | - Samih Yosef
- Department of Oncology, Emek Medical Center, Afula, Israel
| | - Gil Bar-Sela
- Department of Oncology, Emek Medical Center, Afula, Israel
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
6
|
Neagu AN, Bruno P, Johnson KR, Ballestas G, Darie CC. Biological Basis of Breast Cancer-Related Disparities in Precision Oncology Era. Int J Mol Sci 2024; 25:4113. [PMID: 38612922 PMCID: PMC11012526 DOI: 10.3390/ijms25074113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Precision oncology is based on deep knowledge of the molecular profile of tumors, allowing for more accurate and personalized therapy for specific groups of patients who are different in disease susceptibility as well as treatment response. Thus, onco-breastomics is able to discover novel biomarkers that have been found to have racial and ethnic differences, among other types of disparities such as chronological or biological age-, sex/gender- or environmental-related ones. Usually, evidence suggests that breast cancer (BC) disparities are due to ethnicity, aging rate, socioeconomic position, environmental or chemical exposures, psycho-social stressors, comorbidities, Western lifestyle, poverty and rurality, or organizational and health care system factors or access. The aim of this review was to deepen the understanding of BC-related disparities, mainly from a biomedical perspective, which includes genomic-based differences, disparities in breast tumor biology and developmental biology, differences in breast tumors' immune and metabolic landscapes, ecological factors involved in these disparities as well as microbiomics- and metagenomics-based disparities in BC. We can conclude that onco-breastomics, in principle, based on genomics, proteomics, epigenomics, hormonomics, metabolomics and exposomics data, is able to characterize the multiple biological processes and molecular pathways involved in BC disparities, clarifying the differences in incidence, mortality and treatment response for different groups of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Kaya R Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Gabriella Ballestas
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
7
|
Kamaraju S, Conroy M, Harris A, Georgen M, Min H, Powell M, Kurzrock R. Challenges to genetic testing for germline mutations associated with breast cancer among African Americans. Cancer Treat Rev 2024; 124:102695. [PMID: 38325071 DOI: 10.1016/j.ctrv.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Inequities in preventive cancer screening, diagnosis, treatment, and inferior cancer outcomes continue to pose challenges across the cancer continuum. While the exact reasons for these inferior outcomes are unknown, multiple barriers to various domains of social determinants of health (SDOH) play a vital role, leading to inequities in cancer care. These include barriers to transportation, housing, and food insecurities, contributing to delays in preventive screening and treatment. Furthermore, aggressive biologies also exist across various racial profiles with accompanying germline mutations. For example, African Americans (AAs) have a higher incidence of triple-negative breast cancer subtype and a high prevalence of BRCA1/2 gene mutations, increasing the risk of multiple cancers, warranting high-risk screening for these populations. Unfortunately, other barriers, such as financial insecurities, low health literacy rates, and lack of awareness, lead to delays in cancer screening and genetic testing, even with available high-risk screening and risk reduction procedures. In addition, physicians receive minimal interdisciplinary training to address genetic assessment, interpretation of the results, and almost no additional training in addressing the unique needs of racial minorities, leading to suboptimal delivery of genetic assessment provision resources among AAs. In this review, we discuss the confluence of factors and barriers limiting genetic testing among AAs and highlight the prevalence of germline mutations associated with increased risk of breast cancer among AAs, reflecting the need for multi-panel germline testing as well as education regarding hereditary cancer risks in underserved minorities.
Collapse
Affiliation(s)
- S Kamaraju
- Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA.
| | - M Conroy
- Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - A Harris
- Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - M Georgen
- Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - H Min
- Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - M Powell
- Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| | - R Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA; Department of Medicine, Division of Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; Froedtert Hospital, Milwaukee, WI, USA
| |
Collapse
|
8
|
Wang X, Waldman L, Silberman Y, Wang M, Tackey C, Hanna L, Vesprini D, Emmenegger U, Eisen A, Smoragiewicz M. Mainstream Model of Genetic Testing for Prostate Cancer at a Large Tertiary Cancer Centre. Clin Genitourin Cancer 2024:102052. [PMID: 38461085 DOI: 10.1016/j.clgc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND An estimated 20% to 30% of men with advanced prostate cancer carry a mutation in DNA damage repair genes, of which half are estimated to be germline. Eligibility criteria for germline genetic testing expanded significantly for Ontario patients in May 2021 and many centers adopted a "mainstream" model, defined as oncologist-initiated genetic testing. METHODS We conducted a retrospective chart review to report on the first-year mainstream experience of a large tertiary oncologic center, the Sunnybrook Odette Cancer Centre. All patients who underwent mainstream at the discretion of their treating physician were included. A subset underwent somatic profiling as part of clinical trial screening. Descriptive statistics were used to report baseline clinicopathologic characteristics and treatments received. RESULTS Between May 1, 2021, and May 30, 2022, 174 patients with prostate cancer underwent mainstream germline genetic testing with a 19-gene panel. Median age was 75 (IQR 68-80), and 82% of patients were diagnosed with either de novo metastatic or high-risk localized prostate adenocarcinoma. Fourteen patients (8%; 95% CI 4%-12%) were found to have a deleterious germline mutation, including pathogenic or likely pathogenic variants in BRCA1/2, ATM, CHEK2, PMS2, RAD51C, HOXB13, and BRIP1. Forty-nine patients (28%; 95% CI 21%-35%) were found to have a variant of uncertain significance. Thirty-four patients also had next-generation sequencing (NGS) of their somatic tissue. Among this subset, 8 of 34 (23%) had an alteration in homologous recombination repair (HRR) genes. Of the 14 patients with a germline mutation, none had a prior personal history of malignancy and 6 (43%) did not have any first- or second-degree relatives with history of prostate, pancreatic, breast, or ovarian cancer. CONCLUSION We report on the real-world characteristics of prostate cancer patients who underwent mainstream germline genetic testing. Personal history and family history of cancer cannot reliably stratify patients for the presence of pathogenic germline variants.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada; Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Larissa Waldman
- Cancer Genetics and High-Risk Program, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada; Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yael Silberman
- Cancer Genetics and High-Risk Program, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Michael Wang
- Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada; Department of Bio-Medical Science, Guelph University, Guelph, Ontario, Canada
| | - Caleb Tackey
- Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Lilian Hanna
- Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Danny Vesprini
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Urban Emmenegger
- Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Andrea Eisen
- Cancer Genetics and High-Risk Program, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada; Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Martin Smoragiewicz
- Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Horton C, Hoang L, Zimmermann H, Young C, Grzybowski J, Durda K, Vuong H, Burks D, Cass A, LaDuca H, Richardson ME, Harrison S, Chao EC, Karam R. Diagnostic Outcomes of Concurrent DNA and RNA Sequencing in Individuals Undergoing Hereditary Cancer Testing. JAMA Oncol 2024; 10:212-219. [PMID: 37924330 PMCID: PMC10625669 DOI: 10.1001/jamaoncol.2023.5586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 11/06/2023]
Abstract
Importance Personalized surveillance, prophylaxis, and cancer treatment options for individuals with hereditary cancer predisposition are informed by results of germline genetic testing. Improvements to genomic technology, such as the availability of RNA sequencing, may increase identification of individuals eligible for personalized interventions by improving the accuracy and yield of germline testing. Objective To assess the cumulative association of paired DNA and RNA testing with detection of disease-causing germline genetic variants and resolution of variants of uncertain significance (VUS). Design, Setting, and Participants Paired DNA and RNA sequencing was performed on individuals undergoing germline testing for hereditary cancer indication at a single diagnostic laboratory from March 2019 through April 2020. Demographic characteristics, clinical data, and test results were curated as samples were received, and changes to variant classification were assessed over time. Data analysis was performed from May 2020 to June 2023. Main Outcomes and Measures Main outcomes were increase in diagnostic yield, decrease in VUS rate, the overall results by variant type, the association of RNA evidence with variant classification, and the corresponding predicted effect on cancer risk management. Results A total of 43 524 individuals were included (median [range] age at testing, 54 [2-101] years; 37 373 female individuals [85.7%], 6224 male individuals [14.3%], and 2 individuals of unknown sex [<0.1%]), with 43 599 tests. A total of 2197 (5.0%) were Ashkenazi Jewish, 1539 (3.5%) were Asian, 3077 (7.1%) were Black, 2437 (5.6%) were Hispanic, 27 793 (63.7%) were White, and 2049 (4.7%) were other race, and for 4507 individuals (10.3%), race and ethnicity were unknown. Variant classification was impacted in 549 individuals (1.3%). Medically significant upgrades were made in 97 individuals, including 70 individuals who had a variant reclassified from VUS to pathogenic/likely pathogenic (P/LP) and 27 individuals who had a novel deep intronic P/LP variant that would not have been detected using DNA sequencing alone. A total of 93 of 545 P/LP splicing variants (17.1%) were dependent on RNA evidence for classification, and 312 of 439 existing splicing VUS (71.1%) were resolved by RNA evidence. Notably, the increase in positive rate (3.1%) and decrease in VUS rate (-3.9%) was higher in Asian, Black, and Hispanic individuals combined compared to White individuals (1.6%; P = .02; and -2.5%; P < .001). Conclusions and Relevance Findings of this diagnostic study demonstrate that the ability to perform RNA sequencing concurrently with DNA sequencing represents an important advancement in germline genetic testing by improving detection of novel variants and classification of existing variants. This expands the identification of individuals with hereditary cancer predisposition and increases opportunities for personalization of therapeutics and surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huy Vuong
- Ambry Genetics, Aliso Viejo, California
| | | | | | | | | | | | - Elizabeth C. Chao
- Ambry Genetics, Aliso Viejo, California
- University of California, Irvine, School of Medicine
| | | |
Collapse
|
10
|
Chen C, Lin CJ, Pei YC, Ma D, Liao L, Li SY, Fan L, Di GH, Wu SY, Liu XY, Wang YJ, Hong Q, Zhang GL, Xu LL, Li BB, Huang W, Shi JX, Jiang YZ, Hu X, Shao ZM. Comprehensive genomic profiling of breast cancers characterizes germline-somatic mutation interactions mediating therapeutic vulnerabilities. Cell Discov 2023; 9:125. [PMID: 38114467 PMCID: PMC10730692 DOI: 10.1038/s41421-023-00614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/08/2023] [Indexed: 12/21/2023] Open
Abstract
Germline-somatic mutation interactions are universal and associated with tumorigenesis, but their role in breast cancer, especially in non-Caucasians, remains poorly characterized. We performed large-scale prospective targeted sequencing of matched tumor-blood samples from 4079 Chinese females, coupled with detailed clinical annotation, to map interactions between germline and somatic alterations. We discovered 368 pathogenic germline variants and identified 5 breast cancer DNA repair-associated genes (BCDGs; BRCA1/BRCA2/CHEK2/PALB2/TP53). BCDG mutation carriers, especially those with two-hit inactivation, demonstrated younger onset, higher tumor mutation burden, and greater clinical benefits from platinum drugs, PARP inhibitors, and immune checkpoint inhibitors. Furthermore, we leveraged a multiomics cohort to reveal that clinical benefits derived from two-hit events are associated with increased genome instability and an immune-activated tumor microenvironment. We also established an ethnicity-specific tool to predict BCDG mutation and two-hit status for genetic evaluation and therapeutic decisions. Overall, this study leveraged the large sequencing cohort of Chinese breast cancers, optimizing genomics-guided selection of DNA damaging-targeted therapy and immunotherapy within a broader population.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Chen Pei
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ding Ma
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li Liao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si-Yuan Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Fan
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song-Yang Wu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi-Yu Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun-Jin Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Hong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Guo-Liang Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lin-Lin Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Bei-Bei Li
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Huang
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jin-Xiu Shi
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Precision Cancer Medical Center Affiliated to Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
11
|
Zanti M, Loizidou MA, O’Mahony DG, Dorling L, Dennis J, Devilee P, Easton DF, Panayiotidis MI, Hadjisavvas A, Michailidou K. Multi-gene panel testing and association analysis in Cypriot breast cancer cases and controls. Front Genet 2023; 14:1248492. [PMID: 37790698 PMCID: PMC10544326 DOI: 10.3389/fgene.2023.1248492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: It is estimated that around 5% of breast cancer cases carry pathogenic variants in established breast cancer susceptibility genes. However, the underlying prevalence and gene-specific population risk estimates in Cyprus are currently unknown. Methods: We performed sequencing on a population-based case-control study of 990 breast cancer cases and 1094 controls from Cyprus using the BRIDGES sequencing panel. Analyses were conducted separately for protein-truncating and rare missense variants. Results: Protein-truncating variants in established breast cancer susceptibility genes were detected in 3.54% of cases and 0.37% of controls. Protein-truncating variants in BRCA2 and ATM were associated with a high risk of breast cancer, whereas PTVs in BRCA1 and PALB2 were associated with a high risk of estrogen receptor (ER)-negative disease. Among participants with a family history of breast cancer, PTVs in ATM, BRCA2, BRCA1, PALB2 and RAD50 were associated with an increased risk of breast cancer. Furthermore, an additional 19.70% of cases and 17.18% of controls had at least one rare missense variant in established breast cancer susceptibility genes. For BRCA1 and PALB2, rare missense variants were associated with an increased risk of overall and triple-negative breast cancer, respectively. Rare missense variants in BRCA1, ATM, CHEK2 and PALB2 domains, were associated with increased risk of disease subtypes. Conclusion: This study provides population-based prevalence and gene-specific risk estimates for protein-truncating and rare missense variants. These results may have important clinical implications for women who undergo genetic testing and be pivotal for a substantial proportion of breast cancer patients in Cyprus.
Collapse
Affiliation(s)
- Maria Zanti
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria A. Loizidou
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Denise G. O’Mahony
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leila Dorling
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, Netherlands
| | - Douglas F. Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Xulu KR, Nweke EE, Augustine TN. Delineating intra-tumoral heterogeneity and tumor evolution in breast cancer using precision-based approaches. Front Genet 2023; 14:1087432. [PMID: 37662839 PMCID: PMC10469897 DOI: 10.3389/fgene.2023.1087432] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 08/08/2023] [Indexed: 09/05/2023] Open
Abstract
The burden of breast cancer continues to increase worldwide as it remains the most diagnosed tumor in females and the second leading cause of cancer-related deaths. Breast cancer is a heterogeneous disease characterized by different subtypes which are driven by aberrations in key genes such as BRCA1 and BRCA2, and hormone receptors. However, even within each subtype, heterogeneity that is driven by underlying evolutionary mechanisms is suggested to underlie poor response to therapy, variance in disease progression, recurrence, and relapse. Intratumoral heterogeneity highlights that the evolvability of tumor cells depends on interactions with cells of the tumor microenvironment. The complexity of the tumor microenvironment is being unraveled by recent advances in screening technologies such as high throughput sequencing; however, there remain challenges that impede the practical use of these approaches, considering the underlying biology of the tumor microenvironment and the impact of selective pressures on the evolvability of tumor cells. In this review, we will highlight the advances made thus far in defining the molecular heterogeneity in breast cancer and the implications thereof in diagnosis, the design and application of targeted therapies for improved clinical outcomes. We describe the different precision-based approaches to diagnosis and treatment and their prospects. We further propose that effective cancer diagnosis and treatment are dependent on unpacking the tumor microenvironment and its role in driving intratumoral heterogeneity. Underwriting such heterogeneity are Darwinian concepts of natural selection that we suggest need to be taken into account to ensure evolutionarily informed therapeutic decisions.
Collapse
Affiliation(s)
- Kutlwano Rekgopetswe Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
13
|
Hu C, Nagaraj AB, Shimelis H, Montalban G, Lee KY, Huang H, Lumby CA, Na J, Susswein LR, Roberts ME, Marshall ML, Hiraki S, LaDuca H, Chao E, Yussuf A, Pesaran T, Neuhausen SL, Haiman CA, Kraft P, Lindstrom S, Palmer JR, Teras LR, Vachon CM, Yao S, Ong I, Nathanson KL, Weitzel JN, Boddicker N, Gnanaolivu R, Polley EC, Mer G, Cui G, Karam R, Richardson ME, Domchek SM, Yadav S, Hruska KS, Dolinsky J, Weroha SJ, Hart SN, Simard J, Masson JY, Pang YP, Couch FJ. Functional and Clinical Characterization of Variants of Uncertain Significance Identifies a Hotspot for Inactivating Missense Variants in RAD51C. Cancer Res 2023; 83:2557-2571. [PMID: 37253112 PMCID: PMC10390864 DOI: 10.1158/0008-5472.can-22-2319] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Pathogenic protein-truncating variants of RAD51C, which plays an integral role in promoting DNA damage repair, increase the risk of breast and ovarian cancer. A large number of RAD51C missense variants of uncertain significance (VUS) have been identified, but the effects of the majority of these variants on RAD51C function and cancer predisposition have not been established. Here, analysis of 173 missense variants by a homology-directed repair (HDR) assay in reconstituted RAD51C-/- cells identified 30 nonfunctional (deleterious) variants, including 18 in a hotspot within the ATP-binding region. The deleterious variants conferred sensitivity to cisplatin and olaparib and disrupted formation of RAD51C/XRCC3 and RAD51B/RAD51C/RAD51D/XRCC2 complexes. Computational analysis indicated the deleterious variant effects were consistent with structural effects on ATP-binding to RAD51C. A subset of the variants displayed similar effects on RAD51C activity in reconstituted human RAD51C-depleted cancer cells. Case-control association studies of deleterious variants in women with breast and ovarian cancer and noncancer controls showed associations with moderate breast cancer risk [OR, 3.92; 95% confidence interval (95% CI), 2.18-7.59] and high ovarian cancer risk (OR, 14.8; 95% CI, 7.71-30.36), similar to protein-truncating variants. This functional data supports the clinical classification of inactivating RAD51C missense variants as pathogenic or likely pathogenic, which may improve the clinical management of variant carriers. SIGNIFICANCE Functional analysis of the impact of a large number of missense variants on RAD51C function provides insight into RAD51C activity and information for classification of the cancer relevance of RAD51C variants.
Collapse
Affiliation(s)
| | | | | | - Gemma Montalban
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | | | | | | | - Jie Na
- Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | | | | | | - Peter Kraft
- T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Sara Lindstrom
- Department of Epidemiology, University of Washington, Seattle, Washington
| | - Julie R. Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | - Lauren R. Teras
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | | | - Song Yao
- Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Irene Ong
- University of Wisconsin-Madison, Madison, Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jacques Simard
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Jean Yves Masson
- CHU de Quebec-Université Laval Research Center, Université Laval, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
14
|
Sun K, Lei L, Zheng R, Zhang S, Zeng H, Wang S, Li L, Chen R, Han B, Peng J, Wei W, He J. Trends in Incidence Rates, Mortality Rates, and Age-Period-Cohort Effects of Female Breast Cancer - China, 2003-2017. China CDC Wkly 2023; 5:340-346. [PMID: 37193084 PMCID: PMC10182910 DOI: 10.46234/ccdcw2023.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/29/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction This study reported the trends in female breast cancer incidence and mortality rates in China, and analyzed the corresponding age-period-cohort effects. Methods Data from 22 population-based cancer registries in China between 2003 and 2017 were analyzed. Age-standardized incidence rates (ASIR) and mortality rates (ASMR) were calculated using Segi's world standard population. Joinpoint regression was employed to evaluate trends, and age-period-cohort effects were examined using the intrinsic estimator method. Results The ASIR for female breast cancer exhibited a more rapid increase in rural areas compared to urban areas across all age groups. The most substantial increase was observed in the 20-34 age group in rural areas [annual percent change (APC)=9.0%, 95% confidence interval (CI): 7.0%-11.0%, P<0.001]. The ASMR for females under 50 years old remained stable from 2003 to 2017 in both urban and rural areas. However, the ASMR for females over 50 in rural areas and those over 65 in urban areas demonstrated a significant increase, with the most pronounced increase observed among females over 65 in rural areas (APC=4.9%, 95% CI: 2.8%-7.0%, P<0.001). Age-period-cohort analysis revealed increasing period effects and decreasing cohort effects for female breast cancer incidence and mortality rates in both urban and rural settings. Notably, the cohort effect for incidence displayed a slight upward trend for females born between 1983 and 1992 in rural areas. Conclusions Our study revealed a rapid increase in breast cancer incidence among younger generations and an accelerated mortality rate in older populations residing in rural areas. To effectively address the growing burden of female breast cancer in China, it is essential to develop and implement targeted intervention strategies.
Collapse
Affiliation(s)
- Kexin Sun
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Lei
- Shenzhen Center for Chronic Disease Control, Shenzhen City, Guangdong Province, China
| | - Rongshou Zheng
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siwei Zhang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmei Zeng
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shaoming Wang
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ru Chen
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingfeng Han
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control, Shenzhen City, Guangdong Province, China
| | - Wenqiang Wei
- National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Yadav S, Boddicker NJ, Na J, Polley EC, Hu C, Hart SN, Gnanaolivu RD, Larson N, Holtegaard S, Huang H, Dunn CA, Teras LR, Patel AV, Lacey JV, Neuhausen SL, Martinez E, Haiman C, Chen F, Ruddy KJ, Olson JE, John EM, Kurian AW, Sandler DP, O'Brien KM, Taylor JA, Weinberg CR, Anton-Culver H, Ziogas A, Zirpoli G, Goldgar DE, Palmer JR, Domchek SM, Weitzel JN, Nathanson KL, Kraft P, Couch FJ. Contralateral Breast Cancer Risk Among Carriers of Germline Pathogenic Variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2. J Clin Oncol 2023; 41:1703-1713. [PMID: 36623243 PMCID: PMC10022863 DOI: 10.1200/jco.22.01239] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To estimate the risk of contralateral breast cancer (CBC) among women with germline pathogenic variants (PVs) in ATM, BRCA1, BRCA2, CHEK2, and PALB2. METHODS The study population included 15,104 prospectively followed women within the CARRIERS study treated with ipsilateral surgery for invasive breast cancer. The risk of CBC was estimated for PV carriers in each gene compared with women without PVs in a multivariate proportional hazard regression analysis accounting for the competing risk of death and adjusting for patient and tumor characteristics. The primary analyses focused on the overall cohort and on women from the general population. Secondary analyses examined associations by race/ethnicity, age at primary breast cancer diagnosis, menopausal status, and tumor estrogen receptor (ER) status. RESULTS Germline BRCA1, BRCA2, and CHEK2 PV carriers with breast cancer were at significantly elevated risk (hazard ratio > 1.9) of CBC, whereas only the PALB2 PV carriers with ER-negative breast cancer had elevated risks (hazard ratio, 2.9). By contrast, ATM PV carriers did not have significantly increased CBC risks. African American PV carriers had similarly elevated risks of CBC as non-Hispanic White PV carriers. Among premenopausal women, the 10-year cumulative incidence of CBC was estimated to be 33% for BRCA1, 27% for BRCA2, and 13% for CHEK2 PV carriers with breast cancer and 35% for PALB2 PV carriers with ER-negative breast cancer. The 10-year cumulative incidence of CBC among postmenopausal PV carriers was 12% for BRCA1, 9% for BRCA2, and 4% for CHEK2. CONCLUSION Women diagnosed with breast cancer and known to carry germline PVs in BRCA1, BRCA2, CHEK2, or PALB2 are at substantially increased risk of CBC and may benefit from enhanced surveillance and risk reduction strategies.
Collapse
Affiliation(s)
| | | | - Jie Na
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Eric C. Polley
- Department of Public Health Sciences, University of Chicago, Chicago, IL
| | - Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Steven N. Hart
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | - Nicole Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Susan Holtegaard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Huaizhi Huang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Carolyn A. Dunn
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Lauren R. Teras
- Department of Population Science, American Cancer Society, Atlanta, GA
| | - Alpa V. Patel
- Department of Population Science, American Cancer Society, Atlanta, GA
| | | | | | - Elena Martinez
- Department of Family Medicine and Public Health, University of California, San Diego, CA
| | - Christopher Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Fei Chen
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Janet E. Olson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Esther M. John
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA
- Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Allison W. Kurian
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA
- Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA
| | - Dale P. Sandler
- National Institute of Environmental Health Sciences, Durham, NC
| | | | - Jack A. Taylor
- National Institute of Environmental Health Sciences, Durham, NC
| | | | | | | | - Gary Zirpoli
- Slone Epidemiology Center at Boston University, Boston, MA
| | | | | | - Susan M. Domchek
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Katherine L. Nathanson
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Peter Kraft
- Harvard University T.H. Chan School of Public Health, Boston, MA
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
16
|
Imyanitov EN, Kuligina ES, Sokolenko AP, Suspitsin EN, Yanus GA, Iyevleva AG, Ivantsov AO, Aleksakhina SN. Hereditary cancer syndromes. World J Clin Oncol 2023; 14:40-68. [PMID: 36908677 PMCID: PMC9993141 DOI: 10.5306/wjco.v14.i2.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 02/21/2023] Open
Abstract
Hereditary cancer syndromes (HCSs) are arguably the most frequent category of Mendelian genetic diseases, as at least 2% of presumably healthy subjects carry highly-penetrant tumor-predisposing pathogenic variants (PVs). Hereditary breast-ovarian cancer and Lynch syndrome make the highest contribution to cancer morbidity; in addition, there are several dozen less frequent types of familial tumors. The development of the majority albeit not all hereditary malignancies involves two-hit mechanism, i.e. the somatic inactivation of the remaining copy of the affected gene. Earlier studies on cancer families suggested nearly fatal penetrance for the majority of HCS genes; however, population-based investigations and especially large-scale next-generation sequencing data sets demonstrate that the presence of some highly-penetrant PVs is often compatible with healthy status. Hereditary cancer research initially focused mainly on cancer detection and prevention. Recent studies identified multiple HCS-specific drug vulnerabilities, which translated into the development of highly efficient therapeutic options.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Ekaterina S Kuligina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Anna P Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Evgeny N Suspitsin
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Grigoriy A Yanus
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Aglaya G Iyevleva
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Alexandr O Ivantsov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| | - Svetlana N Aleksakhina
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
- Department of Clinical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg 194100, Russia
| |
Collapse
|
17
|
Prevalence of BRCA1 and BRCA2 pathogenic variants in 8627 unselected patients with breast cancer: stratification of age at diagnosis, family history and molecular subtype. Breast Cancer Res Treat 2022; 195:431-439. [PMID: 35974241 DOI: 10.1007/s10549-022-06702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Comprehensively analyzing the prevalence of BRCA1/2 germline pathogenic variants (PVs) in a large cohort of unselected Chinese patients with breast cancer has great clinical importance. METHODS Germline pathogenic variants in full-length BRCA1/2 genes were determined through next-generation sequencing and/or Sanger sequencing assays in 8627 unselected Chinese patients with breast cancer who were treated at the Breast Center of Peking University Cancer Hospital. The prevalence of BRCA1/2 PVs was further stratified by age at diagnosis, family history of cancer and molecular subtype. RESULTS We found that the overall prevalence of BRCA1/2 PVs was 6.0% in the entire cohort, 2.4% in BRCA1 and 3.7% in BRCA2. The prevalence of BRCA1/2 PVs in patients with early-onset breast cancer (age at diagnosis ≤ 40 years) was significantly higher than that in patients over the age of 40 (9.7% vs. 5.1%). The prevalence rates of BRCA1/2 PVs in patients with a family history of breast, ovarian, pancreatic, and prostate cancer were 19.5%, 39.0%, 11.1%, and 12.8%, respectively. Moreover, the number of relatives affected by breast cancer was associated with a higher prevalence of BRCA1/2 PVs. Molecular subtypes were associated with the prevalence of BRCA1/2 PVs. Patients with the triple-negative phenotype had the highest prevalence of BRCA1/2 PVs (13.3%) among the three molecular groups, followed by the HR + and HER2- group (5.9%), and the lowest was in the HER2 + group (2.5%). CONCLUSION Our study provides the most comprehensive information to date on the prevalence of BRCA1/2 PVs in unselected Chinese patients with breast cancer.
Collapse
|
18
|
Dratwa M, Wysoczanska B, Brankiewicz W, Stachowicz-Suhs M, Wietrzyk J, Matkowski R, Ekiert M, Szelachowska J, Maciejczyk A, Szajewski M, Baginski M, Bogunia-Kubik K. Relationship between Telomere Length, TERT Genetic Variability and TERT, TP53, SP1, MYC Gene Co-Expression in the Clinicopathological Profile of Breast Cancer. Int J Mol Sci 2022; 23:5164. [PMID: 35563554 PMCID: PMC9102200 DOI: 10.3390/ijms23095164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
The molecular mechanisms of telomerase reverse transcriptase (TERT) upregulation in breast cancer (BC) are complex. We compared genetic variability within TERT and telomere length with the clinical data of patients with BC. Additionally, we assessed the expression of the TERT, MYC, TP53 and SP1 genes in BC patients and in BC organoids (3D cell cultures obtained from breast cancer tissues). We observed the same correlation in the blood of BC patients and in BC organoids between the expression of TERT and TP53. Only in BC patients was a correlation found between the expression of the TERT and MYC genes and between TP53 and MYC. We found associations between TERT genotypes (rs2735940 and rs10069690) and TP53 expression and telomere length. BC patients with the TT genotype rs2735940 have a shorter telomere length, but patients with A allele rs10069690 have a longer telomere length. BC patients with a short allele VNTR-MNS16A showed higher expression of the SP1 and had a longer telomere. Our results bring new insight into the regulation of TERT, MYC, TP53 and SP1 gene expression related to TERT genetic variability and telomere length. Our study also showed for the first time a similar relationship in the expression of the above genes in BC patients and in BC organoids. These findings suggest that TERT genetic variability, expression and telomere length might be useful biomarkers for BC, but their prognostic value may vary depending on the clinical parameters of BC patients and tumor aggressiveness.
Collapse
Affiliation(s)
- Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Barbara Wysoczanska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Wioletta Brankiewicz
- Department of Pharmaceutical Technology and Biochemistry Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (W.B.); (M.B.)
| | - Martyna Stachowicz-Suhs
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.S.-S.); (J.W.)
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.S.-S.); (J.W.)
| | - Rafał Matkowski
- Breast Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland; (R.M.); (M.E.); (J.S.); (A.M.)
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Marcin Ekiert
- Breast Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland; (R.M.); (M.E.); (J.S.); (A.M.)
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Jolanta Szelachowska
- Breast Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland; (R.M.); (M.E.); (J.S.); (A.M.)
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Adam Maciejczyk
- Breast Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413 Wroclaw, Poland; (R.M.); (M.E.); (J.S.); (A.M.)
- Department of Oncology, Wroclaw Medical University, 53-413 Wroclaw, Poland
| | - Mariusz Szajewski
- Department of Oncological Surgery, Gdynia Oncology Centre, 81-519 Gdynia, Poland;
- Division of Propaedeutics of Oncology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (W.B.); (M.B.)
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| |
Collapse
|
19
|
Jakuboski SH, McDonald JA, Terry MB. Do current family history-based genetic testing guidelines contribute to breast cancer health inequities? NPJ Breast Cancer 2022; 8:36. [PMID: 35319016 PMCID: PMC8941019 DOI: 10.1038/s41523-022-00391-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/11/2022] [Indexed: 02/03/2023] Open
Abstract
Prior to the recommended age for population-based breast cancer screening by mammography, which ranges from 40-50 years depending on guidelines, the main way to identify higher risk women for earlier breast cancer (BC) screening to improve outcomes and discuss targeted chemoprevention is through specific clinical guidelines which are largely based on family history of breast cancer and known mutations in breast cancer susceptibility genes. The annual percent change (APC) in early-onset BC continues to rise, with the higher early-onset cancer burden and mortality continuing to be seen in non-Hispanic black (NHB) women compared to non-Hispanic white (NHW) women. Coupled with the increasing incidence overall as well as the lower percent of BC family history reported in NHB women compared with that of NHW women means that continued reliance on guidelines to identify women for genetic screening and initiation of early BC screening based largely on family history could lead to even greater BC health inequities. The similarity in the prevalence of mutations in key BC susceptibility genes between NHB and NHW women contrasts sharply to the differences in age-specific incidence rates between NHB and NHW women, supporting that there must be environmental modifiers that are contributing to the increased incidence in NHB women. This reality further argues for identifying NHB women early in adulthood through genetic testing who may benefit from tailored BC risk-reduction programs and early BC screening.
Collapse
Affiliation(s)
| | - Jasmine A McDonald
- Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Mary Beth Terry
- Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
20
|
Yadav S, Hu C, Nathanson KL, Weitzel JN, Goldgar DE, Kraft P, Gnanaolivu RD, Na J, Huang H, Boddicker NJ, Larson N, Gao C, Yao S, Weinberg C, Vachon CM, Trentham-Dietz A, Taylor JA, Sandler DR, Patel A, Palmer JR, Olson JE, Neuhausen S, Martinez E, Lindstrom S, Lacey JV, Kurian AW, John EM, Haiman C, Bernstein L, Auer PW, Anton-Culver H, Ambrosone CB, Karam R, Chao E, Yussuf A, Pesaran T, Dolinsky JS, Hart SN, LaDuca H, Polley EC, Domchek SM, Couch FJ. Germline Pathogenic Variants in Cancer Predisposition Genes Among Women With Invasive Lobular Carcinoma of the Breast. J Clin Oncol 2021; 39:3918-3926. [PMID: 34672684 PMCID: PMC8660003 DOI: 10.1200/jco.21.00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/16/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine the contribution of germline pathogenic variants (PVs) in hereditary cancer testing panel genes to invasive lobular carcinoma (ILC) of the breast. MATERIALS AND METHODS The study included 2,999 women with ILC from a population-based cohort and 3,796 women with ILC undergoing clinical multigene panel testing (clinical cohort). Frequencies of germline PVs in breast cancer predisposition genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, PALB2, PTEN, RAD51C, RAD51D, and TP53) were compared between women with ILC and unaffected female controls and between women with ILC and infiltrating ductal carcinoma (IDC). RESULTS The frequency of PVs in breast cancer predisposition genes among women with ILC was 6.5% in the clinical cohort and 5.2% in the population-based cohort. In case-control analysis, CDH1 and BRCA2 PVs were associated with high risks of ILC (odds ratio [OR] > 4) and CHEK2, ATM, and PALB2 PVs were associated with moderate (OR = 2-4) risks. BRCA1 PVs and CHEK2 p.Ile157Thr were not associated with clinically relevant risks (OR < 2) of ILC. Compared with IDC, CDH1 PVs were > 10-fold enriched, whereas PVs in BRCA1 were substantially reduced in ILC. CONCLUSION The study establishes that PVs in ATM, BRCA2, CDH1, CHEK2, and PALB2 are associated with an increased risk of ILC, whereas BRCA1 PVs are not. The similar overall PV frequencies for ILC and IDC suggest that cancer histology should not influence the decision to proceed with genetic testing. Similar to IDC, multigene panel testing may be appropriate for women with ILC, but CDH1 should be specifically discussed because of low prevalence and gastric cancer risk.
Collapse
Affiliation(s)
| | | | - Katherine L. Nathanson
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | - Peter Kraft
- Harvard University T.H. Chan School of Public Health, Boston, MA
| | | | - Jie Na
- Mayo Clinic, Rochester, MN
| | - Hongyan Huang
- Harvard University T.H. Chan School of Public Health, Boston, MA
| | | | | | - Chi Gao
- Harvard University T.H. Chan School of Public Health, Boston, MA
| | - Song Yao
- Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | | | | | | | | | | | - Alpa Patel
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA
| | | | | | | | | | | | | | | | | | - Christopher Haiman
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| | | | - Paul W. Auer
- UWM Joseph J. Zilber School of Public Health, Milwaukee, WI
| | | | | | | | | | | | | | | | | | | | | | - Susan M. Domchek
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
21
|
Domchek SM, Yao S, Chen F, Hu C, Hart SN, Goldgar DE, Nathanson KL, Ambrosone CB, Haiman CA, Couch FJ, Polley EC, Palmer JR. Comparison of the Prevalence of Pathogenic Variants in Cancer Susceptibility Genes in Black Women and Non-Hispanic White Women With Breast Cancer in the United States. JAMA Oncol 2021; 7:1045-1050. [PMID: 34042955 DOI: 10.1001/jamaoncol.2021.1492] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Importance The prevalence of germline pathogenic variants (PVs) in cancer susceptibility genes in US Black women compared with non-Hispanic White women with breast cancer is poorly described. Objective To determine whether US Black and non-Hispanic White women with breast cancer have a different prevalence of PVs in 12 cancer susceptibility genes. Design, Setting, and Participants Multicenter, population-based studies in the Cancer Risk Estimates Related to Susceptibility (CARRIERS) consortium. Participants were Black and non-Hispanic White women diagnosed with breast cancer, unselected for family history or age at diagnosis. Data were collected from June 1993 to June 2020; data analysis was performed between September 2020 and February 2021. Main Outcomes and Measures Prevalence of germline PVs in 12 established breast cancer susceptibility genes. Results Among 3946 Black women (mean [SD] age at diagnosis, 56.5 [12.02] y) and 25 287 non-Hispanic White women (mean [SD] age at diagnosis, 62.7 [11.14] y) with breast cancer, there was no statistically significant difference by race in the combined prevalence of PVs in the 12 breast cancer susceptibility genes evaluated (5.65% in Black vs 5.06% in non-Hispanic White women; P = .12). The prevalence of PVs in CHEK2 was higher in non-Hispanic White than Black patients (1.29% vs 0.38%; P < .001), whereas Black patients had a higher prevalence of PVs in BRCA2 (1.80% vs 1.24%; P = .005) and PALB2 (1.01% vs 0.40%; P < .001). For estrogen receptor-negative breast cancer, the prevalence of PVs was not different except for PALB2, which was higher in Black women. In women diagnosed before age 50 years, there was no difference in overall prevalence of PVs in Black vs non-Hispanic White women (8.83% vs 10.04%; P = .25), and among individual genes, only CHEK2 PV prevalence differed by race. After adjustment for age at diagnosis, the standardized prevalence ratio of PVs in non-Hispanic White relative to Black women was 1.08 (95% CI, 1.02-1.14), and there was no longer a statistically significant difference in BRCA2 PV prevalence. Conclusions and Relevance This large population-based case-control study revealed no clinically meaningful differences in the prevalence of PVs in 12 breast cancer susceptibility genes between Black and non-Hispanic White women with breast cancer. The findings suggest that there is not sufficient evidence to make policy changes related to genetic testing based on race alone. Instead, all efforts should be made to ensure equal access to and uptake of genetic testing to minimize disparities in care and outcomes.
Collapse
Affiliation(s)
- Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Fei Chen
- Keck School of Medicine, University of Southern California, Los Angeles
| | | | | | - David E Goldgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | | | | | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, Massachusetts
| | | |
Collapse
|
22
|
Woodward ER, van Veen EM, Evans DG. From BRCA1 to Polygenic Risk Scores: Mutation-Associated Risks in Breast Cancer-Related Genes. Breast Care (Basel) 2021; 16:202-213. [PMID: 34248461 DOI: 10.1159/000515319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background There has been huge progress over the last 30 years in identifying the familial component of breast cancer. Summary Currently around 20% is explained by the high-risk genes BRCA1 and BRCA2, a further 2% by other high-penetrance genes, and around 5% by the moderate risk genes ATM and CHEK2. In contrast, the more than 300 low-penetrance single-nucleotide polymorphisms (SNP) now account for around 28% and they are predicted to account for most of the remaining 45% yet to be found. Even for high-risk genes which confer a 40-90% risk of breast cancer, these SNP can substantially affect the level of breast cancer risk. Indeed, the strength of family history and hormonal and reproductive factors is very important in assessing risk even for a BRCA carrier. The risks of contralateral breast cancer are also affected by SNP as well as by the presence of high or moderate risk genes. Genetic testing using gene panels is now commonplace. Key-Messages There is a need for a more parsimonious approach to panels only testing those genes with a definite 2-fold increased risk and only testing those genes with challenging management implications, such as CDH1 and TP53, when there is strong clinical indication to do so. Testing of SNP alongside genes is likely to provide a more accurate risk assessment.
Collapse
Affiliation(s)
- Emma R Woodward
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elke M van Veen
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,PREVENT Breast Cancer Prevention Centre, Nightingale Centre, Manchester Universities Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom.,Manchester Breast Centre, Manchester Cancer Research Centre, The Christie, University of Manchester, Manchester, United Kingdom
| |
Collapse
|