1
|
Stylianou CE, Wiggins GAR, Lau VL, Dennis J, Shelling AN, Wilson M, Sykes P, Amant F, Annibali D, De Wispelaere W, Easton DF, Fasching PA, Glubb DM, Goode EL, Lambrechts D, Pharoah PDP, Scott RJ, Tham E, Tomlinson I, Bolla MK, Couch FJ, Czene K, Dörk T, Dunning AM, Fletcher O, García-Closas M, Hoppe R, Jernström H, Kaaks R, Michailidou K, Obi N, Southey MC, Stone J, Wang Q, Spurdle AB, O'Mara TA, Pearson J, Walker LC. Germline copy number variants and endometrial cancer risk. Hum Genet 2024; 143:1481-1498. [PMID: 39495297 DOI: 10.1007/s00439-024-02707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Known risk loci for endometrial cancer explain approximately one third of familial endometrial cancer. However, the association of germline copy number variants (CNVs) with endometrial cancer risk remains relatively unknown. We conducted a genome-wide analysis of rare CNVs overlapping gene regions in 4115 endometrial cancer cases and 17,818 controls to identify functionally relevant variants associated with disease. We identified a 1.22-fold greater number of CNVs in DNA samples from cases compared to DNA samples from controls (p = 4.4 × 10-63). Under three models of putative CNV impact (deletion, duplication, and loss of function), genome-wide association studies identified 141 candidate gene loci associated (p < 0.01) with endometrial cancer risk. Pathway analysis of the candidate loci revealed an enrichment of genes involved in the 16p11.2 proximal deletion syndrome, driven by a large recurrent deletion (chr16:29,595,483-30,159,693) identified in 0.15% of endometrial cancer cases and 0.02% of control participants. Together, these data provide evidence that rare copy number variants have a role in endometrial cancer susceptibility and that the proximal 16p11.2 BP4-BP5 region contains 25 candidate risk gene(s) that warrant further analysis to better understand their role in human disease.
Collapse
Affiliation(s)
- Cassie E Stylianou
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Vanessa L Lau
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Joe Dennis
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Michelle Wilson
- Te Pūriri o Te Ora Regional Cancer and Blood Service, Auckland Hospital, Auckland, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | - Frederic Amant
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University Hospitals KU Leuven, University of Leuven, Leuven, Belgium
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Daniela Annibali
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Wout De Wispelaere
- Gynecological Oncology Laboratory, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Douglas F Easton
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Dylan M Glubb
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ellen L Goode
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Paul D P Pharoah
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West Hollywood, CA, USA
| | - Rodney J Scott
- Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, NSW, Australia
- Faculty of Health, Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW, Australia
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ian Tomlinson
- Department of Oncology, University of Oxford, Oxford, UK
| | - Manjeet K Bolla
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Alison M Dunning
- Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Helena Jernström
- Oncology, Department of Clinical Sciences in Lund, Lund University, Lund, Sweden
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kyriaki Michailidou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Nadia Obi
- Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melissa C Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Jennifer Stone
- Genetic Epidemiology Group, School of Population and Global Health, University of Western Australia, Perth, WA, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Qin Wang
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- Public Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tracy A O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - John Pearson
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
2
|
Yang Y, Gao Y, Liu XS, Huang ZM, Zhang Y, Zhang YH, Liu ZY, Chen YX, Pei ZJ. FASTKD1 as a diagnostic and prognostic biomarker for STAD: Insights into m6A modification and immune infiltration. Exp Ther Med 2024; 28:305. [PMID: 38873045 PMCID: PMC11170332 DOI: 10.3892/etm.2024.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Fas-activated serine/threonine kinase domain 1 (FASTKD1), a known modulator of mitochondrial-mediated cell death and survival processes, has garnered attention for its potential role in various biological contexts. However, its involvement in gastric cancer remains unclear. Thus, the present study aimed to investigate the relationship between FASTKD1 expression and key factors, including clinicopathological characteristics, immune infiltration and m6A modification in stomach adenocarcinoma (STAD). The expression of FASTKD1 was analyzed in STAD and normal adjacent tissues to assess its association with clinicopathological characteristics and survival prognosis. Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used in this study. Additionally, the findings were validated through immunohistochemical staining. Co-expression analysis of FASTKD1 was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and LinkedOmics database analysis. An in-depth analysis was conducted using databases, such as Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), GEO and TCGA to explore the potential correlation between FASTKD1 expression and immune infiltration and m6A modification in STAD. The results revealed that FASTKD1 was significantly upregulated across different tumor types, including STAD. Notably, FASTKD1 was able to distinguish between tumor and normal tissue samples with accuracy. Furthermore, the expression levels of FASTKD1 were significantly associated with clinical stage and survival. Through GO/KEGG enrichment analysis and GSEA, it was revealed that the genes co-expressed with FASTKD1 were active in a variety of biological processes. Within the TIMER, GEPIA and TCGA databases, a notable inverse correlation was observed between FASTKD1 expression and the abundance of immune cell subsets. Notably, significant correlations were established between FASTKD1 and m6A modification genes, YTHDF1 and LRPPRC, in both TCGA and GEO datasets. In conclusion, FASTKD1 may serve a significant role in m6A modification and immune infiltration processes, making it a potentially valuable diagnostic and prognostic biomarker in STAD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yan Gao
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhong-Min Huang
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zi-Yue Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Xuan Chen
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
3
|
Zhang L, Fang K, Ren H, Fan S, Wang J, Guan H. Comparison of the diagnostic significance of cerebrospinal fluid metagenomic next-generation sequencing copy number variation analysis and cytology in leptomeningeal malignancy. BMC Neurol 2024; 24:223. [PMID: 38943096 PMCID: PMC11212224 DOI: 10.1186/s12883-024-03655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/26/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Diagnosis and monitoring of leptomeningeal malignancy remain challenging, and are usually based on neurological, radiological, cerebrospinal fluid (CSF) and pathological findings. This study aimed to investigate the diagnostic performance of CSF metagenomic next-generation sequencing (mNGS) and chromosome copy number variations (CNVs) analysis in the detection of leptomeningeal malignancy. METHODS Of the 51 patients included in the study, 34 patients were diagnosed with leptomeningeal malignancies, and 17 patients were diagnosed with central nervous system (CNS) inflammatory diseases. The Sayk's spontaneous cell sedimentation technique was employed for CSF cytology. And a well-designed approach utilizing the CSF mNGS-CNVs technique was explored for early diagnosis of leptomeningeal malignancy. RESULTS In the tumor group, 28 patients were positive for CSF cytology, and 24 patients were positive for CSF mNGS-CNVs. Sensitivity and specificity of CSF cytology were 82.35% (95% CI: 66.83-92.61%) and 94.12% (95% CI: 69.24-99.69%). In comparison, sensitivity and specificity of CSF mNGS-CNV were 70.59% (95% CI: 52.33-84.29%) and 100% (95% CI: 77.08-100%). There was no significant difference in diagnostic consistency between CSF cytology and mNGS-CNVs (p = 0.18, kappa = 0.650). CONCLUSIONS CSF mNGS-CNVs tend to have higher specificity compared with traditional cytology and can be used as a complementary diagnostic method for patients with leptomeningeal malignancies.
Collapse
Affiliation(s)
- Le Zhang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kechi Fang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haitao Ren
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Siyuan Fan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongzhi Guan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
Langlois AWR, Pouget JG, Knight J, Chenoweth MJ, Tyndale RF. Associating CYP2A6 structural variants with ovarian and lung cancer risk in the UK Biobank: replication and extension. Eur J Hum Genet 2024; 32:357-360. [PMID: 38097766 PMCID: PMC10923790 DOI: 10.1038/s41431-023-01518-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 03/10/2024] Open
Abstract
CYP2A6 is a polymorphic enzyme that inactivates nicotine; structural variants (SVs) include gene deletions and hybrids with the neighboring pseudogene CYP2A7. Two studies found that CYP2A7 deletions were associated with ovarian cancer risk. Using their methodology, we aimed to characterize CYP2A6 SVs (which may be misidentified by prediction software as CYP2A7 SVs), then assess CYP2A6 SV-associated risk for ovarian cancer, and extend analyses to lung cancer. An updated reference panel was created to impute CYP2A6 SVs from UK Biobank array data. Logistic regression models analyzed the association between CYP2A6 SVs and cancer risk, adjusting for covariates. Software-predicted CYP2A7 deletions were concordant with known CYP2A6 SVs. Deleterious CYP2A6 SVs were not associated with ovarian cancer (OR = 1.06; 95% CI: 0.80-1.37; p = 0.7) but did reduce the risk of lung cancer (OR = 0.44; 95% CI: 0.29-0.64; p < 0.0001), and a lung cancer subtype. Replication of known lung cancer associations indicates the validity of array-based SV analyses.
Collapse
Affiliation(s)
- Alec W R Langlois
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
| | - Jennie G Pouget
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Jo Knight
- Data Science Institute and Medical School, Lancaster University, Lancaster, UK
| | - Meghan J Chenoweth
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 100 Stokes Street, Toronto, ON, M6J 1H4, Canada.
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
5
|
Macieja A, Gulbas I, Popławski T. DNA Double-Strand Break Repair Inhibitors: YU238259, A12B4C3 and DDRI-18 Overcome the Cisplatin Resistance in Human Ovarian Cancer Cells, but Not under Hypoxia Conditions. Curr Issues Mol Biol 2023; 45:7915-7932. [PMID: 37886943 PMCID: PMC10605129 DOI: 10.3390/cimb45100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Cisplatin (CDDP) is the cornerstone of standard treatment for ovarian cancer. However, the resistance of ovarian cancer cells to CDDP leads to an inevitable recurrence. One of the strategies to overcome resistance to CDDP is the combined treatment of ovarian cancer with CDDP and etoposide (VP-16), although this strategy is not always effective. This article presents a new approach to sensitize CDDP-resistant human ovarian carcinoma cells to combined treatment with CDDP and VP-16. To replicate the tumor conditions of cancers, we performed analysis under hypoxia conditions. Since CDDP and VP-16 induce DNA double-strand breaks (DSB), we introduce DSB repair inhibitors to the treatment scheme. We used novel HRR and NHEJ inhibitors: YU238259 inhibits the HRR pathway, and DDRI-18 and A12B4C3 act as NHEJ inhibitors. All inhibitors enhanced the therapeutic effect of the CDDP/VP-16 treatment scheme and allowed a decrease in the effective dose of CDDP/VP16. Inhibition of HRR or NHEJ decreased survival and increased DNA damage level, increased the amount of γ-H2AX foci, and caused an increase in apoptotic fraction after treatment with CDDP/VP16. Furthermore, delayed repair of DSBs was detected in HRR- or NHEJ-inhibited cells. This favorable outcome was altered under hypoxia, during which alternation at the transcriptome level of the transcriptome in cells cultured under hypoxia compared to aerobic conditions. These changes suggest that it is likely that other than classical DSB repair systems are activated in cancer cells during hypoxia. Our study suggests that the introduction of DSB inhibitors may improve the effectiveness of commonly used ovarian cancer treatment, and HRR, as well as NHEJ, is an attractive therapeutic target for overcoming the resistance to CDDP resistance of ovarian cancer cells. However, a hypoxia-mediated decrease in response to our scheme of treatment was observed.
Collapse
Affiliation(s)
- Anna Macieja
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland;
| | - Izabela Gulbas
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland;
| | - Tomasz Popławski
- Department of Microbiology and Pharmaceutical Biochemistry, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland;
| |
Collapse
|
6
|
Hartkopf AD, Fehm TN, Welslau M, Müller V, Schütz F, Fasching PA, Janni W, Witzel I, Thomssen C, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Lux MP, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Wöckel A, Kolberg HC, Harbeck N, Stickeler E, Bartsch R, Schneeweiss A, Ettl J, Würstlein R, Krug D, Taran FA, Lüftner D. Update Breast Cancer 2023 Part 1 - Early Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:653-663. [PMID: 37916183 PMCID: PMC10617391 DOI: 10.1055/a-2074-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 11/03/2023] Open
Abstract
With abemaciclib (monarchE study) and olaparib (OlympiA study) gaining approval in the adjuvant treatment setting, a significant change in the standard of care for patients with early stage breast cancer has been established for some time now. Accordingly, some diverse developments are slowly being transferred from the metastatic to the adjuvant treatment setting. Recently, there have also been positive reports of the NATALEE study. Other clinical studies are currently investigating substances that are already established in the metastatic setting. These include, for example, the DESTINY Breast05 study with trastuzumab deruxtecan and the SASCIA study with sacituzumab govitecan. In this review paper, we summarize and place in context the latest developments over the past months.
Collapse
Affiliation(s)
- Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics; Comprehensive Cancer Center Erlangen EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Department of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| | - Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Johannes Ettl
- Klinik für Frauenheilkunde und Gynäkologie, Klinikum Kempten, Klinikverbund Allgäu, Kempten, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinkum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florin-Andrei Taran
- Department of Gynecology and Obstetrics, University Hospital Freiburg, Freiburg, Germany
| | - Diana Lüftner
- Medical University of Brandenburg Theodor-Fontane, Immanuel Hospital Märkische Schweiz, Buckow, Germany
| |
Collapse
|