1
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
2
|
Chen KW, Chen YS, Chen PJ, Yeh SH. Androgen receptor functions in pericentral hepatocytes to decrease gluconeogenesis and avoid hyperglycemia and obesity in male mice. Metabolism 2022; 135:155269. [PMID: 35914621 DOI: 10.1016/j.metabol.2022.155269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/13/2022] [Accepted: 07/24/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although the impact of hepatic androgen receptor (AR) pathway on liver pathogenesis was documented, its physiological function in normal liver is remained unclear. This study aims to investigate if hepatic AR acts on metabolism, the major liver function, using a hepatic-specific AR-transgenic (H-ARTG) mouse model. METHODS We established the albumin promoter driven H-ARTG mice and included wild type (WT) and H-ARKO mice for study. The body weight, specific metabolic parameters and results from various tolerance tests were compared in different groups of mice fed a chow diet, from 2 to 18 months of age. Glucose feeding and insulin treatment were used to study the expression and zonal distribution pattern of AR and related genes in liver at different prandial stages. RESULTS The body weight of H-ARTG mice fed a chow diet was 15 % lower than that of wild-type mice, preceded by lower blood glucose and liver triglyceride levels caused by AR reduced hepatic gluconeogenesis. The opposite phenotypes identified in H-ARKO and castrated H-ARTG mice support the critical role of activated AR in decreasing gluconeogenesis and triglyceride levels in liver. Hepatic AR acting by enhancing the expression of cytosolic glycerol-3-phosphate dehydrogenase (cGPDH), a key of glycerophosphate shuttle, was identified as one mechanism to decrease gluconeogenesis from glycerol. We further found AR normally expressed in zone 3 of hepatic lobules. Its level fluctuates dependent on the demand of glucose, decreased by fasting but increased by glucose uptake or insulin stimulation. CONCLUSION AR is a newly identified zone 3 hepatic gene with function in reducing blood glucose and body weight in mice. It suggests that stabilization of hepatic AR is a new direction to prevent hyperglycemia, obesity and nonalcoholic fatty liver disease (NAFLD) in males.
Collapse
Affiliation(s)
- Kai-Wei Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Shan Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; NTU Centers of Genomic and Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; NTU Centers of Genomic and Precision Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Unique Features of Hepatitis B Virus-Related Hepatocellular Carcinoma in Pathogenesis and Clinical Significance. Cancers (Basel) 2021; 13:cancers13102454. [PMID: 34070067 PMCID: PMC8158142 DOI: 10.3390/cancers13102454] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatitis B virus (HBV) infection is the major risk factor for hepatocellular carcinoma (HCC). Understanding the unique features for HBV-induced HCC can shed new light on the unmet needs in its early diagnosis and effective therapy. During decades of chronic hepatitis B, hepatocytes undergoing repeated damage and regeneration accumulate genetic changes predisposing to HCC development. In addition to traditional mutations in viral and cellular oncogenes, HBV integration into the cell chromosomes is an alternative genetic change contributing to hepatocarcinogenesis. A striking male dominance in HBV-related HCC further highlights an interaction between androgen sex hormone and viral factors, which contributes to the gender difference via stimulating viral replication and activation of oncogenes preferentially in male patients. Meanwhile, a novel circulating tumor biomarker generated by HBV integration shows great potential for the early diagnosis of HCC. These unique HBV-induced hepatocarcinogenic mechanisms provide new insights for the future development of superior diagnosis and treatment strategies. Abstract Hepatitis B virus (HBV) infection is one of the important risk factors for hepatocellular carcinoma (HCC) worldwide, accounting for around 50% of cases. Chronic hepatitis B infection generates an inflammatory microenvironment, in which hepatocytes undergoing repeated cycles of damage and regeneration accumulate genetic mutations predisposing them to cancer. A striking male dominance in HBV-related HCC highlights the influence of sex hormones which interact with viral factors to influence carcinogenesis. HBV is also considered an oncogenic virus since its X and surface mutant proteins showed tumorigenic activity in mouse models. The other unique mechanism is the insertional mutagenesis by integration of HBV genome into hepatocyte chromosomes to activate oncogenes. HCC survival largely depends on tumor stages at diagnosis and effective treatment. However, early diagnosis by the conventional protein biomarkers achieves limited success. A new biomarker, the circulating virus–host chimera DNA from HBV integration sites in HCC, provides a liquid biopsy approach for monitoring the tumor load in the majority of HBV–HCC patients. To maximize the efficacy of new immunotherapies or molecular target therapies, it requires better classification of HCC based on the tumor microenvironment and specific carcinogenic pathways. An in-depth study may benefit both the diagnosis and treatment of HBV-related HCC.
Collapse
|
4
|
Inhibition of androgen/AR signaling inhibits diethylnitrosamine (DEN) induced tumour initiation and remodels liver immune cell networks. Sci Rep 2021; 11:3646. [PMID: 33574348 PMCID: PMC7878907 DOI: 10.1038/s41598-021-82252-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
A promotional role for androgen receptor (AR) signaling in hepatocellular carcinogenesis is emerging. In pre-clinical models, including diethylnitrosamine- (DEN-) induced hepatocellular carcinoma (HCC), anti-androgen therapies delay hepatocarcinogenesis. However, pharmacologic anti-androgen therapy in advanced HCC patients fails, suggesting that AR plays a role in HCC onset. This study aims to characterize AR expression and function throughout DEN-induced liver inflammation and carcinogenesis and evaluate the efficacy of prophylactic AR antagonism to prevent hepatocarcinogenesis. We demonstrate that pharmacologic AR antagonism with enzalutamide inhibits hepatocellular carcinogenesis. With enzalutamide treatment, we observe decreased CYP2E1 expression, reducing DEN-induced hepatocyte death and DNA ethyl-adducts. AR protein expression analyses show that DEN causes an initial upregulation of AR in portal fibroblasts and leukocytes, but not hepatocytes, suggesting that hepatocyte-autonomous AR signaling is not essential for DEN-induced carcinogenesis. Ablating androgen signaling by surgical castration reduced pre-carcinogen Kupffer cell populations but did not alter DEN-mediated immune cell recruitment nor AR expression. In this study, we identified that anti-androgen interventions modulate mutagenic DNA adducts, tumour initiation, and immune cell composition. Additionally, we find that AR expression in hepatocytes is not present during nor required for early DEN-mediated carcinogenesis.
Collapse
|
5
|
Yan Y, Huang P, Mao K, He C, Xu Q, Zhang M, Liu H, Zhou Z, Zhou Q, Zhou Q, Ou B, Liu Q, Lin J, Chen R, Wang J, Zhang J, Xiao Z. Anti-oncogene PTPN13 inactivation by hepatitis B virus X protein counteracts IGF2BP1 to promote hepatocellular carcinoma progression. Oncogene 2021; 40:28-45. [PMID: 33051595 PMCID: PMC7790756 DOI: 10.1038/s41388-020-01498-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Hepatitis B x protein (HBx) affects cellular protein expression and participates in the tumorigenesis and progression of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Metabolic reprogramming contributed to the HCC development, but its role in HBV-related HCC remains largely unclear. Tyrosine-protein phosphatase nonreceptor type 13 (PTPN13) is a significant regulator in tumor development, however, its specific role in hepatocarcinogenesis remains to be explored. Here, we found that decreased PTPN13 expression was associated with HBV/HBx. Patients with low PTPN13 expression showed a poor prognosis. Functional assays revealed that PTPN13 inhibited proliferation and tumorigenesis in vitro and in vivo. Further mechanistic studies indicated that HBx inhibited PTPN13 expression by upregulating the expression of DNMT3A and interacting with DNMT3A. Furthermore, we found that DNMT3A bound to the PTPN13 promoter (-343 to -313 bp) in an epigenetically controlled manner associated with elevated DNA methylation and then inhibited PTPN13 transcription. In addition, we identified IGF2BP1 as a novel PTPN13-interacting gene and demonstrated that PTPN13 influences c-Myc expression by directly and competitively binding to IGF2BP1 to decrease the intracellular concentration of functional IGF2BP1. Overexpressing PTPN13 promoted c-Myc mRNA degradation independent of the protein tyrosine phosphatase (PTP) activity of PTPN13. Importantly, we discovered that the PTPN13-IGF2BP1-c-Myc axis was important for cancer cell growth through promoting metabolic reprogramming. We verified the significant negative correlations between PTPN13 expression and c-Myc, PSPH, and SLC7A1 expression in clinical HCC tissue samples. In summary, our findings demonstrate that PTPN13 is a novel regulator of HBV-related hepatocarcinogenesis and may play an important role in HCC. PTPN13 may serve as a prognostic marker and therapeutic target in HBV-related HCC patients.
Collapse
Affiliation(s)
- Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Pinbo Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Qiaodong Xu
- Department of Biliary-Pancreatic Minimally Invasive Surgery, The First Affiliated Hospital of Shantou University Medical College, 515041, Shantou, China
| | - Mengyu Zhang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Haohan Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Qiming Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Qianlei Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Bing Ou
- Department of Ultrasound, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Qinghua Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Jianhong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Ruibin Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120, Guangzhou, China.
| |
Collapse
|
6
|
Harding JJ, Kelley RK, Tan B, Capanu M, Do GK, Shia J, Chou JF, Ferrer CS, Boussayoud C, Muenkel K, Yarmohammadi H, El Dika I, Khalil DN, Ruiz C, Rodriguez‐Lee M, Kuhn P, Wilton J, Iyer R, Abou‐Alfa GK. Phase Ib Study of Enzalutamide with or Without Sorafenib in Patients with Advanced Hepatocellular Carcinoma. Oncologist 2020; 25:e1825-e1836. [PMID: 32548867 PMCID: PMC8186405 DOI: 10.1634/theoncologist.2020-0521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 12/20/2022] Open
Abstract
LESSONS LEARNED Androgen receptor as assessed by immunohistochemistry is expressed in a high proportion of patients with hepatocellular carcinoma (HCC). Enzalutamide at 160 mg orally daily is safe and tolerable in patients with advanced HCC but has no single-agent antitumor activity. Enzalutamide, a CYP3A4 inducer, at a standard dose of 160 mg reduces the exposure of sorafenib, a CYP3A4 substrate. Enzalutamide and sorafenib is safe and tolerable in patients with advanced HCC, but the addition of enzalutamide to sorafenib did not enhance the antitumor activity of sorafenib. BACKGROUND Androgen receptor (AR) interference is deleterious to hepatocellular carcinoma (HCC) in preclinical models. METHODS This is a multicenter, phase Ib study of enzalutamide ± sorafenib in patients with advanced HCC. In part 1, a 3 + 3 dose de-escalation design with expansion established the recommended phase II dose (RP2D) of enzalutamide in patients in whom sorafenib treatment had failed. In part 2, a 3 + 3 dose escalation with expansion established the safety of enzalutamide with sorafenib in treatment-naive patients with HCC. Secondary objectives included objective response rate (ORR), progression-free survival (PFS), overall survival (OS), pharmacokinetics (PK), and determination of AR expression by immunohistochemistry. A 7-day run-in with sorafenib alone in part 2 allowed assessment of the impact of enzalutamide on sorafenib pharmacokinetics. RESULTS In part 1, 16 patients received enzalutamide 160 mg daily. No dose-limiting toxicity (DLT) occurred; 1 patient required dose reduction. Responses were not observed; median PFS and OS were 1.8 (95% confidence interval [CI]: 1.6-3.6) and 7 (95% CI: 3.6 to not reached [NR]) months, respectively. In part 2, patients received sorafenib 400 mg daily (4) or twice a day (8) both with enzalutamide at the recommended phase II dose-no DLTs were observed. ORR was 10% (95% CI: 0.3-44.5), and median PFS and OS were 2.9 (95% CI: 1.6 to NR) and 6.7 (95% CI: 4.6 to NR) months, respectively. Enzalutamide reduced sorafenib exposure by 60%. Tumor AR expression did not associate with outcome. CONCLUSION Enzalutamide is ineffective in HCC; further development is not supported by this study.
Collapse
Affiliation(s)
- James J. Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Robin K. Kelley
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Benjamin Tan
- Department of Medicine, Washington UniversitySt. LouisMissouriUSA
| | - Marinela Capanu
- Department of Epidemiology‐Biostatistics, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Gian Kinh Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Joanne F. Chou
- Department of Epidemiology‐Biostatistics, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Christine S. Ferrer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Chayma Boussayoud
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Kerri Muenkel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Hooman Yarmohammadi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Danny N. Khalil
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Carmen Ruiz
- University of Southern California USC Michelson CenterLos AngelesCaliforniaUSA
| | | | - Peter Kuhn
- University of Southern California USC Michelson CenterLos AngelesCaliforniaUSA
| | - John Wilton
- Department of Medicine, Roswell Park Cancer InstituteBuffaloNew YorkUSA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Cancer InstituteBuffaloNew YorkUSA
| | - Ghassan K. Abou‐Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkNew YorkUSA
| |
Collapse
|
7
|
Cheng YW, Chen KW, Kuo HC, Kuo CH, Lin WH, Chen PJ, Yeh SH. Specific diacylglycerols generated by hepatic lipogenesis stimulate the oncogenic androgen receptor activity in male hepatocytes. Int J Obes (Lond) 2019; 43:2469-2479. [PMID: 31455870 DOI: 10.1038/s41366-019-0431-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/16/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Obesity-induced hepatocellular carcinoma (HCC) is more prevalent in males than in females, but the underlying mechanism remains unclear. The influence of hepatic androgen receptor (AR) pathway on the gender difference of HCC has been well documented. Here we investigated the role of hepatic lipogenesis, which is elevated in the livers of obese and nonalcoholic fatty liver disease (NAFLD) patients, in stimulating the AR pathway for the male preference of obesity induced HCC. METHODS Male C57BL/6J mice were fed a fructose-rich high carbohydrate diet (HCD) to induce hepatic lipogenesis. The effect of hepatic lipogenesis on AR was examined by the expression of hydrodynamically injected AR reporter and the endogenous AR target gene; the mechanism was delineated in hepatoma cell lines and validated in male mice. RESULTS The hepatic lipogenesis induced by a fructose-rich HCD enhanced the transcriptional activity of hepatic AR in male mice, which did not happen when fed a high fat diet. This AR activation was blocked by sh-RNAs or inhibitors targeting key enzymes in lipogenesis, either acetyl-CoA carboxylase subunit alpha (ACCα), or fatty acid synthase (FASN), in vivo and in vitro. Further mechanistic study identified that specific unsaturated fatty acid, the oleic acid (C18:1 n-9), incorporated DAGs produced by hepatic lipogenesis are the key molecules to enhance the AR activity, through activation of Akt kinase, and this novel mechanism is targeted by metformin. CONCLUSIONS Our study elucidates a novel mechanism underlying the higher risk of HCC in obese/NAFLD males, through specific DAGs enriched by hepatic lipogenesis to increase the transcriptional activity of hepatic AR, a confirmed risk factor for male HCC.
Collapse
Affiliation(s)
- Ya-Wen Cheng
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Kai-Wei Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Han-Chun Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Ching-Hua Kuo
- The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, 100, Taiwan.,School of Pharmacy, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Wei-Hsiang Lin
- NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Pei-Jer Chen
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 100, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, 100, Taiwan. .,NTU Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, 100, Taiwan.
| |
Collapse
|
8
|
Dauki AM, Blachly JS, Kautto EA, Ezzat S, Abdel-Rahman MH, Coss CC. Transcriptionally Active Androgen Receptor Splice Variants Promote Hepatocellular Carcinoma Progression. Cancer Res 2019; 80:561-575. [PMID: 31685543 DOI: 10.1158/0008-5472.can-19-1117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 10/28/2019] [Indexed: 12/29/2022]
Abstract
Owing to the marked sexual dimorphism of hepatocellular carcinoma (HCC), sex hormone receptor signaling has been implicated in numerous aspects of liver cancer pathogenesis. We sought to reconcile the clear contribution of androgen receptor (AR) activity that has been established in preclinical models of HCC with the clinical failure of AR antagonists in patients with advanced HCC by evaluating potential resistance mechanisms to AR-targeted therapy. The AR locus was interrogated for resistance-causing genomic modifications using publicly available primary HCC datasets (1,019 samples). Analysis of HCC tumor and cell line RNA-seq data revealed enriched expression of constitutively active, treatment-refractory AR splice variants (AR-SV). HCC cell lines expressed C-terminal-truncated AR-SV; 28 primary HCC samples abundantly expressed AR-SV. Low molecular weight AR species were nuclear localized and constitutively active. Furthermore, AR/AR-SV signaling promoted AR-mediated HCC cell progression and conferred resistance to AR antagonists. Ligand-dependent and -independent AR signaling mediated HCC epithelial-to-mesenchymal transition by regulating the transcription factor SLUG. These data suggest that AR-SV expression in HCC drives HCC progression and resistance to traditional AR antagonists. Novel therapeutic approaches that successfully target AR-SVs may be therapeutically beneficial for HCC. SIGNIFICANCE: Treatment-refractory, constitutively active androgen receptor splice variants promote hepatocellular carcinoma progression by regulating the epithelial-to-mesenchymal transition pathway.
Collapse
Affiliation(s)
- Anees M Dauki
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio.,Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Esko A Kautto
- Division of Hematology, College of Medicine, The Ohio State University, Columbus, Ohio.,Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio
| | - Sameera Ezzat
- Department of Public Health, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt.,National Liver Institute Sustainable Sciences Institute Collaborative Research Center, Menoufia University, Shebin El-kom, Egypt
| | - Mohamed H Abdel-Rahman
- National Liver Institute Sustainable Sciences Institute Collaborative Research Center, Menoufia University, Shebin El-kom, Egypt.,Department of Ophthalmology, College of Medicine, The Ohio State University, Columbus, Ohio.,Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.,Pathology Department, National Liver Institute, Menoufia University, Shebin El-kom, Egypt
| | - Christopher C Coss
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio. .,Drug Development Institute, OSU Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
HoxA10 Facilitates SHP-1-Catalyzed Dephosphorylation of p38 MAPK/STAT3 To Repress Hepatitis B Virus Replication by a Feedback Regulatory Mechanism. J Virol 2019; 93:JVI.01607-18. [PMID: 30674631 DOI: 10.1128/jvi.01607-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). This study reveals a distinct mechanism underlying the regulation of HBV replication. HBV activates homeobox A10 (HoxA10) in human hepatocytes, leukocytes, peripheral blood mononuclear cells (PBMCs), HepG2-NTCP cells, leukocytes isolated from CHB patients, and HBV-associated HCC tissues. HoxA10 in turn represses HBV replication in human hepatocytes, HepG2-NTCP cells, and BALB/c mice. Interestingly, we show that during early HBV infection, p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) were activated to facilitate HBV replication; however, during late HBV infection, HoxA10 was induced to attenuate HBV replication. Detailed studies reveal that HoxA10 binds to p38 MAPK, recruits SH2-containing protein tyrosine phosphatase 1 (SHP-1) to facilitate SHP-1 in catalyzing dephosphorylation of p38 MAPK/STAT3, and thereby attenuates p38 MAPK/STAT3 activation and HBV replication. Furthermore, HoxA10 binds to the HBV enhancer element I (EnhI)/X promoter, competes with STAT3 for binding of the promoter, and thereby represses HBV transcription. Taken together, these results show that HoxA10 attenuates HBV replication through repressing the p38 MAPK/STAT3 pathway by two approaches: HoxA10 interacts with p38 MAPK and recruits SHP-1 to repress HBV replication, and HoxA10 binds to the EnhI/X promoter and competes with STAT3 to attenuate HBV transcription. Thus, the function of HoxA10 is similar to the action of interferon (IFN) in terms of inhibition of HBV infection; however, the mechanism of HoxA10-mediated repression of HBV replication is different from the mechanism underlying IFN-induced inhibition of HBV infection.IMPORTANCE Two billion people have been infected with HBV worldwide; about 240 million infected patients developed chronic hepatitis B (CHB), and 650,000 die each year from liver cirrhosis (LC) or hepatocellular carcinoma (HCC). This work elucidates a mechanism underlying the control of HBV replication. HBV infection activates HoxA10, a regulator of cell differentiation and cancer progression, in human cells and patients with CHB and HCC. HoxA10 subsequently inhibits HBV replication in human tissue culture cells and mice. Additionally, HoxA10 interacts with p38 MAPK to repress the activation of p38 MAPK and STAT3 and recruits and facilitates SHP-1 to catalyze the dephosphorylation of p38 MAPK and STAT3. Moreover, HoxA10 competes with STAT3 for binding of the HBV X promoter to repress HBV transcription. Thus, this work reveals a negative regulatory mechanism underlying the control of HBV replication and provides new insights into the development of potential agents to control HBV infection.
Collapse
|
10
|
Aberrant enhancer hypomethylation contributes to hepatic carcinogenesis through global transcriptional reprogramming. Nat Commun 2019; 10:335. [PMID: 30659195 PMCID: PMC6338783 DOI: 10.1038/s41467-018-08245-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatocellular carcinomas (HCC) exhibit distinct promoter hypermethylation patterns, but the epigenetic regulation and function of transcriptional enhancers remain unclear. Here, our affinity- and bisulfite-based whole-genome sequencing analyses reveal global enhancer hypomethylation in human HCCs. Integrative epigenomic characterization further pinpoints a recurrent hypomethylated enhancer of CCAAT/enhancer-binding protein-beta (C/EBPβ) which correlates with C/EBPβ over-expression and poorer prognosis of patients. Demethylation of C/EBPβ enhancer reactivates a self-reinforcing enhancer-target loop via direct transcriptional up-regulation of enhancer RNA. Conversely, deletion of this enhancer via CRISPR/Cas9 reduces C/EBPβ expression and its genome-wide co-occupancy with BRD4 at H3K27ac-marked enhancers and super-enhancers, leading to drastic suppression of driver oncogenes and HCC tumorigenicity. Hepatitis B X protein transgenic mouse model of HCC recapitulates this paradigm, as C/ebpβ enhancer hypomethylation associates with oncogenic activation in early tumorigenesis. These results support a causal link between aberrant enhancer hypomethylation and C/EBPβ over-expression, thereby contributing to hepatocarcinogenesis through global transcriptional reprogramming. There are distinct hypermethylation patterns in gene promoters in hepatocellular carcinomas (HCCs). Here, the authors show that the enhancer of C/EBPβ is recurrently hypomethylated in human HCCs, recapitulating this in a transgenic murine model and linking aberrant enhancer hypomethylation to hepatocarcinogenesis.
Collapse
|
11
|
Chen SL, Zhang CZ, Liu LL, Lu SX, Pan YH, Wang CH, He YF, Lin CS, Yang X, Xie D, Yun JP. A GYS2/p53 Negative Feedback Loop Restricts Tumor Growth in HBV-Related Hepatocellular Carcinoma. Cancer Res 2018; 79:534-545. [PMID: 30584071 DOI: 10.1158/0008-5472.can-18-2357] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinogenesis is attributed to the reprogramming of cellular metabolism as a consequence of the alteration in metabolite-related gene regulation. Identifying the mechanism of aberrant metabolism is of great potential to provide novel targets for the treatment of hepatocellular carcinoma (HCC). Here, we demonstrated that glycogen synthase 2 (GYS2) restricted tumor growth in hepatitis B virus-related HCC via a negative feedback loop with p53. Expression of GYS2 was significantly downregulated in HCC and correlated with decreased glycogen content and unfavorable patient outcomes. GYS2 overexpression suppressed, whereas GYS2 knockdown facilitated cell proliferation in vitro and tumor growth in vivo via modulating p53 expression. GYS2 competitively bound to MDM2 to prevent p53 from MDM2-mediated ubiquitination and degradation. Furthermore, GYS2 enhanced the p300-induced acetylation of p53 at K373/382, which in turn inhibited the transcription of GYS2 in the support of HBx/HDAC1 complex. In summary, our findings suggest that GYS2 serves as a prognostic factor and functions as a tumor suppressor in HCC. The newly identified HBx/GYS2/p53 axis is responsible for the deregulation of glycogen metabolism and represents a promising therapeutic target for the clinical management of HCC. SIGNIFICANCE: We elucidated the clinical significance, biological function, and regulation of the HBx/GYS2/p53 axis, which supplement the understanding of tumor glycogen metabolism and provide potential prognostic and therapeutic targets for HCC treatment.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/3/534/F1.large.jpg.
Collapse
Affiliation(s)
- Shi-Lu Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Li Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shi-Xun Lu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying-Hua Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun-Hua Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang-Fan He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cen-Shan Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia Yang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dan Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Ping Yun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China. .,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
12
|
Lee S, Kim WJ, Jeon Y, Lim CH, Sun K. Specification of Subject Sex in Oncology-Related Animal Studies. Acute Crit Care 2018; 33:178-184. [PMID: 31723882 PMCID: PMC6786696 DOI: 10.4266/acc.2017.00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/12/2017] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Background Growing evidence for clinically significant differences between the sexes has attracted the attention of researchers. However, failures to report a test animal sex and balance the sex ratios of study samples remain widespread in preclinical investigations. We analyzed the sex-reporting rate and sex distributions of test animals in published oncology studies. Methods We selected five oncology journals included in the Scientific Citation Index (SCI) based on impact factors. We identified preclinical investigations with in vivo mouse experiments published in 2015 for inclusion in our study sample. We classified each article by whether or not it reported test subject sex, and by which sex was included. We also recorded whether there were justifications for using one particular sex in single-sex studies (e.g., anatomical reasons) and whether sex-based analyses were conducted for both-sex studies. Results We surveyed a total of 382 articles. Half (50.3%) failed to report test animal sex. Among articles that did report sex, 91.7% were single-sex studies, of which 69.4% did not provide any justifications for using the sex included in the study. Relatively few studies 15.7 studies included animals of both sexes, and only 2.3 studies conducted sex-based analyses. These findings are consistent with those of previous research that used other methods to collect data from the literature such as text mining, but our analysis of the provision of justifications for using one sex versus the other is a novel feature. Conclusions Many researchers overlook test subject sex as a factor, but test animal sex should be reported in all preclinical investigations to enhance the reproducibility of research and avoid faulty conclusions drawn from one-sided studies.
Collapse
Affiliation(s)
- Sukyo Lee
- Korea University College of Medicine, Seoul, Korea
| | - Won Jun Kim
- Korea University College of Medicine, Seoul, Korea
| | - Yeong Jeon
- Korea University College of Medicine, Seoul, Korea
| | - Choon Hak Lim
- Department of Anesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, Korea
| | - Kyung Sun
- Department of Thoracic and Cardiovascular Surgery, Korea University Anam Hospital, Seoul, Korea.,Osong Medical Innovation Foundation, Cheongju, Korea
| |
Collapse
|
13
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
14
|
Jiang L, Shan J, Shen J, Wang Y, Yan P, Liu L, Zhao W, Xu Y, Zhu W, Su L, Chen J, Cheng F, Yao H, Xu H, Qian C, Liang Z. Androgen/androgen receptor axis maintains and promotes cancer cell stemness through direct activation of Nanog transcription in hepatocellular carcinoma. Oncotarget 2018; 7:36814-36828. [PMID: 27167111 PMCID: PMC5095041 DOI: 10.18632/oncotarget.9192] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and malignant cancers. The HCC incidence gets a strong sexual dimorphism as men are the major sufferers in this disaster. Although several studies have uncovered the presentative correlation between the axis of androgen/androgen receptor (AR) and HCC incidence, the mechanism is still largely unknown. Cancer stem cells (CSCs) are a small subgroup of cancer cells contributing to multiple tumors malignant behaviors, which play an important role in oncogenesis of various cancers including HCC. However, whether androgen/AR axis involves in regulation of HCC cells stemness remains unclear. Our previous study had identified that the pluripotency factor Nanog is not only a stemness biomarker, but also a potent regulator of CSCs in HCC. In this study, we revealed androgen/AR axis can promote HCC cells stemness by transcriptional activation of Nanog expression through directly binding to its promoter. In HCC tissues, we found that AR expression was abnormal high and got correlation with Nanog. Then, by labeling cellular endogenous Nanog with green fluorescent protein (GFP) through CRISPR/Cas9 system, it verified the co-localization of AR and Nanog in HCC cells. With in vitro experiments, we demonstrated the axis can promote HCC cells stemness, which effect is in a Nanog-dependent manner and through activating its transcription. And the xenografted tumor experiments confirmed the axis effect on tumorigenesis facilitation in vivo. Above all, we revealed a new sight of androgen/AR axis roles in HCC and provided a potential way for suppressing the axis in HCC therapy.
Collapse
Affiliation(s)
- Lupin Jiang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanzhou Wang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ping Yan
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenxu Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanmin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Zhu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Su
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feifei Cheng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hong Yao
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Huicheng Xu
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhiqing Liang
- Department of Obstetrics & Gynecology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
15
|
Ren H, Ren B, Zhang J, Zhang X, Li L, Meng L, Li Z, Li J, Gao Y, Ma X. Androgen enhances the activity of ETS-1 and promotes the proliferation of HCC cells. Oncotarget 2017; 8:109271-109288. [PMID: 29312607 PMCID: PMC5752520 DOI: 10.18632/oncotarget.22669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
The expression of androgen receptor (AR) has been detected in hepatocellular cancer (HCC). However, there is no universal model detailing AR’s function and mechanism in HCC. This study’s results show that treatment with dihydrotestosterone (DHT), an endogenous androgen, promoted HCC cells’ proliferation and up-regulated the transcription factor activity of ETS-1 (E26 transformation specific sequence 1), which mediates the migration and invasion of cancer cells via protein-protein interaction between AR and ETS-1. Results from luciferase assays showed that ETS-1’s activity was significantly up-regulated following androgen treatment. AR mediated ETS-1’s DHT-induced transcription factor activity. A potential protein-protein interaction between ETS-1 and AR was identified via glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. The mechanisms’ data indicated that enhancing AR activity increases ETS-1’s activity by modulating its cytoplasmic/nuclear translocation and recruiting ETS-1 to its target genes’ promoter. Moreover, while overexpression of AR significantly increased the proliferation or in vitro migration or invasion of HepG2 cells in the presence of androgen, inhibiting AR’s activity reduced these abilities. Thus, AR’s function as a novel ETS-1 co-activator or potentially therapeutic target of HCC has been demonstrated.
Collapse
Affiliation(s)
- Hui Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Bo Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jiabin Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xiaofeng Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lixin Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lingzhan Meng
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Zhijie Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jia Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Yinjie Gao
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xuemei Ma
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| |
Collapse
|
16
|
Src-homology protein tyrosine phosphatase-1 agonist, SC-43, reduces liver fibrosis. Sci Rep 2017; 7:1728. [PMID: 28496142 PMCID: PMC5431996 DOI: 10.1038/s41598-017-01572-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
This study aimed to investigate the role of src-homology protein tyrosine phosphatase-1 (SHP-1)–signal transducer and activator of transcription 3 (STAT3) pathway in liver fibrogenesis and the anti-fibrotic effect of SHP-1 agonist. The antifibrotic activity of SC-43, a sorafenib derivative with an enhanced SHP-1 activity, was evaluated in two fibrosis mouse models by carbon tetrachloride induction and bile duct ligation. Rat, human, and primary mouse hepatic stellate cells (HSCs) were used for mechanistic investigations. The results showed that SHP-1 protein primarily localized in fibrotic areas of human and mouse livers. SC-43 treatment reduced the activated HSCs and thus effectively prevented and regressed liver fibrosis in both fibrosis mouse models and improved mouse survival. In vitro studies revealed that SC-43 promoted HSC apoptosis, increased the SHP-1 activity and inhibited phospho-STAT3. The enhanced SHP-1 activity in HSCs significantly inhibited HSC proliferation, whereas SHP-1 inhibition rescued SC-43-induced HSC apoptosis. Furthermore, SC-43 interacted with the N-SH2 domain of SHP-1 to enhance the activity of SHP-1 as its antifibrotic mechanism. In conclusion, the SHP-1–STAT3 pathway is crucial in fibrogenesis. SC-43 significantly ameliorates liver fibrosis through SHP-1 upregulation. A SHP-1-targeted antifibrotic therapy may represent a druggable strategy for antifibrotic drug discovery.
Collapse
|
17
|
Kanda T, Takahashi K, Nakamura M, Nakamoto S, Wu S, Haga Y, Sasaki R, Jiang X, Yokosuka O. Androgen Receptor Could Be a Potential Therapeutic Target in Patients with Advanced Hepatocellular Carcinoma. Cancers (Basel) 2017; 9:cancers9050043. [PMID: 28475115 PMCID: PMC5447953 DOI: 10.3390/cancers9050043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a male-dominant disease with poor prognosis. Sorafenib is the only approved systemic chemotherapeutic drug for patients with advanced HCC. Previous studies have shown that androgen and androgen receptor (AR) are involved in human hepatocarcinogenesis and the development of HCC. Here, we discuss the recent data on AR and HCC, and the combination of sorafenib and inhibitors of AR for advanced-HCC patients. Androgen-dependent and androgen-independent AR activation exist in human hepatocarcinogenesis. AR could directly control hepatocarcinogenesis and regulate the innate immune system to influence HCC progression. Combination of sorafenib with AR inhibitors might represent a potential treatment for patients with advanced HCC.
Collapse
Affiliation(s)
- Tatsuo Kanda
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | - Koji Takahashi
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | - Masato Nakamura
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | - Shingo Nakamoto
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | - Shuang Wu
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | - Yuki Haga
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | - Reina Sasaki
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | - Xia Jiang
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
- Department of General Surgery, The First Hospital of Hebei Medical University, Donggang Road No. 89, Shijiazhuang 050031, China.
| | - Osamu Yokosuka
- Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| |
Collapse
|
18
|
Saidak Z, Giacobbi AS, Louandre C, Sauzay C, Mammeri Y, Galmiche A. Mathematical modelling unveils the essential role of cellular phosphatases in the inhibition of RAF-MEK-ERK signalling by sorafenib in hepatocellular carcinoma cells. Cancer Lett 2017; 392:1-8. [DOI: 10.1016/j.canlet.2017.01.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|