1
|
Zhao J, Wu S, Wang D, Edwards H, Thibodeau J, Kim S, Stemmer P, Wang G, Jin J, Savasan S, Taub JW, Ge Y. Panobinostat sensitizes AraC-resistant AML cells to the combination of azacitidine and venetoclax. Biochem Pharmacol 2024; 228:116065. [PMID: 38373594 DOI: 10.1016/j.bcp.2024.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The majority of acute myeloid leukemia (AML) patients respond to intensive induction therapy, consisting of cytarabine (AraC) and an anthracycline, though more than half experience relapse. Relapsed/refractory (R/R) AML patients are difficult to treat, and their clinical outcomes remain dismal. Venetoclax (VEN) in combination with azacitidine (AZA) has provided a promising treatment option for R/R AML, though the overall survival (OS) could be improved (OS ranges from 4.3 to 9.1 months). Overexpression of c-Myc is associated with chemoresistance in AML. Histone deacetylase (HDAC) inhibitors have been shown to suppress c-Myc and enhance the antileukemic activity of VEN, as well as AZA, though combination of all three has not been fully explored. In this study, we investigated the HDAC inhibitor, panobinostat, in combination with VEN + AZA against AraC-resistant AML cells. Panobinostat treatment downregulated c-Myc and Bcl-xL and upregulated Bim, which enhanced the antileukemic activity of VEN + AZA against AraC-resistant AML cells. In addition, panobinostat alone and in combination with VEN + AZA suppressed oxidative phosphorylation and/or glycolysis in AraC-resistant AML cells. These findings support further development of panobinostat in combination with VEN + AZA for the treatment of AraC-resistant AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Sulfonamides/pharmacology
- Sulfonamides/administration & dosage
- Panobinostat/pharmacology
- Panobinostat/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Azacitidine/pharmacology
- Azacitidine/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Cytarabine/pharmacology
- Cytarabine/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Cell Line, Tumor
- Drug Synergism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/administration & dosage
- Histone Deacetylase Inhibitors/pharmacology
- Histone Deacetylase Inhibitors/administration & dosage
Collapse
Affiliation(s)
- Jianlei Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China; Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130012, PR China
| | - Deying Wang
- The Tumor Center of the First Hospital of Jilin University, Changchun 130021, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jenna Thibodeau
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Paul Stemmer
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Detroit, MI 48201, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Jingji Jin
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Süreyya Savasan
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48202, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA; Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI 48202, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
2
|
Wu S, Liu F, Gai Y, Carter J, Edwards H, Hüttemann M, Wang G, Li C, Taub JW, Wang Y, Ge Y. Combining the novel FLT3 and MERTK dual inhibitor MRX-2843 with venetoclax results in promising antileukemic activity against FLT3-ITD AML. Leuk Res 2024; 144:107547. [PMID: 38968731 DOI: 10.1016/j.leukres.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/29/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024]
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately one third of acute myeloid leukemia (AML) patients. FLT3-Internal tandem duplication (FLT3-ITD) mutations are the most common FLT3 mutations and are associated with a poor prognosis. Gilteritinib is a FLT3 inhibitor that is US FDA approved for treating adult patients with relapsed/refractory AML and a FLT3 mutation. While gilteritinib monotherapy has improved patient outcome, few patients achieve durable responses. Combining gilteritinib with venetoclax (VEN) appears to make further improvements, though early results suggest that patients with prior exposure to VEN fair much worse than those without prior exposure. MRX-2843 is a promising inhibitor of FLT3 and MERTK. We recently demonstrated that MRX-2843 is equally potent as gilteritinib in FLT3-ITD AML cell lines in vitro and primary patient samples ex vivo. In this study, we investigated the combination of VEN and MRX-2843 against FLT3-ITD AML cells. We found that VEN synergistically enhances cell death induced by MRX-2843 in FLT3-mutated AML cell lines and primary patient samples. Importantly, we found that VEN synergistically enhances cell death induced by MRX-2843 in FLT3-ITD AML cells with acquired resistance to cytarabine (AraC) or VEN+AraC. VEN and MRX-2843 significantly reduce colony-forming capacity of FLT3-ITD primary AML cells. Mechanistic studies show that MRX-2843 decreases Mcl-1 and c-Myc protein levels via transcriptional regulation and combined MRX-2843 and VEN significantly decreases oxidative phosphorylation in FLT3-ITD AML cells. Our findings highlight a promising combination therapy against FLT3-ITD AML, supporting further in vitro and in vivo testing.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, PR China
| | - Fangbing Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Yuqing Gai
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Chunhuai Li
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, PR China
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, PR China.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
3
|
Mason NR, Cahill H, Diamond Y, McCleary K, Kotecha RS, Marshall GM, Mateos MK. Down syndrome-associated leukaemias: current evidence and challenges. Ther Adv Hematol 2024; 15:20406207241257901. [PMID: 39050114 PMCID: PMC11268035 DOI: 10.1177/20406207241257901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/13/2024] [Indexed: 07/27/2024] Open
Abstract
Children with Down syndrome (DS) are at increased risk of developing haematological malignancies, in particular acute megakaryoblastic leukaemia and acute lymphoblastic leukaemia. The microenvironment established by abnormal haematopoiesis driven by trisomy 21 is compounded by additional genetic and epigenetic changes that can drive leukaemogenesis in patients with DS. GATA-binding protein 1 (GATA1) somatic mutations are implicated in the development of transient abnormal myelopoiesis and the progression to myeloid leukaemia of DS (ML-DS) and provide a model of the multi-step process of leukaemogenesis in DS. This review summarises key genetic drivers for the development of leukaemia in patients with DS, the biology and treatment of ML-DS and DS-associated acute lymphoblastic leukaemia, late effects of treatments for DS-leukaemias and the focus for future targeted therapy.
Collapse
Affiliation(s)
- Nicola R. Mason
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Hilary Cahill
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Yonatan Diamond
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Karen McCleary
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Rishi S. Kotecha
- Department of Clinical Haematology, Oncology, Blood and Bone Marrow Transplantation, Perth Children’s Hospital, Perth, WA, Australia
- Leukaemia Translational Research Laboratory, Telethon Kids Cancer Centre, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Glenn M. Marshall
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, Randwick, NSW, Australia School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Marion K. Mateos
- Kids Cancer Centre, Sydney Children’s Hospital, Level 1 South Wing, High Street, Randwick, NSW 2031, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
4
|
Sit YT, Takasaki K, An HH, Xiao Y, Hurtz C, Gearhart PA, Zhang Z, Gadue P, French DL, Chou ST. Synergistic roles of DYRK1A and GATA1 in trisomy 21 megakaryopoiesis. JCI Insight 2023; 8:e172851. [PMID: 37906251 PMCID: PMC10895998 DOI: 10.1172/jci.insight.172851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Patients with Down syndrome (DS), or trisomy 21 (T21), are at increased risk of transient abnormal myelopoiesis (TAM) and acute megakaryoblastic leukemia (ML-DS). Both TAM and ML-DS require prenatal somatic mutations in GATA1, resulting in the truncated isoform GATA1s. The mechanism by which individual chromosome 21 (HSA21) genes synergize with GATA1s for leukemic transformation is challenging to study, in part due to limited human cell models with wild-type GATA1 (wtGATA1) or GATA1s. HSA21-encoded DYRK1A is overexpressed in ML-DS and may be a therapeutic target. To determine how DYRK1A influences hematopoiesis in concert with GATA1s, we used gene editing to disrupt all 3 alleles of DYRK1A in isogenic T21 induced pluripotent stem cells (iPSCs) with and without the GATA1s mutation. Unexpectedly, hematopoietic differentiation revealed that DYRK1A loss combined with GATA1s leads to increased megakaryocyte proliferation and decreased maturation. This proliferative phenotype was associated with upregulation of D-type cyclins and hyperphosphorylation of Rb to allow E2F release and derepression of its downstream targets. Notably, DYRK1A loss had no effect in T21 iPSCs or megakaryocytes with wtGATA1. These surprising results suggest that DYRK1A and GATA1 may synergistically restrain megakaryocyte proliferation in T21 and that DYRK1A inhibition may not be a therapeutic option for GATA1s-associated leukemias.
Collapse
Affiliation(s)
- Ying Ting Sit
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kaoru Takasaki
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hyun Hyung An
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yan Xiao
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Christian Hurtz
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Peter A Gearhart
- Deparment of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, Pennsylvania, USA
| | - Zhe Zhang
- Department of Biomedical Informatics and
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stella T Chou
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Shivamallappa MD, Mullins A, Browning Carmo K. Bullous eruptions in transient abnormal myelopoiesis with normal phenotype. BMJ Case Rep 2023; 16:e251523. [PMID: 37028822 PMCID: PMC10083739 DOI: 10.1136/bcr-2022-251523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
Cutaneous lesions are common manifestation of congenital leukaemia especially myeloid type with incidence of 25%-50% in reported cases. It is relatively rare in transient abnormal myelopoiesis (TAM) seen in trisomy 21 (~10%). The rashes seen in leukaemia and TAM are different. We report a case with a rare presentation of confluent bullous eruption in a phenotypically normal neonate with trisomy 21 restricted to haematopoietic blast cells. This rash resolved rapidly after low-dose cytarabine therapy with normalisation of total white cell counts. The risk of Down syndrome-associated myeloid leukaemia in such cases is still high (19%-23%) in first 5 years and rare thereafter.
Collapse
Affiliation(s)
| | - Anna Mullins
- Oncology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Oncology, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Kathryn Browning Carmo
- Neonatal and Paediatric Emergency Transport Service, The Sydney Children's Hospitals Network Randwick and Westmead, Bankstown Aerodrome, New South Wales, Australia
| |
Collapse
|
6
|
Wu S, Edwards H, Wang D, Liu S, Qiao X, Carter J, Wang Y, Taub JW, Wang G, Ge Y. Inhibition of Mcl-1 Synergistically Enhances the Antileukemic Activity of Gilteritinib and MRX-2843 in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia. Cells 2022; 11:2752. [PMID: 36078163 PMCID: PMC9455003 DOI: 10.3390/cells11172752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3)-internal tandem duplication (FLT3-ITD) mutations occur in about 25% of all acute myeloid leukemia (AML) patients and confer a poor prognosis. FLT3 inhibitors have been developed to treat patients with FLT3-mutated AML and have shown promise, though the acquisition of resistance occurs, highlighting the need for combination therapies to prolong the response to FLT3 inhibitors. In this study, we investigated the selective Mcl-1 inhibitor AZD5991 in combination with the FLT3 inhibitors gilteritinib and MRX-2843. The combinations synergistically induce apoptosis in AML cell lines and primary patient samples. The FLT3 inhibitors downregulate c-Myc transcripts through the suppression of the MEK/ERK and JAK2/STAT5 pathways, resulting in the decrease in c-Myc protein. This suppression of c-Myc plays an important role in the antileukemic activity of AZD5991. Interestingly, the suppression of c-Myc enhances AZD5991-inudced cytochrome c release and the subsequent induction of apoptosis. AZD5991 enhances the antileukemic activity of the FLT3 inhibitors gilteritinib and MRX-2843 against FLT3-mutated AML in vitro, warranting further development.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130021, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Deying Wang
- The Tumor Center of the First Hospital of Jilin University, Changchun 130021, China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jenna Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yue Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jeffrey W. Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children’s Hospital of Michigan, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt. Pleasant, MI 48859, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Liu S, Qiao X, Wu S, Gai Y, Su Y, Edwards H, Wang Y, Lin H, Taub JW, Wang G, Ge Y. c-Myc plays a critical role in the antileukemic activity of the Mcl-1-selective inhibitor AZD5991 in acute myeloid leukemia. Apoptosis 2022; 27:913-928. [PMID: 35943677 DOI: 10.1007/s10495-022-01756-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2022] [Indexed: 12/15/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive disease with a low 5-year overall survival rate of 29.5%. Thus, more effective therapies are in need to prolong survival of AML patients. Mcl-1 is overexpressed in AML and is associated with poor prognosis, representing a promising therapeutic target. The oncoprotein c-Myc is also overexpressed in AML and is a significant prognostic factor. In addition, Mcl-1 is required for c-Myc induced AML, indicating that c-Myc-driven AML harbors a Mcl-1 dependency and co-targeting of Mcl-1 and c-Myc represents a promising strategy to eradicate AML. In this study, we investigated the role of c-Myc in the antileukemic activity of Mcl-1 selective inhibitor AZD5991 and the antileukemic activity of co-targeting of Mcl-1 and c-Myc in preclinical models of AML. We found that c-Myc protein levels negatively correlated with AZD5991 EC50s in AML cell lines and primary patient samples. AZD5991 combined with inhibition of c-Myc synergistically induced apoptosis in AML cell lines and primary patient samples, and cooperatively targeted leukemia progenitor cells. AML cells with acquired resistance to AZD5991 were resensitized to AZD5991 when c-Myc was inhibited. The combination also showed promising and synergistic antileukemic activity in vitro against AML cell lines with acquired resistance to the main chemotherapeutic drug AraC and primary AML cells derived from a patient at relapse post chemotherapy. The oncoprotein c-Myc represents a potential biomarker of AZD5991 sensitivity and inhibition of c-Myc synergistically enhances the antileukemic activity of AZD5991 against AML.
Collapse
Affiliation(s)
- Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Shuangshuang Wu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China.,Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yuqinq Gai
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.,Central Michigan University College of Medicine, Mt. Pleasant, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun, P.R. China.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, 421 E. Canfield, 48201, Detroit, MI, USA. .,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
8
|
Gupte A, Al-Antary ET, Edwards H, Ravindranath Y, Ge Y, Taub JW. The Paradox of Myeloid Leukemia Associated with Down Syndrome. Biochem Pharmacol 2022; 201:115046. [PMID: 35483417 DOI: 10.1016/j.bcp.2022.115046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023]
Abstract
Children with Down syndrome constitute a distinct genetic population who has a greater risk of developing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) compared to their non-Down syndrome counterparts. The risk for developing solid tumors is also distinct from the non-Down syndrome population. In the case of myeloid leukemias, the process of leukemogenesis in Trisomy 21 begins in early fetal life where genetic drivers including GATA1 mutations lead to the development of the preleukemic condition, transient abnormal myelopoiesis (TAM). Various other mutations in genes encoding cohesin, epigenetic regulators and RAS pathway can result in subsequent progression to Myeloid Leukemia associated with Down Syndrome (ML-DS). The striking paradoxical feature in the Down syndrome population is that even though there is a higher predisposition to developing AML, they are also very sensitive to chemotherapy agents, particularly cytarabine, thus accounting for the very high cure rates for ML-DS compared to AML in children without Down syndrome. Current clinical trials for ML-DS attempt to balance effective curative therapies while trying to reduce treatment-associated toxicities including infections by de-intensifying chemotherapy doses, if possible. The small proportion of patients with relapsed ML-DS have an extremely poor prognosis and require the development of new therapies.
Collapse
Affiliation(s)
- Avanti Gupte
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eman T Al-Antary
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaddanapudi Ravindranath
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA; Discipline of Pediatrics, Central Michigan University, Saginaw, Michigan, USA.
| |
Collapse
|
9
|
AraC: up for down. Blood 2021; 138:2302-2303. [PMID: 34882214 DOI: 10.1182/blood.2021013439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022] Open
|
10
|
Schmidt MP, Colita A, Ivanov AV, Coriu D, Miron IC. Outcomes of patients with Down syndrome and acute leukemia: A retrospective observational study. Medicine (Baltimore) 2021; 100:e27459. [PMID: 34622870 PMCID: PMC8500660 DOI: 10.1097/md.0000000000027459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT Children with Down syndrome (DS) have a higher risk of developing acute leukemia than do those without DS. There are few studies in the literature about outcome, survival, and difficulties of treating patients with DS and acute leukemia in a developing country. This study aimed to analyze the outcome, response to treatment, survival, treatment complications, and causes of death in patients with DS and acute leukemia compared with those in patients with acute leukemia without DS diagnosed in the same period of time.We conducted a retrospective observational analysis including a cohort of 21 patients with DS and acute leukemia diagnosed between 2009 and 2018 in 3 hemato-oncology centers (2 pediatric centers and 1 adult hematology center). A group of patients with DS-acute lymphoblastic leukemia (DS-ALL) was analyzed and compared with a group of 165 patients with acute lymphoblastic leukemia without DS, and a group of patients with DS-acute myeloid leukemia (DS-AML) was analyzed and compared with a group of 50 patients with acute myeloid leukemia without DS, which was diagnosed during the same period of time (2009-2018) and treated under similar conditions in terms of both treatment protocols and economic resources.The overall survival rates in children with DS-ALL and DS-AML were 35.7% and 57.1%, respectively (P = .438). The overall survival rate was significantly worse in children with DS-ALL than in those with acute lymphoblastic leukemia without DS (35.71% vs 75.80%, P = .001). We noted that treatment-related mortality in the patients with DS-ALL was high (50%) (infections and toxicities related to chemotherapy); this result was significantly different from that for patients with leukemia without DS (P < .0001). The relapse rate was higher in patients with DS-ALL but not significantly higher than that in patients without DS (P = .13).In contrast, the overall survival rate was better for patients with DS-AML than for those with acute myeloid leukemia without DS (57.1% vs 45.1%, P = .47).Because of the particularities of the host, we suggest that DS-ALL and DS-AML should be considered as independent diseases and treated according to specific protocols with therapy optimization per the minimal residual disease.
Collapse
Affiliation(s)
| | - Anca Colita
- Fundeni Clinical Institut - Pediatrics Department, Bucharest, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca-Viorica Ivanov
- “Sf Maria” Children's Hospital-Hemato-Oncology Department, Iasi, Romania
- “Grigore T Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Daniel Coriu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Fundeni Clinical Institut-Hematology Department, Bucharest, Romania
| | - Ingrith-Crenguta Miron
- “Sf Maria” Children's Hospital-Hemato-Oncology Department, Iasi, Romania
- “Grigore T Popa” University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
11
|
Qiao X, Ma J, Knight T, Su Y, Edwards H, Polin L, Li J, Kushner J, Dzinic SH, White K, Wang J, Lin H, Wang Y, Wang L, Wang G, Taub JW, Ge Y. The combination of CUDC-907 and gilteritinib shows promising in vitro and in vivo antileukemic activity against FLT3-ITD AML. Blood Cancer J 2021; 11:111. [PMID: 34099621 PMCID: PMC8184771 DOI: 10.1038/s41408-021-00502-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
About 25% of patients with acute myeloid leukemia (AML) harbor FMS-like tyrosine kinase 3 (FLT3) internal tandem duplication (ITD) mutations and their prognosis remains poor. Gilteritinib is a FLT3 inhibitor approved by the US FDA for use in adult FLT3-mutated relapsed or refractory AML patients. Monotherapy, while efficacious, shows short-lived responses, highlighting the need for combination therapies. Here we show that gilteritinib and CUDC-907, a dual inhibitor of PI3K and histone deacetylases, synergistically induce apoptosis in FLT3-ITD AML cell lines and primary patient samples and have striking in vivo efficacy. Upregulation of FLT3 and activation of ERK are mechanisms of resistance to gilteritinib, while activation of JAK2/STAT5 is a mechanism of resistance to CUDC-907. Gilteritinib and CUDC-907 reciprocally overcome these mechanisms of resistance. In addition, the combined treatment results in cooperative downregulation of cellular metabolites and persisting antileukemic effects. CUDC-907 plus gilteritinib shows synergistic antileukemic activity against FLT3-ITD AML in vitro and in vivo, demonstrating strong translational therapeutic potential.
Collapse
Affiliation(s)
- Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tristan Knight
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jian Wang
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Liping Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI, USA.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
12
|
Luedtke DA, Su Y, Ma J, Li X, Buck SA, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Lin H, Taub JW, Ge Y. Inhibition of CDK9 by voruciclib synergistically enhances cell death induced by the Bcl-2 selective inhibitor venetoclax in preclinical models of acute myeloid leukemia. Signal Transduct Target Ther 2020; 5:17. [PMID: 32296028 PMCID: PMC7042303 DOI: 10.1038/s41392-020-0112-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
Venetoclax, an FDA-approved Bcl-2 selective inhibitor for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia (AML), is tolerated well in elderly patients with AML and has good overall response rates; however, resistance remains a concern. In this study, we show that targeting CDK9 with voruciclib in combination with venetoclax results in synergistic antileukemic activity against AML cell lines and primary patient samples. CDK9 inhibition enhances venetoclax activity through downregulation of Mcl-1 and c-Myc. However, downregulation of Mcl-1 is transient, which necessitates an intermittent treatment schedule to allow for repeated downregulation of Mcl-1. Accordingly, an every other day schedule of the CDK9 inhibitor is effective in vitro and in vivo in enhancing the efficacy of venetoclax. Our preclinical data provide a rationale for an intermittent drug administration schedule for the clinical evaluation of the combination treatment for AML.
Collapse
Affiliation(s)
- Daniel A Luedtke
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yongwei Su
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Jun Ma
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Xinyu Li
- School of Life Sciences, Jilin University, 130021, Changchun, China
| | - Steven A Buck
- Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI, USA, 48201.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, 130021, Changchun, China
| | - Jeffrey W Taub
- Division of Pediatric Hematology and Oncology, Children's Hospital of Michigan, Detroit, MI, USA, 48201.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, 48201, USA. .,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Ma J, Zhao S, Qiao X, Knight T, Edwards H, Polin L, Kushner J, Dzinic SH, White K, Wang G, Zhao L, Lin H, Wang Y, Taub JW, Ge Y. Inhibition of Bcl-2 Synergistically Enhances the Antileukemic Activity of Midostaurin and Gilteritinib in Preclinical Models of FLT3-Mutated Acute Myeloid Leukemia. Clin Cancer Res 2019; 25:6815-6826. [PMID: 31320594 DOI: 10.1158/1078-0432.ccr-19-0832] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the efficacy of the combination of the FLT3 inhibitors midostaurin or gilteritinib with the Bcl-2 inhibitor venetoclax in FLT3-internal tandem duplication (ITD) acute myeloid leukemia (AML) and the underlying molecular mechanism. EXPERIMENTAL DESIGN Using both FLT3-ITD cell lines and primary patient samples, Annexin V-FITC/propidium iodide staining and flow cytometry analysis were used to quantify cell death induced by midostaurin or gilteritinib, alone or in combination with venetoclax. Western blot analysis was performed to assess changes in protein expression levels of members of the JAK/STAT, MAPK/ERK, and PI3K/AKT pathways, and members of the Bcl-2 family of proteins. The MV4-11-derived xenograft mouse model was used to assess in vivo efficacy of the combination of gilteritinib and venetoclax. Lentiviral overexpression of Mcl-1 was used to confirm its role in cell death induced by midostaurin or gilteritinib with venetoclax. Changes of Mcl-1 transcript levels were assessed by RT-PCR. RESULTS The combination of midostaurin or gilteritinib with venetoclax potently and synergistically induces apoptosis in FLT3-ITD AML cell lines and primary patient samples. The FLT3 inhibitors induced downregulation of Mcl-1, enhancing venetoclax activity. Phosphorylated-ERK expression is induced by venetoclax but abolished by the combination of venetoclax with midostaurin or gilteritinib. Simultaneous downregulation of Mcl-1 by midostaurin or gilteritinib and inhibition of Bcl-2 by venetoclax results in "free" Bim, leading to synergistic induction of apoptosis. In vivo results show that gilteritinib in combination with venetoclax has therapeutic potential. CONCLUSIONS Inhibition of Bcl-2 via venetoclax synergistically enhances the efficacy of midostaurin and gilteritinib in FLT3-mutated AML.See related commentary by Perl, p. 6567.
Collapse
Affiliation(s)
- Jun Ma
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Shoujing Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinan Qiao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tristan Knight
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, P.R.China
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, P.R. China
| | - Jeffrey W Taub
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Children's Hospital of Michigan, Detroit, Michigan.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Yubin Ge
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. .,Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.,Molecular Therapeutics Program, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
14
|
Venetoclax Synergistically Enhances the Anti-leukemic Activity of Vosaroxin Against Acute Myeloid Leukemia Cells Ex Vivo. Target Oncol 2019; 14:351-364. [DOI: 10.1007/s11523-019-00638-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Luedtke DA, Su Y, Liu S, Edwards H, Wang Y, Lin H, Taub JW, Ge Y. Inhibition of XPO1 enhances cell death induced by ABT-199 in acute myeloid leukaemia via Mcl-1. J Cell Mol Med 2018; 22:6099-6111. [PMID: 30596398 PMCID: PMC6237582 DOI: 10.1111/jcmm.13886] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/24/2023] Open
Abstract
The antiapoptotic Bcl-2 family proteins play critical roles in resistance to chemotherapy in acute myeloid leukaemia (AML). The Bcl-2-selective inhibitor ABT-199 (Venetoclax) shows promising antileukaemic activity against AML, though Mcl-1 limits its antileukaemic activity. XPO1 is a nuclear exporter overexpressed in AML cells and its inhibition decreases Mcl-1 levels in cancer cells. Thus, we hypothesized that the XPO1-selective inhibitor KPT-330 (Selinexor) can synergize with ABT-199 to induce apoptosis in AML cells through down-regulation of Mcl-1. The combination of KPT-330 and ABT-199 was found to synergistically induce apoptosis in AML cell lines and primary patient samples and cooperatively inhibit colony formation capacity of primary AML cells. KPT-330 treatment decreased Mcl-1 protein after apoptosis initiation. However, binding of Bim to Mcl-1 induced by ABT-199 was abrogated by KPT-330 at the same time as apoptosis initiation. KPT-330 treatment increased binding of Bcl-2 to Bim but was overcome by ABT-199 treatment, demonstrating that KPT-330 and ABT-199 reciprocally overcome apoptosis resistance. Mcl-1 knockdown and overexpression confirmed its critical role in the antileukaemic activity of the combination. In summary, KPT-330 treatment, alone and in combination with ABT-199, modulates Mcl-1, which plays an important role in the antileukaemic activity of the combination.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis/drug effects
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Hydrazines/administration & dosage
- Karyopherins/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- Myeloid Cell Leukemia Sequence 1 Protein/genetics
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Sulfonamides/administration & dosage
- Triazoles/administration & dosage
- Exportin 1 Protein
Collapse
Affiliation(s)
- Daniel A. Luedtke
- Cancer Biology Graduate ProgramWayne State University School of MedicineDetroitMIUSA
| | - Yongwei Su
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
| | - Shuang Liu
- National Engineering Laboratory for AIDS VaccineSchool of Life SciencesJilin UniversityChangchunChina
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
| | - Holly Edwards
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Yue Wang
- Department of Pediatric Hematology and OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hai Lin
- Department of Hematology and OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jeffrey W. Taub
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
- Division of Pediatric Hematology and OncologyChildren's Hospital of MichiganDetroitMIUSA
| | - Yubin Ge
- Cancer Biology Graduate ProgramWayne State University School of MedicineDetroitMIUSA
- Department of PediatricsWayne State University School of MedicineDetroitMIUSA
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Molecular Therapeutics ProgramKarmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
16
|
Ning C, Liang M, Liu S, Wang G, Edwards H, Xia Y, Polin L, Dyson G, Taub JW, Mohammad RM, Azmi AS, Zhao L, Ge Y. Targeting ERK enhances the cytotoxic effect of the novel PI3K and mTOR dual inhibitor VS-5584 in preclinical models of pancreatic cancer. Oncotarget 2018; 8:44295-44311. [PMID: 28574828 PMCID: PMC5546481 DOI: 10.18632/oncotarget.17869] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/01/2017] [Indexed: 12/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease in urgent need of newer therapeutic modalities. Majority of patients with PDAC have mutations in KRAS, which unfortunately remains an ineffectual target. Our strategy here is to target KRAS downstream effectors PI3K and mTOR. In this study, we investigated the antitumor efficacy of the novel PI3K and mTOR dual inhibitor VS-5584 in PDAC. Our data shows that PI3K/mTOR dual inhibition causes ERK activation in all tested PDAC cell lines. Although the MEK inhibitor GSK1120212 could abrogate VS-5584-induced ERK activation, it did not substantially enhance cell death in all the cell lines tested. However, combination with ERK inhibitor SCH772984 not only mitigated VS-5584-induced ERK activation but also enhanced VS-5584-induced cell death. In a xenograft model of PDAC, we observed 28% and 44% tumor inhibition for individual treatment with VS-5584 and SCH772984, respectively, while the combined treatment showed superior tumor inhibition (80%) compared to vehicle control treatment. Our findings support the clinical development of VS-5584 and ERK inhibitor combination for PDAC treatment.
Collapse
Affiliation(s)
- Changwen Ning
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Min Liang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P.R. China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yang Xia
- Department of Pathology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, P.R. China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
17
|
Zhao J, Xie C, Edwards H, Wang G, Taub JW, Ge Y. Histone deacetylases 1 and 2 cooperate in regulating BRCA1, CHK1, and RAD51 expression in acute myeloid leukemia cells. Oncotarget 2018; 8:6319-6329. [PMID: 28030834 PMCID: PMC5351634 DOI: 10.18632/oncotarget.14062] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemotherapy and a high relapse rate highlight the importance of finding new therapeutic options for the treatment of acute myeloid leukemia (AML). Histone deacetylase (HDAC) inhibitors (HDACIs) are a promising class of drugs for the treatment of AML. HDACIs have limited single-agent clinical activities, but when combined with conventional or investigational drugs they have demonstrated favorable outcomes. Previous studies have shown that decreasing expression of important DNA damage repair proteins enhances standard chemotherapy drugs. In our recent studies, the pan-HDACI panobinostat has been shown to enhance conventional chemotherapy drugs cytarabine and daunorubicin in AML cells by decreasing the expression of BRCA1, CHK1, and RAD51. In this study, we utilized class- and isoform-specific HDACIs and shRNA knockdown of individual HDACs to determine which HDACs are responsible for decreased expression of BRCA1, CHK1, and RAD51 following pan-HDACI treatment in AML cells. We found that inhibition of both HDAC1 and HDAC2 was necessary to decrease the expression of BRCA1, CHK1, and RAD51, enhance cytarabine- or daunorubicin-induced DNA damage and apoptosis, and abrogate cytarabine- or daunorubicin-induced cell cycle checkpoint activation in AML cells. These findings may aid in the development of rationally designed drug combinations for the treatment of AML.
Collapse
Affiliation(s)
- Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine and Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine and Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Yubin Ge
- National Engineering Laboratory for AIDS Vaccine and Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
18
|
Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, Taub JW, Lin H, Ge Y. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget 2017; 7:34785-99. [PMID: 27166183 PMCID: PMC5085189 DOI: 10.18632/oncotarget.9185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022] Open
Abstract
Resistance to standard chemotherapy agents remains a major obstacle for improving treatment outcomes for acute myeloid leukemia (AML). The Bcl-2-selective inhibitor ABT-199 has demonstrated encouraging preclinical results, drug resistance remains a concern. Mcl-1 has been demonstrated to contribute to ABT-199 resistance, thus combining with therapies that target Mcl-1 could overcome such resistance. In this study, we utilized a CHK1 inhibitor, LY2603618, to decrease Mcl-1 and enhance ABT-199 efficacy. We found that LY2603618 treatment resulted in abolishment of the G2/M cell cycle checkpoint and increased DNA damage, which was partially dependent on CDK activity. LY2603618 treatment resulted in decrease of Mcl-1, which coincided with the initiation of apoptosis. Overexpression of Mcl-1 in AML cells significantly attenuated apoptosis induced by LY2603618, confirming the critical role of Mcl-1 in apoptosis induced by the agent. Simultaneous treatment with LY2603618 and ABT-199 resulted in synergistic induction of apoptosis in both AML cell lines and primary patient samples. Our findings provide new insights into overcoming a mechanism of intrinsic ABT-199 resistance in AML cells and support the clinical development of combined ABT-199 and CHK1 inhibition.
Collapse
Affiliation(s)
- Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Xiaojia Niu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
19
|
Su Y, Li X, Ma J, Zhao J, Liu S, Wang G, Edwards H, Taub JW, Lin H, Ge Y. Targeting PI3K, mTOR, ERK, and Bcl-2 signaling network shows superior antileukemic activity against AML ex vivo. Biochem Pharmacol 2017; 148:13-26. [PMID: 29208365 DOI: 10.1016/j.bcp.2017.11.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/30/2017] [Indexed: 02/03/2023]
Abstract
Acute myeloid leukemia (AML) remains challenging to treat and needs more effective treatments. The PI3K/mTOR pathway is involved in cell survival and has been shown to be constitutively active in 50-80% of AML patients. However, targeting the PI3K/mTOR pathway results in activation of the ERK pathway, which also plays an important role in cell survival. In addition, AML cells often overexpress antiapoptotic Bcl-2 family proteins (e.g., Bcl-2), preventing cell death. Thus, our strategy here is to target the PI3K, mTOR (by VS-5584, a PI3K and mTOR dual inhibitor), ERK (by SCH772984, an ERK-selective inhibitor), and Bcl-2 (by ABT-199, a Bcl-2-selective inhibitor) signaling network to kill AML cells. In this study, we show that while inhibition of PI3K, mTOR, and ERK showed superior induction of cell death compared to inhibition of PI3K and mTOR, the levels of cell death were modest in some AML cell lines and primary patient samples tested. Although simultaneous inhibition of PI3K, mTOR, and ERK caused downregulation of Mcl-1 and upregulation of Bim, immunoprecipitation of Bcl-2 revealed increased binding of Bim to Bcl-2, which was abolished by the addition of ABT-199, suggesting that Bim was bound to Bcl-2 which prevented cell death. Treatment with combined VS-5584, SCH772984, and ABT-199 showed significant increase in cell death in AML cell lines and primary patient samples and significant reduction in AML colony formation in primary patient samples, while there was no significant effect on colony formation of normal human CD34+ hematopoietic progenitor cells. Taken together, our findings show that inhibition of PI3K, mTOR, and ERK synergistically induces cell death in AML cells, and addition of ABT-199 enhances cell death further. Thus, our data support targeting the PI3K, mTOR, ERK, and Bcl-2 signaling network for the treatment of AML.
Collapse
Affiliation(s)
- Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shuang Liu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, PR China.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
20
|
Abstract
In this article we discuss the occurrence of myeloid neoplasms in patients with a range of syndromes that are due to germline defects of the RAS signaling pathway and in patients with trisomy 21. Both RAS mutations and trisomy 21 are common somatic events contributing to leukemogenis. Thus, the increased leukemia risk observed in children affected by these conditions is biologically highly plausible. Children with myeloid neoplasms in the context of these syndromes require different treatments than children with sporadic myeloid neoplasms and provide an opportunity to study the role of trisomy 21 and RAS signaling during leukemogenesis and development.
Collapse
Affiliation(s)
- Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany.
| | - Shai Izraeli
- The Genes, Development and Environment Institute for Pediatric Research, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel; Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Signal Transduct Target Ther 2017; 2:17012. [PMID: 29263915 PMCID: PMC5661618 DOI: 10.1038/sigtrans.2017.12] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a serious disease. The 5-year survival rates remain frustratingly low (65% for children and 26% for adults). Resistance to frontline chemotherapy (usually cytarabine) often develops; therefore a new treatment modality is needed. Bcl-2 family proteins play an important role in balancing cell survival and apoptosis. The antiapoptotic Bcl-2 family proteins have been found to be dysregulated in AML. ABT-199, a BH3 mimetic, was developed to target antiapoptotic protein Bcl-2. Although ABT-199 has demonstrated promising results, resistance occurs. Previous studies in AML show that ABT-199 alone decreases the association of proapoptotic protein Bim with Bcl-2, but this is compensated by increased association of Bim with prosurvival protein Mcl-1, stabilizing Mcl-1, resulting in resistance to ABT-199. In this study, we investigated the antileukemic activity of the Mcl-1-selective inhibitor A-1210477 in combination with ABT-199 in AML cells. We found that A-1210477 synergistically induced apoptosis with ABT-199 in AML cell lines and primary patient samples. The synergistic induction of apoptosis was decreased upon Bak, Bax and Bim knockdown. While A-1210477 treatment alone also increased Mcl-1 protein levels, combination with ABT-199 reduced binding of Bim to Mcl-1. Our results demonstrate that sequestration of Bim by Mcl-1, a mechanism of ABT-199 resistance, can be abrogated by combined treatment with the Mcl-1 inhibitor A-1201477.
Collapse
|
22
|
Improved outcomes for myeloid leukemia of Down syndrome: a report from the Children's Oncology Group AAML0431 trial. Blood 2017; 129:3304-3313. [PMID: 28389462 DOI: 10.1182/blood-2017-01-764324] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/27/2017] [Indexed: 02/01/2023] Open
Abstract
Patients with myeloid leukemia of Down syndrome (ML-DS) have favorable event-free survival (EFS), but experience significant treatment-related morbidity and mortality. ML-DS blast cells ex vivo have increased sensitivity to cytarabine (araC) and daunorubicin, suggesting that optimizing drug dosing may improve outcomes while reducing toxicity. The Children's Oncology Group (COG) AAML0431 trial consisted of 4 cycles of induction and 2 cycles of intensification therapy based on the treatment schema of the previous COG A2971 trial with several modifications. High-dose araC (HD-araC) was used in the second induction cycle instead of the intensification cycle, and 1 of 4 daunorubicin-containing induction cycles was eliminated. For 204 eligible patients, 5-year EFS was 89.9% and overall survival (OS) was 93.0%. The 5-year OS for 17 patients with refractory/relapsed leukemia was 34.3%. We determined the clinical significance of minimal residual disease (MRD) levels as measured by flow cytometry on day 28 of induction I. MRD measurements, available for 146 of the 204 patients, were highly predictive of treatment outcome; 5-year disease-free survival for MRD-negative patients (n = 125) was 92.7% vs 76.2% for MRD-positive patients (n = 21) (log-rank P = .011). Our results indicated that earlier use of HD-araC led to better EFS and OS in AAML0431 than in past COG studies. A 25% reduction in the cumulative daunorubicin dose did not impact outcome. MRD, identified as a new prognostic factor for ML-DS patients, can be used for risk stratification in future clinical trials. This trial was registered at www.clinicaltrials.gov as #NCT00369317.
Collapse
|
23
|
Ma J, Li X, Su Y, Zhao J, Luedtke DA, Epshteyn V, Edwards H, Wang G, Wang Z, Chu R, Taub JW, Lin H, Wang Y, Ge Y. Mechanisms responsible for the synergistic antileukemic interactions between ATR inhibition and cytarabine in acute myeloid leukemia cells. Sci Rep 2017; 7:41950. [PMID: 28176818 PMCID: PMC5296912 DOI: 10.1038/srep41950] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) continues to be a challenging disease to treat, thus new treatment strategies are needed. In this study, we investigated the antileukemic effects of ATR inhibition alone or combined with cytarabine in AML cells. Treatment with the ATR-selective inhibitor AZ20 caused proliferation inhibition in AML cell lines and primary patient samples. It partially abolished the G2 cell cycle checkpoint and caused DNA replication stress and damage, accompanied by CDK1-independent apoptosis and downregulation of RRM1 and RRM2. AZ20 synergistically enhanced cytarabine-induced proliferation inhibition and apoptosis, abolished cytarabine-induced S and G2/M cell cycle arrest, and cooperated with cytarabine in inducing DNA replication stress and damage in AML cell lines. These key findings were confirmed with another ATR-selective inhibitor AZD6738. Therefore, the cooperative induction of DNA replication stress and damage by ATR inhibition and cytarabine, and the ability of ATR inhibition to abrogate the G2 cell cycle checkpoint both contributed to the synergistic induction of apoptosis and proliferation inhibition in AML cell lines. Synergistic antileukemic interactions between AZ20 and cytarabine were confirmed in primary AML patient samples. Our findings provide insight into the mechanism of action underlying the synergistic antileukemic activity of ATR inhibition in combination with cytarabine in AML.
Collapse
Affiliation(s)
- Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Xinyu Li
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Yongwei Su
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China.,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Daniel A Luedtke
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Valeria Epshteyn
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, P. R. China
| | - Zhihong Wang
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Roland Chu
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, P. R. China
| | - Yue Wang
- Department of Pediatric Hematology and Oncology, The First Hospital of Jilin University, Changchun, P. R. China
| | - Yubin Ge
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
24
|
GATA factor mutations in hematologic disease. Blood 2017; 129:2103-2110. [PMID: 28179280 DOI: 10.1182/blood-2016-09-687889] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
GATA family proteins play essential roles in development of many cell types, including hematopoietic, cardiac, and endodermal lineages. The first three factors, GATAs 1, 2, and 3, are essential for normal hematopoiesis, and their mutations are responsible for a variety of blood disorders. Acquired and inherited GATA1 mutations contribute to Diamond-Blackfan anemia, acute megakaryoblastic leukemia, transient myeloproliferative disorder, and a group of related congenital dyserythropoietic anemias with thrombocytopenia. Conversely, germ line mutations in GATA2 are associated with GATA2 deficiency syndrome, whereas acquired mutations are seen in myelodysplastic syndrome, acute myeloid leukemia, and in blast crisis transformation of chronic myeloid leukemia. The fact that mutations in these genes are commonly seen in blood disorders underscores their critical roles and highlights the need to develop targeted therapies for transcription factors. This review focuses on hematopoietic disorders that are associated with mutations in two prominent GATA family members, GATA1 and GATA2.
Collapse
|
25
|
Bista R, Lee DW, Pepper OB, Azorsa DO, Arceci RJ, Aleem E. Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:22. [PMID: 28143565 PMCID: PMC5286849 DOI: 10.1186/s13046-017-0493-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/26/2017] [Indexed: 02/02/2023]
Abstract
Background Children with Down syndrome (DS) have increased risk for developing AML (DS-AMKL), and they usually experience severe therapy-related toxicities compared to non DS-AMKL. Refractory/relapsed disease has very poor outcome, and patients would benefit from novel, less toxic, therapeutic strategies that overcome resistance. Relapse/resistance are linked to cancer stem cells with high aldehyde dehydrogenase (ALDH) activity. The purpose of the present work was to study less toxic alternative therapeutic agents for relapsed/refractory DS-AMKL. Methods Fourteen AML cell lines including the DS-AMKL CMY and CMK from relapsed/refractory AML were used. Cytarabine (Ara-C), bortezomib (BTZ), disulfiram/copper (DSF/Cu2+) were evaluated for cytotoxicity, depletion of ALDH-positive cells, and resistance. BTZ-resistant CMY and CMK variants were generated by continuous BTZ treatment. Cell viability was assessed using CellTiter-Glo®, ALDH activity by ALDELUORTM, and proteasome inhibition by western blot of ubiquitinated proteins and the Proteasome-Glo™ Chymotrypsin-Like (CT-like) assay, apoptosis by Annexin V Fluos/Propidium iodide staining, and mutations were detected using PCR, cloning and sequencing. Results Ara-C-resistant AML cell lines were sensitive to BTZ and DSF/Cu2+. The Ara-C-resistant DS-AMKL CMY cells had a high percentage of ALDHbright “stem-like” populations that may underlie Ara-C resistance. One percent of these cells were still resistant to BTZ but sensitive to DSF/Cu2+. To understand the mechanism of BTZ resistance, BTZ resistant (CMY-BR) and (CMK-BR) were generated. A novel mutation PSMB5 Q62P underlied BTZ resistance, and was associated with an overexpression of the β5 proteasome subunit. BTZ-resistance conferred increased resistance to Ara-C due to G1 arrest in the CMY-BR cells, which protected the cells from S-phase damage by Ara-C. CMY-BR and CMK-BR cells were cross-resistant to CFZ and MG-132 but sensitive to DSF/Cu2+. In this setting, DSF/Cu2+ induced apoptosis and proteasome inhibition independent of CT-like activity inhibition. Conclusions We provide evidence that DSF/Cu2+ overcomes Ara-C and BTZ resistance in cell lines from DS-AMKL patients. A novel mutation underlying BTZ resistance was detected that may identify BTZ-resistant patients, who may not benefit from treatment with CFZ or Ara-C, but may be responsive to DSF/Cu2+. Our findings support the clinical development of DSF/Cu2+ as a less toxic efficacious treatment approach in patients with relapsed/refractory DS-AMKL. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0493-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ranjan Bista
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - David W Lee
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Oliver B Pepper
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA.,Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David O Azorsa
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Robert J Arceci
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA.,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA
| | - Eiman Aleem
- Institute of Molecular Medicine at Phoenix Children's Hospital, Phoenix, AZ, USA. .,Department of Child Health, University of Arizona College of Medicine-Phoenix, Biosciences Partnership Building (BSPB), 5th floor, 475 N 5th Street, Phoenix, AZ, 85004, USA. .,Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
26
|
Senkevitch E, Durum S. The promise of Janus kinase inhibitors in the treatment of hematological malignancies. Cytokine 2016; 98:33-41. [PMID: 28277287 DOI: 10.1016/j.cyto.2016.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 01/12/2023]
Abstract
The Janus kinases (JAK) are a family of kinases that play an essential role in cytokine signaling and are implicated in the pathogenesis of autoimmune diseases and hematological malignancies. As a result, the JAKs have become attractive therapeutic targets. The discovery of a JAK2 point mutation (JAK2 V617F) as the main cause of polycythemia vera lead to the development and FDA approval of a JAK1/2 inhibitor, ruxolitinib, in 2011. This review focuses on the various JAK and associated components aberrations implicated in myeloproliferative neoplasms, leukemias, and lymphomas. In addition to ruxolitinib, other JAK inhibitors are currently being evaluated in clinical trials for treating hematological malignancies. The use of JAK inhibitors alone or in combination therapy should be considered as a way to deliver targeted therapy to patients.
Collapse
Affiliation(s)
- Emilee Senkevitch
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Scott Durum
- Cytokines and Immunity Section, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, United States.
| |
Collapse
|
27
|
Qi W, Zhang W, Edwards H, Chu R, Madlambayan GJ, Taub JW, Wang Z, Wang Y, Li C, Lin H, Ge Y. Synergistic anti-leukemic interactions between panobinostat and MK-1775 in acute myeloid leukemia ex vivo. Cancer Biol Ther 2016; 16:1784-93. [PMID: 26529495 DOI: 10.1080/15384047.2015.1095406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
MK-1775 is the first-in-class selective Wee1 inhibitor which has been demonstrated to synergize with CHK1 inhibitors in various malignancies. In this study, we report that the pan-histone deacetylase inhibitor (HDACI) panobinostat synergizes with MK-1775 in acute myeloid leukemia (AML), a malignancy which remains a clinical challenge and requires more effective therapies. Using both AML cell line models and primary patient samples, we demonstrated that panobinostat and MK-1775 synergistically induced proliferation arrest and cell death. We also demonstrated that panobinostat had equal anti-leukemic activities against primary AML blasts derived from patients either at initial diagnosis or at relapse. Interestingly, treatment with panobinostat alone or in combination with MK-1775 resulted in decreased Wee1 protein levels as well as downregulation of the CHK1 pathway. shRNA knockdown of CHK1 significantly sensitized AML cells to MK-1775 treatment, while knockdown of Wee1 significantly enhanced both MK-1775- and panobinostat-induced cell death. Our results demonstrate that panobinostat synergizes with MK-1775 in AML cells, at least in part through downregulation of CHK1 and/or Wee1, providing compelling evidence for the clinical development of the combination treatment in AML.
Collapse
Affiliation(s)
- Wenxiu Qi
- a National Engineering Laboratory for AIDS Vaccine; Key Laboratory for Molecular Enzymology and Engineering; the Ministry of Education; School of Life Sciences; Jilin University ; Changchun , China
| | - Wenbo Zhang
- a National Engineering Laboratory for AIDS Vaccine; Key Laboratory for Molecular Enzymology and Engineering; the Ministry of Education; School of Life Sciences; Jilin University ; Changchun , China
| | - Holly Edwards
- b Department of Oncology ; Wayne State University School of Medicine ; Detroit , MI USA.,c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA
| | - Roland Chu
- d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | | | - Jeffrey W Taub
- c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA.,d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | - Zhihong Wang
- d Department of Pediatrics ; Wayne State University School of Medicine ; Detroit , MI USA.,e Division of Pediatric Hematology/Oncology; Children's Hospital of Michigan ; Detroit , MI USA
| | - Yue Wang
- f Department of Pediatric Hematology and Oncology; The First Hospital of Jilin University ; Cangchun , China
| | - Chunhuai Li
- f Department of Pediatric Hematology and Oncology; The First Hospital of Jilin University ; Cangchun , China
| | - Hai Lin
- g Department of Hematology and Oncology; The First Hospital of Jilin University ; Changchun , China
| | - Yubin Ge
- b Department of Oncology ; Wayne State University School of Medicine ; Detroit , MI USA.,c Molecular Therapeutics Program; Barbara Ann Karmanos Cancer Institute; Wayne State University School of Medicine ; Detroit , MI USA
| |
Collapse
|
28
|
Lee P, Bhansali R, Izraeli S, Hijiya N, Crispino JD. The biology, pathogenesis and clinical aspects of acute lymphoblastic leukemia in children with Down syndrome. Leukemia 2016; 30:1816-23. [PMID: 27285583 DOI: 10.1038/leu.2016.164] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/29/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
Abstract
Children with Down syndrome (DS) are at a 20-fold increased risk for acute lymphoblastic leukemia (DS-ALL). Although the etiology of this higher risk of developing leukemia remains largely unclear, the recent identification of CRLF2 (cytokine receptor like factor 2) and JAK2 mutations and study of the effect of trisomy of Hmgn1 and Dyrk1a (dual-specificity tyrosine phosphorylation-regulated kinase 1A) on B-cell development have shed significant new light on the disease process. Here we focus on the clinical features, biology and genetics of ALL in children with DS. We review the unique characteristics of DS-ALL on both the clinical and molecular levels and discuss the differences in treatments and outcomes in ALL in children with DS compared with those without DS. The identification of new biological insights is expected to pave the way for novel targeted therapies.
Collapse
Affiliation(s)
- P Lee
- Division of Hematology/Oncology/Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - R Bhansali
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - S Izraeli
- Edmond and Lily Safra, Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| | - N Hijiya
- Division of Hematology/Oncology/Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J D Crispino
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
29
|
Niu X, Zhao J, Ma J, Xie C, Edwards H, Wang G, Caldwell JT, Xiang S, Zhang X, Chu R, Wang ZJ, Lin H, Taub JW, Ge Y. Binding of Released Bim to Mcl-1 is a Mechanism of Intrinsic Resistance to ABT-199 which can be Overcome by Combination with Daunorubicin or Cytarabine in AML Cells. Clin Cancer Res 2016; 22:4440-51. [PMID: 27103402 DOI: 10.1158/1078-0432.ccr-15-3057] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate the molecular mechanism underlying intrinsic resistance to ABT-199. EXPERIMENTAL DESIGN Western blots and real-time RT-PCR were used to determine levels of Mcl-1 after ABT-199 treatment alone or in combination with cytarabine or daunorubicin. Immunoprecipitation of Bim and Mcl-1 were used to determine the effect of ABT-199 treatment on their interactions with Bcl-2 family members. Lentiviral short hairpin RNA knockdown of Bim and CRISPR knockdown of Mcl-1 were used to confirm their role in resistance to ABT-199. JC-1 assays and flow cytometry were used to determine drug-induced apoptosis. RESULTS Immunoprecipitation of Bim from ABT-199-treated cell lines and a primary patient sample demonstrated decreased association with Bcl-2, but increased association with Mcl-1 without corresponding change in mitochondrial outer membrane potential. ABT-199 treatment resulted in increased levels of Mcl-1 protein, unchanged or decreased Mcl-1 transcript levels, and increased Mcl-1 protein half-life, suggesting that the association with Bim plays a role in stabilizing Mcl-1 protein. Combining conventional chemotherapeutic agent cytarabine or daunorubicin with ABT-199 resulted in increased DNA damage along with decreased Mcl-1 protein levels, compared with ABT-199 alone, and synergistic induction of cell death in both AML cell lines and primary patient samples obtained from AML patients at diagnosis. CONCLUSIONS Our results demonstrate that sequestration of Bim by Mcl-1 is a mechanism of intrinsic ABT-199 resistance and supports the clinical development of ABT-199 in combination with cytarabine or daunorubicin for the treatment of AML. Clin Cancer Res; 22(17); 4440-51. ©2016 AACR.
Collapse
Affiliation(s)
- Xiaojia Niu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China. Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Jianyun Zhao
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Jun Ma
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, Michigan. Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Shengyan Xiang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, Tampa, Florida
| | - Xiaohong Zhang
- Department of Pathology and Cell Biology, USF Morsani College of Medicine, Tampa, Florida. Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Roland Chu
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Zhihong J Wang
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Hai Lin
- Department of Hematology and Oncology, The First Hospital of Jilin University, Changchun, China.
| | - Jeffrey W Taub
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan. Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan.
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
30
|
Affiliation(s)
- Alan B Cantor
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital/Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| |
Collapse
|
31
|
Mateos MK, Barbaric D, Byatt SA, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr 2015; 4:76-92. [PMID: 26835364 PMCID: PMC4729084 DOI: 10.3978/j.issn.2224-4336.2015.03.03] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Children with Down syndrome (DS) have a significantly increased risk of childhood leukemia, in particular acute megakaryoblastic leukemia (AMKL) and acute lymphoblastic leukemia (DS-ALL). A pre-leukemia, called transient myeloproliferative disorder (TMD), characterised by a GATA binding protein 1 (GATA1) mutation, affects up to 30% of newborns with DS. In most cases, the pre-leukemia regresses spontaneously, however one-quarter of these children will go on to develop AMKL or myelodysplastic syndrome (MDS) . AMKL and MDS occurring in young children with DS and a GATA1 somatic mutation are collectively termed myeloid leukemia of Down syndrome (ML-DS). This model represents an important multi-step process of leukemogenesis, and further study is required to identify therapeutic targets to potentially prevent development of leukemia. DS-ALL is a high-risk leukemia and mutations in the JAK-STAT pathway are frequently observed. JAK inhibitors may improve outcome for this type of leukemia. Genetic and epigenetic studies have revealed likely candidate drivers involved in development of ML-DS and DS-ALL. Overall this review aims to identify potential impacts of new research on how we manage children with DS, pre-leukemia and leukemia.
Collapse
Affiliation(s)
- Marion K Mateos
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| | - Draga Barbaric
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| | - Sally-Anne Byatt
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| | - Rosemary Sutton
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| | - Glenn M Marshall
- 1 Kids Cancer Centre, Sydney Children's Hospital, Randwick, Australia ; 2 School of Women's and Children's Health, University of New South Wales, Kensington, Australia ; 3 Children's Cancer Institute Australia, University of New South Wales, Lowy Cancer Centre, Randwick, Australia
| |
Collapse
|
32
|
Hanmod SS, Wang G, Edwards H, Buck SA, Ge Y, Taub JW, Wang Z. Targeting histone deacetylases (HDACs) and Wee1 for treating high-risk neuroblastoma. Pediatr Blood Cancer 2015; 62:52-9. [PMID: 25308916 DOI: 10.1002/pbc.25232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/30/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Despite advances in treatment regimens, patients with high-risk neuroblastoma have long-term survival rates of < 40%. Wee1 inhibition in combination with CHK1 inhibition has shown promising results in neuroblastoma cells. In addition, it has been demonstrated that panobinostat can downregulate CHK1. Therefore, combination of panobinostat and MK-1775 may result in synergistic cytotoxicity against neuroblastoma cell lines. PROCEDURE In vitro cytotoxicities of panobinostat and MK-1775 at clinically achievable concentrations, either alone or in combination, were evaluated in SK-N-AS, SK-N-DZ, and SK-N-BE(2) high-risk neuroblastoma cell lines using MTT assays. The mechanism of antitumor interaction was investigated using propidium iodide (PI) staining and flow cytometry analysis to determine apoptosis, as well as Western blotting to assess expression of phosphorylated CDK1/2, CHK1, and H2AX. RESULTS Treatment of neuroblastoma cell lines with 500 nM MK-1775 caused growth arrest and apoptosis in SK-N-DZ and SK-N-AS, while it had minimal effect on the SK-N-BE(2) cell line. The combination of panobinostat and MK-1775 resulted in synergistic antitumor interactions in all three of the cell lines tested. MK-1775 treatment in SK-N-BE(2) cells induced increased levels of p-CHK1(S345) , which could be decreased by the addition of panobinostat. This was accompanied by increased DNA damage and apoptosis. CONCLUSIONS The combination of panobinostat and MK-1775 has synergistic antitumor activity against neuroblastoma cell lines and holds promise as a potential treatment strategy for the management of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Santosh S Hanmod
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang L, Peters JM, Fuda F, Li L, Karandikar NJ, Koduru P, Wang HY, Chen W. Acute megakaryoblastic leukemia associated with trisomy 21 demonstrates a distinct immunophenotype. CYTOMETRY PART B-CLINICAL CYTOMETRY 2014; 88:244-52. [DOI: 10.1002/cyto.b.21198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/09/2014] [Accepted: 10/06/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Linlin Wang
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas
| | - John M. Peters
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas
- ProPath®; Dallas Texas
| | - Franklin Fuda
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas
| | - Long Li
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas
| | - Nitin J. Karandikar
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas
- Department of Pathology; University of Iowa; Iowa City Iowa
| | - Prasad Koduru
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas
| | - Huan-You Wang
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas
- Department of Pathology; University of California at San Diego; La Jolla California
| | - Weina Chen
- Department of Pathology; University of Texas Southwestern Medical Center; Dallas Texas
| |
Collapse
|
34
|
Xie C, Edwards H, Caldwell JT, Wang G, Taub JW, Ge Y. Obatoclax potentiates the cytotoxic effect of cytarabine on acute myeloid leukemia cells by enhancing DNA damage. Mol Oncol 2014; 9:409-21. [PMID: 25308513 DOI: 10.1016/j.molonc.2014.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022] Open
Abstract
Resistance to cytarabine and anthracycline-based chemotherapy is a major cause of treatment failure for acute myeloid leukemia (AML) patients. Overexpression of Bcl-2, Bcl-xL, and/or Mcl-1 has been associated with chemoresistance in AML cell lines and with poor clinical outcome of AML patients. Thus, inhibitors of anti-apoptotic Bcl-2 family proteins could be novel therapeutic agents. In this study, we investigated how clinically achievable concentrations of obatoclax, a pan-Bcl-2 inhibitor, potentiate the antileukemic activity of cytarabine in AML cells. MTT assays in AML cell lines and diagnostic blasts, as well as flow cytometry analyses in AML cell lines revealed synergistic antileukemic activity between cytarabine and obatoclax. Bax activation was detected in the combined, but not the individual, drug treatments. This was accompanied by significantly increased loss of mitochondrial membrane potential. Most importantly, in AML cells treated with the combination, enhanced early induction of DNA double-strand breaks (DSBs) preceded a decrease of Mcl-1 levels, nuclear translocation of Bcl-2, Bcl-xL, and Mcl-1, and apoptosis. These results indicate that obatoclax enhances cytarabine-induced apoptosis by enhancing DNA DSBs. This novel mechanism provides compelling evidence for the clinical use of BH3 mimetics in combination with DNA-damaging agents in AML and possibly a broader range of malignancies.
Collapse
Affiliation(s)
- Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA; Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China.
| |
Collapse
|
35
|
Caldwell JT, Edwards H, Buck SA, Ge Y, Taub JW. Targeting the wee1 kinase for treatment of pediatric Down syndrome acute myeloid leukemia. Pediatr Blood Cancer 2014; 61:1767-73. [PMID: 24962331 PMCID: PMC4199830 DOI: 10.1002/pbc.25081] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/02/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Most Down syndrome children with acute myeloid leukemia (DS-AML) have an overall excellent prognosis, however, patients who suffer an induction failure or relapse, have an extremely poor prognosis. Hence, new therapies need to be developed for this subgroup of DS-AML patients. One new therapeutic approach is preventing cell cycle checkpoint activation by inhibiting the upstream kinase wee1 with the first-in-class inhibitor MK-1775 in combination with the standard genotoxic agent cytarabine (AraC). PROCEDURE Using the clinically relevant DS-AML cell lines CMK and CMY, as well as ex vivo primary DS-AML patient samples, the ability of MK-1775 to enhance the cytotoxicity of AraC was investigated with MTT assays. The mechanism by which MK-1775 enhanced AraC cytotoxicity was investigated in the cell lines using Western blots to probe CDK1 and H2AX phosphorylation and flow cytometry to determine apoptosis, cell cycle arrest, DNA damage, and aberrant mitotic entry. RESULTS MK-1775 alone had modest single-agent activity, however, MK-1775 was able to synergize with AraC in causing proliferation arrest in both cell lines and primary patient samples, and enhance AraC-induced apoptosis. MK-1775 was able to decrease inhibitory CDK1(Y15) phosphorylation at the relatively low concentration of 100 nM after only 4 hours. Furthermore, it was able to enhance DNA damage induced by AraC and partially abrogate cell cycle arrest. Importantly, the DNA damage enhancement appeared in early S-phase. CONCLUSIONS MK-1775 is able to enhance the cytotoxicity of AraC in DS-AML cells and presents a promising new treatment approach for DS-AML.
Collapse
Affiliation(s)
- J. Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, Michigan,Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Steven A. Buck
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan,Correspondence to: Yubin Ge, Department of Oncology, Wayne State University School of Medicine, 110 East Warren Ave., Detroit, MI 48201.
| | - Jeffrey W. Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, Michigan,Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan,Correspondence to: Jeffrey W. Taub, Children's Hospital of Michigan, 3901 Beaubien Blvd, Detroit, MI 48201,
| |
Collapse
|
36
|
Caldwell JT, Ge Y, Taub JW. Prognosis and management of acute myeloid leukemia in patients with Down syndrome. Expert Rev Hematol 2014; 7:831-40. [PMID: 25231553 DOI: 10.1586/17474086.2014.959923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Children with Down syndrome (DS) are at a substantially increased risk to develop acute myeloid leukemia (AML). This increase in incidence is tempered, however, by favorable overall survival rates of approximately 80%, whereas survival for non-DS children with similar leukemic subtypes is <35%. In this review, the clinical studies that have contributed to this overall high survival will be presented and their individual successes will be discussed. Important issues including intensity of treatment regimens, the role of bone marrow transplants and prognostic indicators will be reviewed. In particular, the roles of high- vs low- vs very low-dose cytarabine will be discussed, as well as potential therapeutic options in the future and the direction of the field over the next 5 years. In summary, children with DS and AML should be treated with a moderate-intensity cytarabine-based regimen with curative intent.
Collapse
Affiliation(s)
- J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, 110 East Warren Ave, Detroit, MI 48201, USA
| | | | | |
Collapse
|
37
|
Abstract
Children with constitutional trisomy 21 (cT21, Down Syndrome, DS) are at a higher risk for both myeloid and B-lymphoid leukaemias. The myeloid leukaemias are often preceded by a transient neonatal pre-leukaemic syndrome, Transient Abnormal Myelopoiesis (TAM). TAM is caused by cooperation between cT21 and acquired somatic N-terminal truncating mutations in the key haematopoietic transcription factor GATA1. These mutations, which are not leukaemogenic in the absence of cT21, are found in almost one-third of neonates with DS. Analysis of primary human fetal liver haematopoietic cells and of human embryonic stem cells demonstrates that cT21 itself substantially alters human fetal haematopoietic development. Consequently, many haematopoietic developmental defects are observed in neonates with DS even in the absence of TAM. Although studies in mouse models have suggested a pathogenic role of deregulated expression of several chromosome 21-encoded genes, their role in human leukaemogenesis remains unclear. As cT21 exists in all embryonic cells, the molecular basis of cT21-associated leukaemias probably reflects a complex interaction between deregulated gene expression in haematopoietic cells and the fetal haematopoietic microenvironment in DS.
Collapse
Affiliation(s)
- Irene Roberts
- Paediatrics and Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
38
|
Qi W, Xie C, Li C, Caldwell JT, Edwards H, Taub JW, Wang Y, Lin H, Ge Y. CHK1 plays a critical role in the anti-leukemic activity of the wee1 inhibitor MK-1775 in acute myeloid leukemia cells. J Hematol Oncol 2014; 7:53. [PMID: 25084614 PMCID: PMC4237862 DOI: 10.1186/s13045-014-0053-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/08/2014] [Indexed: 11/24/2022] Open
Abstract
Background Acute myeloid leukemia (AML) remains a difficult disease to treat and requires new therapies to improve treatment outcome. Wee1 inhibitors have been used to prevent activation of the G2 cell cycle checkpoint, thus enhancing the antitumor activity of DNA damaging agents. In this study, we investigated MK-1775 in AML cell lines and diagnostic blast samples to identify sensitive subtypes as well as possible mechanisms of resistance. Methods In vitro MK-1775 cytotoxicities of AML cell lines and diagnostic blasts were measured using MTT assays. The effects of MK-1775 on cell cycle progression and related proteins were determined by propidium iodide (PI) staining and flow cytometry analysis and Western blotting. Drug-induced apoptosis was determined using annexin V/PI staining and flow cytometry analysis. Results We found that newly diagnosed and relapsed patient samples were equally sensitive to MK-1775. In addition, patient samples harboring t(15;17) translocation were significantly more sensitive to MK-1775 than non-t(15;17) samples. MK-1775 induced apoptosis in both AML cell lines and diagnostic blast samples, accompanied by decreased phosphorylation of CDK1 and CDK2 on Tyr-15 and increased DNA double-strand breaks (DSBs). Time-course experiments, using AML cell lines, revealed a time-dependent increase in DNA DSBs, activation of CHK1 and subsequent apoptosis following MK-1775 treatment, which could be attenuated by a CDK1/2 inhibitor, Roscovitine. Simultaneous inhibition of CHK1 and Wee1 resulted in synergistic anti-leukemic activity in both AML cell lines and primary patient samples ex vivo. Conclusions Our study provides compelling evidence that CHK1 plays a critical role in the anti-leukemic activity of MK-1775 and highlights a possible mechanism of resistance to MK-1775. In addition, our study strongly supports the use of MK-1775 to treat both newly diagnosed and relapsed AML, especially cases with t(15;17) translocation, and supports the development of combination therapies with CHK1 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yue Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology & Engineering, the Ministry of Education, and School of Life Sciences, Jilin University, Changchun, China.
| | | | | |
Collapse
|
39
|
Xavier AC, Ge Y, Taub J. Unique clinical and biological features of leukemia in Down syndrome children. Expert Rev Hematol 2014; 3:175-86. [DOI: 10.1586/ehm.10.14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Caldwell JT, Edwards H, Dombkowski AA, Buck SA, Matherly LH, Ge Y, Taub JW. Overexpression of GATA1 confers resistance to chemotherapy in acute megakaryocytic Leukemia. PLoS One 2013; 8:e68601. [PMID: 23874683 PMCID: PMC3707876 DOI: 10.1371/journal.pone.0068601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 05/31/2013] [Indexed: 12/29/2022] Open
Abstract
It has been previously shown that acute myeloid leukemia (AML) patients with higher levels of GATA1 expression have poorer outcomes. Furthermore, pediatric Down syndrome (DS) patients with acute megakaryocytic leukemia (AMKL), whose blast cells almost universally harbor somatic mutations in exon 2 of the transcription factor gene GATA1, demonstrate increased overall survival relative to non-DS pediatric patients, suggesting a potential role for GATA1 in chemotherapy response. In this study, we confirmed that amongst non-DS patients, GATA1 transcripts were significantly higher in AMKL blasts compared to blasts from other AML subgroups. Further, GATA1 transcript levels significantly correlated with transcript levels for the anti-apoptotic protein Bcl-xL in our patient cohort. ShRNA knockdown of GATA1 in the megakaryocytic cell line Meg-01 resulted in significantly increased cytarabine (ara-C) and daunorubicin anti-proliferative sensitivities and decreased Bcl-xL transcript and protein levels. Chromatin immunoprecipitation (ChIP) and reporter gene assays demonstrated that the Bcl-x gene (which transcribes the Bcl-xL transcripts) is a bona fide GATA1 target gene in AMKL cells. Treatment of the Meg-01 cells with the histone deacetylase inhibitor valproic acid resulted in down-regulation of both GATA1 and Bcl-xL and significantly enhanced ara-C sensitivity. Furthermore, additional GATA1 target genes were identified by oligonucleotide microarray and ChIP-on-Chip analyses. Our findings demonstrate a role for GATA1 in chemotherapy resistance in non-DS AMKL cells, and identified additional GATA1 target genes for future studies.
Collapse
MESH Headings
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cells, Cultured
- Child
- Child, Preschool
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- GATA1 Transcription Factor/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/physiology
- Humans
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/genetics
- Microarray Analysis
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Valproic Acid/pharmacology
Collapse
Affiliation(s)
- John Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Alan A. Dombkowski
- Division of Pharmacology and Toxicology, Children’s Hospital of Michigan, Detroit, Michigan, United States of America
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Steven A. Buck
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, Michigan, United States of America
| | - Larry H. Matherly
- Cancer Biology Program, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jeffrey W. Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Xie C, Edwards H, LoGrasso SB, Buck SA, Matherly LH, Taub JW, Ge Y. Valproic acid synergistically enhances the cytotoxicity of clofarabine in pediatric acute myeloid leukemia cells. Pediatr Blood Cancer 2012; 59:1245-51. [PMID: 22488775 PMCID: PMC3396758 DOI: 10.1002/pbc.24152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/02/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) remains a major therapeutic challenge in pediatric oncology even with intensified cytarabine (ara-C)-based chemotherapy. Therefore, new therapies are urgently needed to improve treatment outcome of this deadly disease. In this study, we evaluated antileukemic interactions between clofarabine (a second-generation purine nucleoside analog) and valproic acid (VPA, a FDA-approved agent for treating epilepsy in both children and adult and a histone deacetylase inhibitor), in pediatric AML. METHODOLOGY In vitro clofarabine and VPA cytotoxicities of the pediatric AML cell lines and diagnostic blasts were measured by using MTT assays. The effects of clofarabine and VPA on apoptosis and DNA double strand breaks (DSBs) were determined by flow cytometry analysis and Western blotting, respectively. Active form of Bax was measured by Western blotting post-immunoprecipitation. RESULTS We demonstrated synergistic antileukemic activities between clofarabine and VPA in both pediatric AML cell lines and diagnostic blasts sensitive to VPA. In contrast, antagonism between the two agents could be detected in AML cells resistant to VPA. Clofarabine and VPA cooperate in inducing DNA DSBs, accompanied by Bax activation and apoptosis in pediatric AML cells. CONCLUSION Our results document synergistic antileukemic activities of combined VPA and clofarabine in pediatric AML and suggest that this combination could be an alternative treatment option for the disease.
Collapse
Affiliation(s)
- Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI,Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI,The State Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun, P.R.China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI,Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI
| | - Salvatore B. LoGrasso
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI,Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI
| | - Steven A. Buck
- Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI
| | - Larry H. Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI,Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI
| | - Jeffrey W. Taub
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI,Division of Pediatric Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI,Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI,The State Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun, P.R.China
| |
Collapse
|
42
|
Class I and class II histone deacetylases are potential therapeutic targets for treating pancreatic cancer. PLoS One 2012; 7:e52095. [PMID: 23251689 PMCID: PMC3522644 DOI: 10.1371/journal.pone.0052095] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 11/09/2012] [Indexed: 11/19/2022] Open
Abstract
Background Pancreatic cancer is a highly malignant disease with an extremely poor prognosis. Histone deacetylase inhibitors (HDACIs) have shown promising antitumor activities against preclinical models of pancreatic cancer, either alone or in combination with chemotherapeutic agents. In this study, we sought to identify clinically relevant histone deacetylases (HDACs) to guide the selection of HDAC inhibitors (HDACIs) tailored to the treatment of pancreatic cancer. Methodology HDAC expression in seven pancreatic cancer cell lines and normal human pancreatic ductal epithelial cells was determined by Western blotting. Antitumor interactions between class I- and class II-selective HDACIs were determined by MTT assays and standard isobologram/CompuSyn software analyses. The effects of HDACIs on cell death, apoptosis and cell cycle progression, and histone H4, alpha-tubulin, p21, and γH2AX levels were determined by colony formation assays, flow cytometry analysis, and Western blotting, respectively. Results The majority of classes I and II HDACs were detected in the pancreatic cancer cell lines, albeit at variable levels. Treatments with MGCD0103 (a class I-selective HDACI) resulted in dose-dependent growth arrest, cell death/apoptosis, and cell cycle arrest in G2/M phase, accompanied by induction of p21 and DNA double-strand breaks (DSBs). In contrast, MC1568 (a class IIa-selective HDACI) or Tubastatin A (a HDAC6-selective inhibitor) showed minimal effects. When combined simultaneously, MC1568 significantly enhanced MGCD0103-induced growth arrest, cell death/apoptosis, and G2/M cell cycle arrest, while Tubastatin A only synergistically enhanced MGCD0103-induced growth arrest. Although MC1568 or Tubastatin A alone had no obvious effects on DNA DSBs and p21 expression, their combination with MGCD0103 resulted in cooperative induction of p21 in the cells. Conclusion Our results suggest that classes I and II HDACs are potential therapeutic targets for treating pancreatic cancer. Accordingly, treating pancreatic cancer with pan-HDACIs may be more beneficial than class- or isoform-selective inhibitors.
Collapse
|
43
|
Abstract
Although acute myeloid leukaemia (AML) has long been recognized for its morphological and cytogenetic heterogeneity, recent high-resolution genomic profiling has demonstrated a complexity even greater than previously imagined. This complexity can be seen in the number and diversity of genetic alterations, epigenetic modifications, and characteristics of the leukaemic stem cells. The broad range of abnormalities across different AML subtypes suggests that improvements in clinical outcome will require the development of targeted therapies for each subtype of disease and the design of novel clinical trials to test these strategies. It is highly unlikely that further gains in long-term survival rates will be possible by mere intensification of conventional chemotherapy. In this review, we summarize recent studies that provide new insight into the genetics and biology of AML, discuss risk stratification and therapy for this disease, and profile some of the therapeutic agents currently under investigation.
Collapse
Affiliation(s)
- Jeffrey E Rubnitz
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
44
|
Sorrell AD, Alonzo TA, Hilden JM, Gerbing RB, Loew TW, Hathaway L, Barnard D, Taub JW, Ravindranath Y, Smith FO, Arceci RJ, Woods WG, Gamis AS. Favorable survival maintained in children who have myeloid leukemia associated with Down syndrome using reduced-dose chemotherapy on Children's Oncology Group trial A2971: a report from the Children's Oncology Group. Cancer 2012; 118:4806-14. [PMID: 22392565 DOI: 10.1002/cncr.27484] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/08/2011] [Accepted: 01/04/2012] [Indexed: 11/12/2022]
Abstract
BACKGROUND Children who are treated for myeloid leukemia associated with Down syndrome (DS) experience superior survival compared with children who have myeloid leukemia without DS. To maintain excellent outcomes while avoiding toxicity, the Children's Oncology Group (COG) conducted the phase 3 trial COG A2971, the first trial solely designed to provide uniform treatment of myeloid leukemia in North American children with DS. A2971 eliminated 2 induction drugs and 3 months of maintenance therapy from the standard-timing regimen of dexamethasone, cytarabine, 6-thioguanine, etoposide, and rubidomycin/daunomycin (DCTER) used in the previous study (Children's Cancer Group [CCG] 2891). METHODS COG A2971 was a multi-institutional, nonrandomized, clinical trial that enrolled 132 patients who had DS with either acute myeloid leukemia (n = 91) or myelodysplastic syndrome (n = 41). RESULTS The median follow-up was 4.8 years (range, 0.8-8.6 years), the median age at diagnosis was 1.7 years (range, 0.3-13.6 years), and the median white blood cell count was 6200/μL (range, 900-164,900/μL). The remission rate (92.7% ± 6%) was similar to that reported in the CCG 2891 study (91.3% ± 5%; P = .679). The 5-year event free survival (EFS) rate was 79% ± 7% (vs 77% ± 7% in CCG 2891; P = .589), the disease-free survival (DFS) rate was 89% ± 6% (vs 85% ± 6% in CCG 2891; P = .337), and the overall survival rate was 84% ± 6% (vs 79% ± 7% in CCG 2891; P = .302). Induction day-14 bone marrow response trended toward a more favorable outcome (EFS: P = .12). Age >4 years was an adverse risk factor (5-year EFS rate: 33% ± 38% for children aged >4 years [median, 8.5 years; n = 6] vs 81% ± 7% for children ages 0-4 years [median, 1.7 years; n = 126]; P = .001). CONCLUSIONS The COG A2971 trial reduced the chemotherapy dose and maintained survival to that achieved by the CCG 2891 trial in children who had myeloid leukemia associated with DS.
Collapse
Affiliation(s)
- April D Sorrell
- Department of Pediatrics, City of Hope National Medical Center, Duarte California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Malinge S, Bliss-Moreau M, Kirsammer G, Diebold L, Chlon T, Gurbuxani S, Crispino JD. Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Invest 2012; 122:948-62. [PMID: 22354171 PMCID: PMC3287382 DOI: 10.1172/jci60455] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023] Open
Abstract
Individuals with Down syndrome (DS; also known as trisomy 21) have a markedly increased risk of leukemia in childhood but a decreased risk of solid tumors in adulthood. Acquired mutations in the transcription factor-encoding GATA1 gene are observed in nearly all individuals with DS who are born with transient myeloproliferative disorder (TMD), a clonal preleukemia, and/or who develop acute megakaryoblastic leukemia (AMKL). Individuals who do not have DS but bear germline GATA1 mutations analogous to those detected in individuals with TMD and DS-AMKL are not predisposed to leukemia. To better understand the functional contribution of trisomy 21 to leukemogenesis, we used mouse and human cell models of DS to reproduce the multistep pathogenesis of DS-AMKL and to identify chromosome 21 genes that promote megakaryoblastic leukemia in children with DS. Our results revealed that trisomy for only 33 orthologs of human chromosome 21 (Hsa21) genes was sufficient to cooperate with GATA1 mutations to initiate megakaryoblastic leukemia in vivo. Furthermore, through a functional screening of the trisomic genes, we demonstrated that DYRK1A, which encodes dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A, was a potent megakaryoblastic tumor-promoting gene that contributed to leukemogenesis through dysregulation of nuclear factor of activated T cells (NFAT) activation. Given that calcineurin/NFAT pathway inhibition has been implicated in the decreased tumor incidence in adults with DS, our results show that the same pathway can be both proleukemic in children and antitumorigenic in adults.
Collapse
Affiliation(s)
- Sébastien Malinge
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Meghan Bliss-Moreau
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Gina Kirsammer
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Lauren Diebold
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Timothy Chlon
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Sandeep Gurbuxani
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - John D. Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
Department of Pathology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
46
|
Manivannan P, Prasaad PR, Kar R, Basu D. Down syndrome with different hematological manifestations: a short series of 3 cases with review of literature. Indian J Hematol Blood Transfus 2012; 29:31-4. [PMID: 24426330 DOI: 10.1007/s12288-011-0134-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/01/2011] [Indexed: 11/26/2022] Open
Abstract
Children with Down syndrome (DS) present with a spectrum of hematolymphoid malignancies ranging from transient myeloproliferative disorder (TMD) which regress spontaneously to frank acute leukemia of both myeloid and lymphoid lineage. Here we present a series of three cases with different manifestation in DS. Three cases of DS presented with TMD, acute myeloid leukemia (AML-M2) and acute megakaryoblastic leukemia (AMKL), respectively. This case series displays the spectrum of hematological manifestations in children with DS. Although TMD and AMKL are strongly associated with DS, other AML subtypes can also be seen in such patients.
Collapse
Affiliation(s)
| | | | - Rakhee Kar
- Department of Pathology, JIPMER, Puducherry, 605 006 India
| | - Debdatta Basu
- Department of Pathology, JIPMER, Puducherry, 605 006 India
| |
Collapse
|
47
|
A unique role of GATA1s in Down syndrome acute megakaryocytic leukemia biology and therapy. PLoS One 2011; 6:e27486. [PMID: 22110660 PMCID: PMC3217966 DOI: 10.1371/journal.pone.0027486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute megakaryocytic leukemia (AMkL) in Down syndrome (DS) children is uniformly associated with somatic GATA1 mutations, which result in the synthesis of a shorter protein (GATA1s) with altered transactivation activity compared to the wild-type GATA1. It is not fully established whether leukemogenesis and therapeutic responses in DS AMkL patients are due to loss of the wild-type GATA1 or due to a unique function of GATA1s. METHODOLOGY Stable clones of CMK cells with decreased GATA1s or Bcl-2 levels were generated by using GATA1- or BCL-2-specific lentivirus shRNAs. In vitro ara-C, daunorubicin, and VP-16 cytotoxicities of the shRNA stable clones were determined by using the Cell Titer-blue reagent. Apoptosis and cell cycle distribution were determined by flow cytometry analysis. Changes in gene transcript levels were determined by gene expression microarray and/or real-time RT-PCR. Changes in protein levels were measured by Western blotting. In vivo binding of GATA1s to IL1A promoter was determined by chromatin immunoprecipitation assays. RESULTS Lentivirus shRNA knockdown of the GATA1 gene in the DS AMkL cell line, CMK (harbors a mutated GATA1 gene and only expresses GATA1s), resulting in lower GATA1s protein levels, promoted cell differentiation towards the megakaryocytic lineage and repressed cell proliferation. Increased basal apoptosis and sensitivities to ara-C, daunorubicin, and VP-16 accompanied by down-regulated Bcl-2 were also detected in the CMK GATA1 shRNA knockdown clones. Essentially the same results were obtained when Bcl-2 was knocked down with lentivirus shRNA in CMK cells. Besides Bcl-2, down-regulation of GATA1s also resulted in altered expression of genes (e.g., IL1A, PF4, and TUBB1) related to cell death, proliferation, and differentiation. CONCLUSION Our results suggest that GATA1s may facilitate leukemogenesis and potentially impact therapeutic responses in DS AMkL by promoting proliferation and survival, and by repressing megakaryocytic lineage differentiation, potentially by regulating expression of Bcl-2 protein and other relevant genes.
Collapse
|
48
|
Taub JW, Ravindranath Y. What's up with down syndrome and leukemia-A lot! Pediatr Blood Cancer 2011; 57:1-3. [PMID: 21480471 DOI: 10.1002/pbc.23033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/20/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Jeffrey W Taub
- Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Michigan, USA.
| | | |
Collapse
|
49
|
Taga T, Shimomura Y, Horikoshi Y, Ogawa A, Itoh M, Okada M, Ueyama J, Higa T, Watanabe A, Kanegane H, Iwai A, Saiwakawa Y, Kogawa K, Yamanaka J, Tsurusawa M. Continuous and high-dose cytarabine combined chemotherapy in children with down syndrome and acute myeloid leukemia: Report from the Japanese children's cancer and leukemia study group (JCCLSG) AML 9805 down study. Pediatr Blood Cancer 2011; 57:36-40. [PMID: 21557456 DOI: 10.1002/pbc.22943] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/05/2010] [Indexed: 11/05/2022]
Abstract
BACKGROUND The aim of the JCCLSG AML 9805 Down study was to evaluate the effect of continuous and high-dose cytarabine combined chemotherapy on the survival outcome of acute myeloid leukemia (AML) with Down syndrome (DS). PROCEDURE From May 1998 to December 2006, DS patients with newly diagnosed AML were enrolled. Remission induction therapy consisted of two courses of pirarubicin, vincristine, and continuous-dose cytarabine (AVC1). The patients who achieved complete remission (CR) after two courses of AVC1 were subsequently treated with mitoxantrone and continuous-dose cytarabine (MC), etoposide and high-dose cytarabine (EC) and pirarubicin, vincristine, and continuous-dose cytarabine (AVC2). RESULTS Twenty-four patients were enrolled. All patients were younger than 4 years and diagnosed as having acute megakaryoblastic leukemia. Twenty-one patients achieved CR. Three patients died during remission induction therapy due to serious infection. No toxic deaths were observed during remission. All but one patient maintained CR without serious complications. The 5-year overall and event-free survivals were 87.5% ± 6.8% and 83.1% ± 7.7%, respectively. CONCLUSIONS Continuous and high-dose cytarabine combined chemotherapy with reduced intensity would be effective in DS children with AML.
Collapse
Affiliation(s)
- Takashi Taga
- Department of Pediatrics, Shiga University of Medical Science, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Maeda Y, Yoshikawa K, Kajiwara K, Ideguchi M, Amano T, Saka M, Nomura S, Fujii M, Suzuki M. Intracranial yolk sac tumor in a patient with Down syndrome. J Neurosurg Pediatr 2011; 7:604-8. [PMID: 21631196 DOI: 10.3171/2011.3.peds10500] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors report a rare case of intracranial yolk sac tumor in a 13-year-old boy with Down syndrome who presented with left hemiparesis. Admission MR imaging revealed a tumor in the right basal ganglia. Serum α-fetoprotein was markedly elevated. Yolk sac tumor was diagnosed radiologically and serologically. The standard therapy for intracranial yolk sac tumor is platinum-based chemotherapy with concomitant radiotherapy. However, the authors used reduced-dose chemotherapy and asynchronized radiotherapy because of the well-known low tolerance of patients with Down syndrome to chemotherapy. This treatment was successful with no complications. Blood cancers are frequently associated with Down syndrome, whereas solid tumors occur less frequently in these patients, and the risk of chemoradiotherapy is unclear. The results indicate that dose-reduction therapy can be effective for treatment of a brain tumor in a patient with Down syndrome.
Collapse
Affiliation(s)
- Yoshihiko Maeda
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|