1
|
Chu X, Mi B, Xiong Y, Wang R, Liu T, Hu L, Yan C, Zeng R, Lin J, Fu H, Liu G, Zhang K, Bian L. Bioactive nanocomposite hydrogel enhances postoperative immunotherapy and bone reconstruction for osteosarcoma treatment. Biomaterials 2025; 312:122714. [PMID: 39079462 DOI: 10.1016/j.biomaterials.2024.122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Osteosarcoma, a malignant bone tumor often characterized by high hedgehog signaling activity, residual tumor cells, and substantial bone defects, poses significant challenges to both treatment response and postsurgical recovery. Here, we developed a nanocomposite hydrogel for the sustained co-delivery of bioactive magnesium ions, anti-PD-L1 antibody (αPD-L1), and hedgehog pathway antagonist vismodegib, to eradicate residual tumor cells while promoting bone regeneration post-surgery. In a mouse model of tibia osteosarcoma, this hydrogel-mediated combination therapy led to remarkable tumor growth inhibition and hence increased animal survival by enhancing the activity of tumor-suppressed CD8+ T cells. Meanwhile, the implanted hydrogel improved the microenvironment of osteogenesis through long-term sustained release of Mg2+, facilitating bone defect repair by upregulating the expression of osteogenic genes. After 21 days, the expression levels of ALP, COL1, RUNX2, and BGLAP in the Vis-αPD-L1-Gel group were approximately 4.1, 5.1, 5.5, and 3.4 times higher than those of the control, respectively. We believe that this hydrogel-based combination therapy offers a potentially valuable strategy for treating osteosarcoma and addressing the tumor-related complex bone diseases.
Collapse
Affiliation(s)
- Xiangyu Chu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, PR China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, PR China
| | - Yuan Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Ruinan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Tuozhou Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Liangcong Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, PR China
| | - Chenchen Yan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, PR China
| | - Ruiyin Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, PR China
| | - Jiali Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Hao Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, PR China.
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
2
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Jensen SB, Jæhger DE, Serrano-Chávez E, Halldórsdóttir HR, Engel TB, Jørgensen JS, Björgvinsdóttir UJ, Kostrikov S, Scheeper MJ, Ringgaard L, Bruun LM, Stavnsbjerg C, Christensen E, Bak M, Thuroczy J, Balogh L, Jensen ATI, Melander F, Kjaer A, Henriksen JR, Hansen AE, Andresen TL. An in situ depot for the sustained release of a TLR7/8 agonist in combination with a TGFβ inhibitor promotes anti-tumor immune responses. Nat Commun 2024; 15:7687. [PMID: 39227589 PMCID: PMC11371921 DOI: 10.1038/s41467-024-50967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Cancer curing immune responses against heterogeneous solid cancers require that a coordinated immune activation is initiated in the antigen avid but immunosuppressive tumor microenvironment (TME). The plastic TME, and the poor systemic tolerability of immune activating drugs are, however, fundamental barriers to generating curative anticancer immune responses. Here, we introduce the CarboCell technology to overcome these barriers by forming an intratumoral sustained drug release depot that provides high payloads of immune stimulatory drugs selectively within the TME. The CarboCell thereby induces a hot spot for immune cell training and polarization and further drives and maintains the tumor-draining lymph nodes in an anticancer and immune activated state. Mechanistically, this transforms cancerous tissues, consequently generating systemic anticancer immunoreactivity. CarboCell can be injected through standard thin-needle technologies and has inherent imaging contrast which secure accurate intratumoral positioning. In particular, here we report the therapeutic performance for a dual-drug CarboCell providing sustained release of a Toll-like receptor 7/8 agonist and a transforming growth factor-β inhibitor in preclinical tumor models in female mice.
Collapse
Affiliation(s)
- Sophie B Jensen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ditte E Jæhger
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Elizabeth Serrano-Chávez
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hólmfríður R Halldórsdóttir
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Trine B Engel
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jennifer S Jørgensen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Unnur J Björgvinsdóttir
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Serhii Kostrikov
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marouschka J Scheeper
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars Ringgaard
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Linda M Bruun
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Camilla Stavnsbjerg
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Esben Christensen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Martin Bak
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | - Andreas T I Jensen
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Roskilde, Denmark
| | - Fredrik Melander
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Copenhagen, Denmark
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Henriksen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anders E Hansen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Minaei E, Ranson M, Aghmesheh M, Sluyter R, Vine KL. Enhancing pancreatic cancer immunotherapy: Leveraging localized delivery strategies through the use of implantable devices and scaffolds. J Control Release 2024; 373:145-160. [PMID: 38996923 DOI: 10.1016/j.jconrel.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Pancreatic cancer (PC) remains the predominant type of upper gastrointestinal tract cancer, associated with heightened morbidity and a survival rate below 12%. While immunotherapy has brought about transformative changes in the standards of care for most solid tumors, its application in PC is hindered by the ''cold tumor'' microenvironment, marked by the presence of immunosuppressive cells. Modest response rates in PC are attributed, in part to, the fibrotic stroma that obstructs the delivery of systemic immunotherapy. Furthermore, the occurrence of immune-related adverse events (iRAEs) often necessitates the use of sub-therapeutic doses or treatment discontinuation. In the pursuit of innovative approaches to enhance the effectiveness of immunotherapy for PC, implantable drug delivery devices and scaffolds emerge as promising strategies. These technologies offer the potential for sustained drug delivery directly to the tumor site, overcoming stromal barriers, immunosuppression, T cell exclusion, immunotherapy resistance, optimizing drug dosage, and mitigating systemic toxicity. This review offers a comprehensive exploration of pancreatic ductal adenocarcinoma (PDAC), the most common and aggressive form of PC, accompanied by a critical analysis of the challenges the microenvironment presents to the development of successful combinational immunotherapy approaches. Despite efforts, these approaches have thus far fallen short in enhancing treatment outcomes for PDAC. The review will subsequently delve into the imperative need for refining delivery strategies, providing an examination of past and ongoing studies in the field of localized immunotherapy for PDAC. Addressing these issues will lay the groundwork for the development of effective new therapies, thereby enhancing treatment response, patient survival, and overall quality of life for individuals diagnosed with PDAC.
Collapse
Affiliation(s)
- E Minaei
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - M Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - M Aghmesheh
- Nelune Comprehensive Cancer Centre, Bright Building, Prince of Wales Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, UNSW, Sydney, NSW, Australia
| | - R Sluyter
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - K L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
5
|
Zhang Z, Li L, Gao Y, Xiao X, Ji L, Zhou Z, Jiang J, Liu S, An J, Deng P, Du N, Li P, Xia X, Hu C, Li M. Immune characteristics associated with lymph node metastasis in early-stage NSCLC. Cell Oncol (Dordr) 2024; 47:447-461. [PMID: 37728859 DOI: 10.1007/s13402-023-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE Tumor metastasis significantly impacts the prognosis of non-small cell lung cancer (NSCLC) patients, with lymph node (LN) metastasis being the most common and early form of spread. With the development of adjuvant immunotherapy, increasing attention has been paid to the tumor-draining lymph nodes(TDLN) in early-stage NSCLC, especially tumor-metastatic lymph nodes, which provides poor prognostic information but has potential benefits in adjuvant treatment. METHODS We showed the remodeled immune environment in TDLNs through using TCR-seq to analyse 24 primary lung cancer tissues and 134 LNs from 24 lung cancer patients with or without LN metastasis. Additionally, we characterized the spatial profiling of immunocytes and tumor cells in TDLNs and primary tumor sites through using multi-IHC. RESULTS We found the remodeled immune environment in TDLNs through analyzing primary lung cancer tissues and LNs from NSCLC patients with or without LN metastasis. Considering the intricate communication between tumor and immunocytes, we further subdivided TDLNs, revealing that metastasis-negative LNs from LN-metastatic patients (MNLN) exhibited greater immune activation, exhaustion, and memory in comparison to both metastasis-positive LNs (MPLN) and TDLNs from non-LN-metastatic patients (NMLN). CONCLUSIONS Our data indicate that LN metastasis facilitated tumor-specific antigen presentation in TDLNs and induces T cell priming, while existing tumor cells generate an immune-suppressive environment in MPLNs through multiple mechanisms. These findings contribute to a comprehensive understanding of the immunological mechanisms through which LN metastasis influences tumor progression and plays a role in immunotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiong Xiao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Liyan Ji
- Geneplus-Beijing Institute, Beijing, China
| | | | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shiqing Liu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jian An
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Pengbo Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - NanNan Du
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Pansong Li
- Geneplus-Beijing Institute, Beijing, China
| | | | - Chengping Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Min Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China.
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, China.
| |
Collapse
|
6
|
Kang S, Mansurov A, Kurtanich T, Chun HR, Slezak AJ, Volpatti LR, Chang K, Wang T, Alpar AT, Refvik KC, Hansen OI, Borjas GJ, Shim HN, Hultgren KT, Gomes S, Solanki A, Ishihara J, Swartz MA, Hubbell JA. Engineered IL-7 synergizes with IL-12 immunotherapy to prevent T cell exhaustion and promote memory without exacerbating toxicity. SCIENCE ADVANCES 2023; 9:eadh9879. [PMID: 38019919 PMCID: PMC10686557 DOI: 10.1126/sciadv.adh9879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Cancer immunotherapy is moving toward combination regimens with agents of complementary mechanisms of action to achieve more frequent and robust efficacy. However, compared with single-agent therapies, combination immunotherapies are associated with increased overall toxicity because the very same mechanisms also work in concert to enhance systemic inflammation and promote off-tumor toxicity. Therefore, rational design of combination regimens that achieve improved antitumor control without exacerbated toxicity is a main objective in combination immunotherapy. Here, we show that the combination of engineered, tumor matrix-binding interleukin-7 (IL-7) and IL-12 achieves remarkable anticancer effects by activating complementary pathways without inducing any additive immunotoxicity. Mechanistically, engineered IL-12 provided effector properties to T cells, while IL-7 prevented their exhaustion and boosted memory formation as assessed by tumor rechallenge experiments. The dual combination also rendered checkpoint inhibitor (CPI)-resistant genetically engineered melanoma model responsive to CPI. Thus, our approach provides a framework of evaluation of rationally designed combinations in immuno-oncology and yields a promising therapy.
Collapse
Affiliation(s)
- Seounghun Kang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Trevin Kurtanich
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Hye Rin Chun
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Anna J. Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lisa R. Volpatti
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Kevin Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Thomas Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Kirsten C. Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - O. Isabella Hansen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Gustavo J. Borjas
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ha-Na Shim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Kevin T. Hultgren
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL, USA
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, UK
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Kim J, Song S, Gwak M, Cho H, Yun WS, Hwang N, Kim J, Lee JS, Kim DH, Kim H, Jeon SI, Kim TI, Kim K. Micro-syringe chip-guided intratumoral administration of lipid nanoparticles for targeted anticancer therapy. Biomater Res 2023; 27:102. [PMID: 37845762 PMCID: PMC10577945 DOI: 10.1186/s40824-023-00440-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Nano-sized drug delivery system has been widely studied as a potential technique to promote tumor-specific delivery of anticancer drugs due to its passive targeting property, but resulting in very restricted improvements in its systemic administration so far. There is a requirement for a different approach that dramatically increases the targeting efficiency of therapeutic agents at targeted tumor tissues. METHODS To improve the tumor-specific accumulation of anticancer drugs and minimize their undesirable toxicity to normal tissues, a tumor-implantable micro-syringe chip (MSC) with a drug reservoir is fabricated. As a clinically established delivery system, six liposome nanoparticles (LNPs) with different compositions and surface chemistry are prepared and their physicochemical properties and cellular uptake are examined in vitro. Subsequently, MSC-guided intratumoral administration is studied to identify the most appropriate for the higher tumor targeting efficacy with a uniform intratumoral distribution. For efficient cancer treatment, pro-apoptotic anticancer prodrugs (SMAC-P-FRRG-DOX) are encapsulated to the optimal LNPs (SMAC-P-FRRG-DOX encapsulating LNPs; ApoLNPs), then the ApoLNPs are loaded into the 1 μL-volume drug reservoir of MSC to be delivered intratumorally for 9 h. The tumor accumulation and therapeutic effect of ApoLNPs administered via MSC guidance are evaluated and compared to those of intravenous and intratumoral administration of ApoLNP in 4T1 tumor-bearing mice. RESULTS MSC is precisely fabricated to have a 0.5 × 4.5 mm needle and 1 μL-volume drug reservoir to achieve the uniform intratumoral distribution of LNPs in targeted tumor tissues. Six liposome nanoparticles with different compositions of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (PC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (PS), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)2000] (PEG2000-DSPE) are prepared with average sizes of 100-120 nm and loaded into the 1 μL-volume drug reservoir in MSC. Importantly negatively charged 10 mol% of PS-containing LNPs are very slowly infused into the tumor tissue through the micro-syringe of the MSC over 6 h. The intratumoral targeting efficiency of MSC guidance is 93.5%, effectively assisting the homogeneous diffusion of LNPs throughout the tumor tissue at 3.8- and 2.7-fold higher concentrations compared to the intravenous and intratumoral administrations of LNPs, respectively. Among the six LNP candidates 10 mol% of PS-containing LNPs are finally selected for preparing pro-apoptotic SMAC-P-FRRG-DOX anticancer prodrug-encapsulated LNPs (ApoLNPs) due to their moderate endocytosis rate high tumor accumulation and homogenous intratumoral distribution. The ApoLNPs show a high therapeutic effect specifically to cathepsin B-overexpressing cancer cells with 6.6 μM of IC50 value while its IC50 against normal cells is 230.7 μM. The MSC-guided administration of ApoLNPs efficiently inhibits tumor growth wherein the size of the tumor is 4.7- and 2.2-fold smaller than those treated with saline and intratumoral ApoLNP without MSC, respectively. Moreover, the ApoLNPs remarkably reduce the inhibitor of apoptosis proteins (IAPs) level in tumor tissues confirming their efficacy even in cancers with high drug resistance. CONCLUSION The MSC-guided administration of LNPs greatly enhances the therapeutic efficiency of anticancer drugs via the slow diffusion mechanism through micro-syringe to tumor tissues for 6 h, whereas they bypass most hurdles of systemic delivery including hepatic metabolism, rapid renal clearance, and interaction with blood components or other normal tissues, resulting in the minimum toxicity to normal tissues. The negatively charged ApoLNPs with cancer cell-specific pro-apoptotic prodrug (SMAC-P-FRRG-DOX) show the highest tumor-targeting efficacy when they are treated with the MSC guidance, compared to their intravenous or intratumoral administration in 4T1 tumor-bearing mice. The MSC-guided administration of anticancer drug-encapsulated LNPs is expected to be a potent platform system that facilitates overcoming the limitations of systemic drug administration with low delivery efficiency and serious side effects.
Collapse
Affiliation(s)
- Jeongrae Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sunejeong Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Minjun Gwak
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hanhee Cho
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Namcheol Hwang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinseong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea
| | - Jun Seo Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyuncheol Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seong Ik Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea.
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman's University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
8
|
Mishra R, Sukhbaatar A, Mori S, Kodama T. Metastatic lymph node targeted CTLA4 blockade: a potent intervention for local and distant metastases with minimal ICI-induced pneumonia. J Exp Clin Cancer Res 2023; 42:132. [PMID: 37259163 DOI: 10.1186/s13046-023-02645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/14/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Immune checkpoint blockade (ICB) elicits a strong and durable therapeutic response, but its application is limited by disparate responses and its associated immune-related adverse events (irAEs). Previously, in a murine model of lymph node (LN) metastasis, we showed that intranodal administration of chemotherapeutic agents using a lymphatic drug delivery system (LDDS) elicits stronger therapeutic responses in comparison to systemic drug delivery approaches, while minimizing systemic toxicity, due to its improved pharmacokinetic profile at the intended site. Importantly, the LN is a reservoir of immunotherapeutic targets. We therefore hypothesized that metastatic LN-targeted ICB can amplify anti-tumor response and uncouple it from ICB-induced irAEs. METHODS To test our hypothesis, models of LN and distant metastases were established with luciferase expressing LM8 cells in MXH10/Mo-lpr/lpr mice, a recombinant inbred strain of mice capable of recapitulating ICB-induced interstitial pneumonia. This model was used to interrogate ICB-associated therapeutic response and immune related adverse events (irAEs) by in vivo imaging, high-frequency ultrasound imaging and histopathology. qPCR and flowcytometry were utilized to uncover the mediators of anti-tumor immunity. RESULTS Tumor-bearing LN (tbLN)-directed CTLA4 blockade generated robust anti-tumor response against local and systemic metastases, thereby improving survival. The anti-tumor effects were accompanied by an upregulation of effector CD8T cells in the tumor-microenvironment and periphery. In comparison, non-specific CTLA4 blockade was found to elicit weaker anti-tumor effect and exacerbated ICI-induced irAEs, especially interstitial pneumonia. Together these data highlight the importance of tbLN-targeted checkpoint blockade for efficacious response. CONCLUSIONS Intranodal delivery of immune checkpoint inhibitors to metastatic LN can potentiate therapeutic response while minimizing irAEs stemming from systemic lowering of immune activation threshold.
Collapse
Affiliation(s)
- Radhika Mishra
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Ariunbuyan Sukhbaatar
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
- Division of Oral and Maxillofacial Oncology and Surgical Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
9
|
Kalami A, Shahgolzari M, Khosroushahi AY, Fiering S. Combining in situ vaccination and immunogenic apoptosis to treat cancer. Immunotherapy 2023; 15:367-381. [PMID: 36852419 DOI: 10.2217/imt-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Immunization approaches are designed to stimulate the immune system and eliminate the tumor. Studies indicate that cancer immunization combined with certain chemotherapeutics and immunostimulatory agents can improve outcomes. Chemotherapeutics-based immunogenic cell death makes the tumor more recognizable by the immune system. In situ vaccination (ISV) utilizes established tumors as antigen sources and directly applies an immune adjuvant to the tumor to reverse a cold tumor microenvironment to a hot one. Immunogenic cell death and ISV highlight for the immune system the tumor antigens that are recognizable by immune cells and support a T-cell attack of the tumor cells. This review presents the concept of immunogenic apoptosis and ISV as a powerful platform for cancer immunization.
Collapse
Affiliation(s)
- Arman Kalami
- Biotechnology Research Center, Student Research Committee, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Shahgolzari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth & Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
10
|
Iezzi R, Gangi A, Posa A, Pua U, Liang P, Santos E, Kurup AN, Tanzilli A, Tenore L, De Leoni D, Filippiadis D, Giuliante F, Valentini V, Gasbarrini A, Goldberg SN, Meijerink M, Manfredi R, Kelekis A, Colosimo C, Madoff DC. Emerging Indications for Interventional Oncology: Expert Discussion on New Locoregional Treatments. Cancers (Basel) 2023; 15:cancers15010308. [PMID: 36612304 PMCID: PMC9818393 DOI: 10.3390/cancers15010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Abstract
Interventional oncology (IO) employs image-guided techniques to perform minimally invasive procedures, providing lower-risk alternatives to many traditional medical and surgical therapies for cancer patients. Since its advent, due to rapidly evolving research development, its role has expanded to encompass the diagnosis and treatment of diseases across multiple body systems. In detail, interventional oncology is expanding its role across a wide spectrum of disease sites, offering a potential cure, control, or palliative care for many types of cancer patients. Due to its widespread use, a comprehensive review of the new indications for locoregional procedures is mandatory. This article summarizes the expert discussion and report from the "MIOLive Meet SIO" (Society of Interventional Oncology) session during the last MIOLive 2022 (Mediterranean Interventional Oncology Live) congress held in Rome, Italy, integrating evidence-reported literature and experience-based perceptions. The aim of this paper is to provide an updated review of the new techniques and devices available for innovative indications not only to residents and fellows but also to colleagues approaching locoregional treatments.
Collapse
Affiliation(s)
- Roberto Iezzi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
- Correspondence: (R.I.); (A.P.)
| | - Afshin Gangi
- Department of Interventional Radiology, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Alessandro Posa
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (R.I.); (A.P.)
| | - Uei Pua
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Ping Liang
- Department of Interventional Ultrasound, PLA Medical College & Fifth Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Ernesto Santos
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anil N. Kurup
- Department of Radiology, Mayo Clinic, 200 1st St. SW, Rochester, MN 55905, USA
| | - Alessandro Tanzilli
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Lorenzo Tenore
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Davide De Leoni
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Dimitrios Filippiadis
- 2nd Department of Radiology, University General Hospital “ATTIKON” Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece
| | - Felice Giuliante
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
- Hepatobiliary Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Vincenzo Valentini
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
- Internal Medicine and Gastroenterology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
| | - Shraga N. Goldberg
- Division of Image-Guided Therapy, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem 12000, Israel
| | - Martijn Meijerink
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands
| | - Riccardo Manfredi
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Alexis Kelekis
- 2nd Department of Radiology, University General Hospital “ATTIKON” Medical School, National and Kapodistrian University of Athens, 1 Rimini Str., 12462 Athens, Greece
| | - Cesare Colosimo
- Department of Diagnostic Imaging, Oncologic Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore di Roma, Largo Francesco Vito 1, 00168 Rome, Italy
| | - David C. Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, 330 Cedar St., TE-2, New Haven, CT 06510, USA
| |
Collapse
|
11
|
Brasino M, Wagnell E, Hamilton S, Ranganathan S, Gomes MM, Branchaud B, Messmer B, Ibsen SD. Turning antibodies off and on again using a covalently tethered blocking peptide. Commun Biol 2022; 5:1357. [PMID: 36496512 PMCID: PMC9741643 DOI: 10.1038/s42003-022-04094-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/11/2022] [Indexed: 12/13/2022] Open
Abstract
In their natural form, antibodies are always in an "on-state" and are capable of binding to their targets. This leads to undesirable interactions in a wide range of therapeutic, analytical, and synthetic applications. Modulating binding kinetics of antibodies to turn them from an "off-state" to an "on-state" with temporal and spatial control can address this. Here we demonstrate a method to modulate binding activity of antibodies in a predictable and reproducible way. We designed a blocking construct that uses both covalent and non-covalent interactions with the antibody. The construct consisted of a Protein L protein attached to a flexible linker ending in a blocking-peptide designed to interact with the antibody binding site. A mutant Protein L was developed to enable photo-triggered covalent crosslinking to the antibody at a specific location. The covalent bond anchored the linker and blocking peptide to the antibody light chain keeping the blocking peptide close to the antibody binding site. This effectively put the antibody into an "off-state". We demonstrate that protease-cleavable and photocleavable moieties in the tether enable controlled antibody activation to the "on-state" for anti-FLAG and cetuximab antibodies. Protein L can bind a range of antibodies used therapeutically and in research for wide applicability.
Collapse
Affiliation(s)
- Michael Brasino
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Eli Wagnell
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Sean Hamilton
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201 USA
| | - Srivathsan Ranganathan
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Michelle M. Gomes
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Bruce Branchaud
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | | | - Stuart D. Ibsen
- grid.5288.70000 0000 9758 5690Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA ,grid.5288.70000 0000 9758 5690Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201 USA
| |
Collapse
|
12
|
Overcoming biophysical barriers with innovative therapeutic delivery approaches. Cancer Gene Ther 2022; 29:1847-1853. [PMID: 36076063 DOI: 10.1038/s41417-022-00529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023]
Abstract
Cancer is often conceptualized as principally a cellular process, one initiated by genetic mutations in a progenitor cell that result in dysregulated cell proliferation. Accordingly, investigations into mechanisms of treatment resistance to cancer therapies often revolve around the biologic barriers to the therapies. However, there is a growing appreciation for the unique biomechanical properties for tumors and the role they play in treatment resistance for conventional, molecularly targeted, and immune-mediated cancer therapies. This understanding has inspired the development of pharmacologic and interventional approaches to overcome these barriers. Of particular promise are perfusion-enhanced drug delivery (PEDD) approaches that potentially allow for comprehensive tumor coverage with increased delivery pressure and prevention of reflux to drive therapeutics into the tumor parenchyma. In this review, we summarize the key features of the tumor microenvironment that drive tumor progression and impose barriers to anti-cancer therapies. We highlight the rationale and application of pharmacologic approaches and interventional drug delivery devices designed to overcome these impediments. We additionally contextualize these concepts by illustrating their application to the treatment of uveal melanoma liver metastases.
Collapse
|
13
|
Proskurina AS, Ruzanova VS, Ostanin AA, Chernykh ER, Bogachev SS. Theoretical premises of a "three in one" therapeutic approach to treat immunogenic and nonimmunogenic cancers: a narrative review. Transl Cancer Res 2022; 10:4958-4972. [PMID: 35116346 PMCID: PMC8797664 DOI: 10.21037/tcr-21-919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Objective We describe experimental and theoretical premises of a powerful cancer therapy based on the combination of three approaches. These include (I) in situ vaccination (intratumoral injections of CpG oligonucleotides and anti-OX40 antibody); (II) chronometric or metronomic low-dose cyclophosphamide (CMLD CP)-based chemotherapy; (III) cancer stem cell-eradicating therapy referred to as Karanahan (from the Sanskrit kāraṇa [“source”] + han [“to kill”]). Background In murine models, the first two approaches are particularly potent in targeting immunogenic tumors for destruction. In situ vaccination activates a fully fledged anticancer immune response via an intricate network of ligand–receptor–cytokine interactions. CMLD CP-based chemotherapy primarily targets the suppressive tumor microenvironment and activates tumor-infiltrating effectors. In contrast, Karanahan technology, being aimed at replicative machinery of tumor cells (both stem-like and committed), does not depend on tumor immunogenicity. With this technology, mice engrafted with ascites and/or solid tumors can be successfully cured. There is a significant degree of mechanistic and therapeutic overlap between these three approaches. For instance, the similarities shared between in situ vaccination and Karanahan technology include the therapeutic procedure, the cell target [antigen-presenting cells (APC) and dendritic cells (DC)], and the use of DNA-based preparations (CpG and DNAmix). Features shared between CMLD CP-based chemotherapy and Karanahan technology are the timing and the dose of the cytostatic drug administration, which lead to tumor regression. Methods The following keywords were used to search PubMed for the latest research reporting successful eradication of transplantable cancers in animal models that relied on approaches distinct from those used in the Karanahan technology: eradication of malignancy, cure cancer, complete tumor regression, permanently eradicating advanced mouse tumor, metronomic chemotherapy, in situ vaccination, immunotherapy, and others. Conclusion We hypothesize, therefore, that very potent anticancer activity can be achieved once these three therapeutic modalities are combined into a single approach. This multimodal approach is theoretically curative for any type of cancer that depends on the presence of tumor-inducing cancer stem cells, provided that the active therapeutic components are efficiently delivered into the tumor and the specific biological features of a given patient’s tumor are properly addressed. We expect this multimodal approach to be primarily applicable to late-stage or terminal cancer patients who have exhausted all treatment options as well as patients with inoperable tumors.
Collapse
Affiliation(s)
- Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Vera S Ruzanova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Alexandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Hope A, Wade SJ, Aghmesheh M, Vine KL. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment. J Control Release 2021; 341:399-413. [PMID: 34863842 DOI: 10.1016/j.jconrel.2021.11.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer remains a leading global cause of morbidity and mortality. While the field of immunotherapy is a promising avenue of investigation and has revolutionized the standard of care for melanoma and lung cancer, modest response rates and a high incidence of immune-related adverse events often necessitate the administration of a sub-therapeutic dose or treatment cessation. Injectable and implantable drug delivery devices present a novel strategy to achieve sustained delivery of potent concentrations of drug directly to the tumor site and minimize systemic toxicity. This review will address the current limitations with conventional immunotherapy for breast cancer treatment, and the recent developments and future prospects in localized delivery strategies. We describe implantable scaffolds and injectable biomaterials for the localized delivery of immunotherapy, which can improve the safety and efficacy of immunotherapies. We discuss the limitations of these delivery systems, such as the influence of shape and material type on drug release and tumor uptake. The challenges of clinical translation, such as the availability of appropriate preclinical animal models and accurate reporting are also discussed. Considerations of these issues will pave the way for effective new therapies that will improve treatment response, patient survival and quality of life for breast cancer patients.
Collapse
Affiliation(s)
- Ashleigh Hope
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Samantha J Wade
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Morteza Aghmesheh
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Illawarra Cancer Care Centre, Illawarra Shoalhaven Local Health District, Wollongong Hospital, Wollongong, NSW, Australia
| | - Kara L Vine
- School of Chemistry and Molecular Bioscience, Molecular Horizons, Faculty of Science Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
| |
Collapse
|
15
|
Fei L, Ren X, Yu H, Zhan Y. Targeting the CCL2/CCR2 Axis in Cancer Immunotherapy: One Stone, Three Birds? Front Immunol 2021; 12:771210. [PMID: 34804061 PMCID: PMC8596464 DOI: 10.3389/fimmu.2021.771210] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
CCR2 is predominantly expressed by monocytes/macrophages with strong proinflammatory functions, prompting the development of CCR2 antagonists to dampen unwanted immune responses in inflammatory and autoimmune diseases. Paradoxically, CCR2-expressing monocytes/macrophages, particularly in tumor microenvironments, can be strongly immunosuppressive. Thus, targeting the recruitment of immunosuppressive monocytes/macrophages to tumors by CCR2 antagonism has recently been investigated as a strategy to modify the tumor microenvironment and enhance anti-tumor immunity. We present here that beneficial effects of CCR2 antagonism in the tumor setting extend beyond blocking chemotaxis of suppressive myeloid cells. Signaling within the CCL2/CCR2 axis shows underappreciated effects on myeloid cell survival and function polarization. Apart from myeloid cells, T cells are also known to express CCR2. Nevertheless, tissue homing of Treg cells among T cell populations is preferentially affected by CCR2 deficiency. Further, CCR2 signaling also directly enhances Treg functional potency. Thus, although Tregs are not the sole type of T cells expressing CCR2, the net outcome of CCR2 antagonism in T cells favors the anti-tumor arm of immune responses. Finally, the CCL2/CCR2 axis directly contributes to survival/growth and invasion/metastasis of many types of tumors bearing CCR2. Together, CCR2 links to two main types of suppressive immune cells by multiple mechanisms. Such a CCR2-assoicated immunosuppressive network is further entangled with paracrine and autocrine CCR2 signaling of tumor cells. Strategies to target CCL2/CCR2 axis as cancer therapy in the view of three types of CCR2-expessing cells in tumor microenvironment are discussed.
Collapse
Affiliation(s)
- Liyang Fei
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Xiaochen Ren
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Haijia Yu
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| | - Yifan Zhan
- Department of Drug Discovery, Shanghai Huaota Biopharm, Shanghai, China
| |
Collapse
|
16
|
Linnik DS, Tarakanchikova YV, Zyuzin MV, Lepik KV, Aerts JL, Sukhorukov G, Timin AS. Layer-by-Layer technique as a versatile tool for gene delivery applications. Expert Opin Drug Deliv 2021; 18:1047-1066. [DOI: 10.1080/17425247.2021.1879790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dmitrii S. Linnik
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Yana V. Tarakanchikova
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg, Russia
| | - Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, St. Petersburg, Russia
| | - Kirill V. Lepik
- Department of Hematology, Transfusion, and Transplantation, First I. P. Pavlov State Medical University of St. Petersburg, Saint-Petersburg, Russia
| | - Joeri L. Aerts
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Neuro-Aging & Viro-Immunotherapy Lab (NAVI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Gleb Sukhorukov
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- School of Engineering and Material Science, Queen Mary University of London, London, UK
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| | - Alexander S. Timin
- Laboratory of Micro-Encapsulation and Targeted Delivery of Biologically Active Compounds, Peter The Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
17
|
Abstract
The field of interventional pulmonology has grown rapidly since first being defined as a subspecialty of pulmonary and critical care medicine in 2001. The interventional pulmonologist has expertise in minimally invasive diagnostic and therapeutic procedures involving airways, lungs, and pleura. In this review, we describe recent advances in the field as well as up-and-coming developments, chiefly from the perspective of medical practice in the United States. Recent advances include standardization of formalized training, new tools for the diagnosis and potential treatment of peripheral lung nodules (including but not limited to robotic bronchoscopy), increasingly well-defined bronchoscopic approaches to management of obstructive lung diseases, and minimally invasive techniques for maximizing patient-centered outcomes for those with malignant pleural effusion.
Collapse
|
18
|
Sheth RA, Murthy R, Hong DS, Patel S, Overman MJ, Diab A, Hwu P, Tam A. Assessment of Image-Guided Intratumoral Delivery of Immunotherapeutics in Patients With Cancer. JAMA Netw Open 2020; 3:e207911. [PMID: 32725245 DOI: 10.1001/jamanetworkopen.2020.7911] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Direct intratumoral delivery of immunotherapies is a compelling approach to overcoming barriers to systemic immunotherapy efficacy. While the use of intratumoral delivery of immunotherapy drugs is increasing rapidly in both the investigational and standard of care domains, the feasibility and safety of these interventions, particularly for deeper lesions that require image-guidance, remain unknown. OBJECTIVE To address current knowledge gaps in image-guided techniques for intratumoral immunotherapy delivery and the safety of these interventions. DESIGN, SETTING, AND PARTICIPANTS This case series study was performed at a single tertiary cancer center over a 2-year period from January 2016 to January 2018. Patients were followed until January 2019. All patients who underwent image-guided intratumoral delivery of immunotherapy agents in the standard of care, off-label, or investigational setting during the study period were included. Data were analyzed from February 1 to June 1, 2019. EXPOSURES Image-guided biopsies and intratumoral injections of immunotherapies across several clinical trials as well as standard of care talimogene laherparepvec therapy. MAIN OUTCOMES AND MEASURES Technical success, defined as the delivery of the prescribed injectate volume in its entirety, for image-guided biopsy and injections and procedure-related adverse events. RESULTS A total of 85 patients (median [interquartile range] age, 61 [47-71] years; 42 [52%] men) underwent 498 encounters during the study period. These encounters comprised 327 image-guided intratumoral investigational agent injections in 67 patients in clinical trials, including 33 patients with melanoma (50%), 14 patients with sarcoma (21%), 3 patients with ovarian cancer (4.5%), 2 patients with breast cancer (3%), and 2 patients with colon cancer (3%). An additional 18 patients with melanoma underwent 113 image-guided talimogene laherparepvec injections. There were no adverse events reported related to the technical component of the procedure, specifically needle insertion or biopsy. Serious adverse events (Common Terminology Criteria for Adverse Events score ≥3), including dyspnea and severe flu-like symptoms developing within 24 hours of the injection and requiring hospitalization, occurred after 3 of 327 investigational agent injections (2%) and 4 of 113 talimogene laherparepvec injections (4%). CONCLUSIONS AND RELEVANCE The findings of this case series study suggest that intratumoral injections of immunotherapies were feasible across a range of histological conditions and target organs. Immediate postdelivery anticipated adverse events occurred in a small number of instances. Performing physicians should have the necessary safeguards in place to respond as needed. Optimal methods for intratumoral drug delivery remain unresolved, and efforts to standardize drug delivery techniques are required.
Collapse
Affiliation(s)
- Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston
| | - Ravi Murthy
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston
| | - David S Hong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston
| | - Sapna Patel
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Michael J Overman
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Adi Diab
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston
| | - Alda Tam
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
19
|
DeMaio A, Sterman D. Bronchoscopic intratumoural therapies for non-small cell lung cancer. Eur Respir Rev 2020; 29:200028. [PMID: 32554757 PMCID: PMC9488902 DOI: 10.1183/16000617.0028-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022] Open
Abstract
The past decade has brought remarkable improvements in the treatment of non-small cell lung cancer (NSCLC) with novel therapies, such as immune checkpoint inhibitors, although response rates remain suboptimal. Direct intratumoural injection of therapeutic agents via bronchoscopic approaches poses the unique ability to directly target the tumour microenvironment and offers several theoretical advantages over systemic delivery including decreased toxicity. Increases in understanding of the tumour microenvironment and cancer immunology have identified many potential options for intratumoural therapy, especially combination immunotherapies. Herein, we review advances in the development of novel bronchoscopic treatments for NSCLC over the past decade with a focus on the potential of intratumoural immunotherapy alone or in combination with systemic treatments.
Collapse
Affiliation(s)
- Andrew DeMaio
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care, and Sleep Medicine, NYU Langone Health/NYU Grossman School of Medicine, New York, NY, United States
| | - Daniel Sterman
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care, and Sleep Medicine, NYU Langone Health/NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
20
|
Naatz H, Manshian BB, Rios Luci C, Tsikourkitoudi V, Deligiannakis Y, Birkenstock J, Pokhrel S, Mädler L, Soenen SJ. Model-Based Nanoengineered Pharmacokinetics of Iron-Doped Copper Oxide for Nanomedical Applications. Angew Chem Int Ed Engl 2020; 59:1828-1836. [PMID: 31755189 PMCID: PMC7004194 DOI: 10.1002/anie.201912312] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 01/18/2023]
Abstract
The progress in nanomedicine (NM) using nanoparticles (NPs) is mainly based on drug carriers for the delivery of classical chemotherapeutics. As low NM delivery rates limit therapeutic efficacy, an entirely different approach was investigated. A homologous series of engineered CuO NPs was designed for dual purposes (carrier and drug) with a direct chemical composition-biological functionality relationship. Model-based dissolution kinetics of CuO NPs in the cellular interior at post-exposure conditions were controlled through Fe-doping for intra/extra cellular Cu2+ and biological outcome. Through controlled ion release and reactions taking place in the cellular interior, tumors could be treated selectively, in vitro and in vivo. Locally administered NPs enabled tumor cells apoptosis and stimulated systemic anti-cancer immune responses. We clearly show therapeutic effects without tumor cells relapse post-treatment with 6 % Fe-doped CuO NPs combined with myeloid-derived suppressor cell silencing.
Collapse
Affiliation(s)
- Hendrik Naatz
- University of BremenFaculty of Production EngineeringBadgasteiner Str. 128359BremenGermany
- Leibniz Institute for Materials Engineering IWTBadgasteiner Str. 328359BremenGermany
| | - Bella B. Manshian
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and PathologyBelgium
- Molecular Small Animal Imaging CenterKU LeuvenHerestraat 49B3000LeuvenBelgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and PathologyBelgium
- Molecular Small Animal Imaging CenterKU LeuvenHerestraat 49B3000LeuvenBelgium
| | | | - Yiannis Deligiannakis
- University of IoanninaDepartment of PhysicsPanepistimioupoli Douroutis445110IoanninaGreece
| | - Johannes Birkenstock
- Central Laboratory for Crystallography and Applied MaterialsUniversity of Bremen28359BremenGermany
| | - Suman Pokhrel
- University of BremenFaculty of Production EngineeringBadgasteiner Str. 128359BremenGermany
- Leibniz Institute for Materials Engineering IWTBadgasteiner Str. 328359BremenGermany
| | - Lutz Mädler
- University of BremenFaculty of Production EngineeringBadgasteiner Str. 128359BremenGermany
- Leibniz Institute for Materials Engineering IWTBadgasteiner Str. 328359BremenGermany
| | - Stefaan J. Soenen
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and PathologyBelgium
- Molecular Small Animal Imaging CenterKU LeuvenHerestraat 49B3000LeuvenBelgium
| |
Collapse
|
21
|
Naatz H, Manshian BB, Rios Luci C, Tsikourkitoudi V, Deligiannakis Y, Birkenstock J, Pokhrel S, Mädler L, Soenen SJ. Model‐Based Nanoengineered Pharmacokinetics of Iron‐Doped Copper Oxide for Nanomedical Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hendrik Naatz
- University of BremenFaculty of Production Engineering Badgasteiner Str. 1 28359 Bremen Germany
- Leibniz Institute for Materials Engineering IWT Badgasteiner Str. 3 28359 Bremen Germany
| | - Bella B. Manshian
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and Pathology Belgium
- Molecular Small Animal Imaging CenterKU Leuven Herestraat 49 B3000 Leuven Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and Pathology Belgium
- Molecular Small Animal Imaging CenterKU Leuven Herestraat 49 B3000 Leuven Belgium
| | - Vasiliki Tsikourkitoudi
- University of IoanninaDepartment of Physics Panepistimioupoli Douroutis 445110 Ioannina Greece
| | - Yiannis Deligiannakis
- University of IoanninaDepartment of Physics Panepistimioupoli Douroutis 445110 Ioannina Greece
| | - Johannes Birkenstock
- Central Laboratory for Crystallography and Applied MaterialsUniversity of Bremen 28359 Bremen Germany
| | - Suman Pokhrel
- University of BremenFaculty of Production Engineering Badgasteiner Str. 1 28359 Bremen Germany
- Leibniz Institute for Materials Engineering IWT Badgasteiner Str. 3 28359 Bremen Germany
| | - Lutz Mädler
- University of BremenFaculty of Production Engineering Badgasteiner Str. 1 28359 Bremen Germany
- Leibniz Institute for Materials Engineering IWT Badgasteiner Str. 3 28359 Bremen Germany
| | - Stefaan J. Soenen
- NanoHealth and Optical Imaging GroupKU LeuvenDepartment of Imaging and Pathology Belgium
- Molecular Small Animal Imaging CenterKU Leuven Herestraat 49 B3000 Leuven Belgium
| |
Collapse
|
22
|
Sakellariou C, Elhage O, Papaevangelou E, Giustarini G, Esteves AM, Smolarek D, Smith RA, Dasgupta P, Galustian C. Prostate cancer cells enhance interleukin-15-mediated expansion of NK cells. BJU Int 2019; 125:89-102. [PMID: 31392791 DOI: 10.1111/bju.14893] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To identify cytokines that can activate and expand NK cells in the presence of prostate cancer cells in order to determine whether these agents may be useful in future intra-tumoural administration in pre-clinical and clinical prostate cancer trials. MATERIALS AND METHODS Lymphocytes isolated from normal donor blood were set up in co-cultures with either cancer or non-cancerous prostate cell lines, together with each of the cytokines interleukin (IL)-2, IL-12, IL-15, interferon (IFN)-γ or IL-21 for a period of 7 days. Then, expansion of NK cells, NKT cells and CD8 T cells was measured by flow cytometry and compared with the expansion of the same cells in the absence of prostate cells. The cytotoxic activity of NK cells, as measured by perforin and tumour cell killing, was also assessed. NK cell receptors and their corresponding ligands on prostate tumour cells were analysed to determine whether any of these were modulated by co-culture. The role of the tumour-secreted heat shock proteins HSP90 and HSP70 in the expansion of NK cells in the co-cultures was also investigated because of their effects on NK and CD8 T-cell activation. RESULTS We showed that, among a panel of cytokines known to cause NK cell activation and expansion, only IL-15 could actively induce expansion of NK, NKT and CD8 T cells in the presence of prostate cancer cell lines. Furthermore, the expansion of NK cells was far greater (up to 50% greater) in the presence of the cancer cells (LNCaP, PC3) than when lymphocytes were incubated alone. In contrast, non-cancerous cell lines (PNT2 and WPMY-1) did not exert any expansion of NK cells. The cytolytic activity of the NK cells, as measured by perforin, CD107a and killing of tumour cells, was also greatest in co-cultures with IL-15. Examination of NK cell receptors shows that NKG2D is upregulated to a greater degree in the presence of prostate cancer cells, compared with the upregulation with IL-15 in lymphocytes alone. However, blocking of NKG2D does not inhibit the enhanced expansion of NK cells in the presence of tumour cells. CONCLUSIONS Among a panel of NK cell-activating cytokines, IL-15 was the only cytokine that could stimulate expansion of NK cells in the presence of prostate cancer cells; therefore IL-15 may be a good candidate for novel future intra-tumoural therapy of the disease.
Collapse
Affiliation(s)
- Christina Sakellariou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Kings College London, Guys Hospital, London, UK
| | | | - Efthymia Papaevangelou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Kings College London, Guys Hospital, London, UK
| | - Giulio Giustarini
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Kings College London, Guys Hospital, London, UK
| | - Ana M Esteves
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Kings College London, Guys Hospital, London, UK
| | - Dorota Smolarek
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Kings College London, Guys Hospital, London, UK
| | - Richard A Smith
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Kings College London, Guys Hospital, London, UK
| | - Prokar Dasgupta
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Kings College London, Guys Hospital, London, UK.,Urology Centre, Guys Hospital, London, UK
| | - Christine Galustian
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Kings College London, Guys Hospital, London, UK
| |
Collapse
|
23
|
Chen Y, Wang J, Wang X, Li X, Song J, Fang J, Liu X, Liu T, Wang D, Li Q, Wen S, Ma D, Xia J, Luo L, Zheng SG, Cui J, Zeng G, Chen L, Cheng B, Wang Z. Pik3ip1 Is a Negative Immune Regulator that Inhibits Antitumor T-Cell Immunity. Clin Cancer Res 2019; 25:6180-6194. [PMID: 31350312 DOI: 10.1158/1078-0432.ccr-18-4134] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 04/19/2019] [Accepted: 07/24/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Multiple negative regulators restrict the ability of T cells to attack tumors. This work demonstrates the role of PI3K-interacting protein 1 (Pik3ip1) in restraining T-cell responses and antitumor immunity. EXPERIMENTAL DESIGN An anti-Pik3ip1 mAb was generated to identify the Pik3ip1 expression pattern of hematopoietic cells. Pik3ip1 -/- mice and a Pik3ip1 fusion protein were generated to investigate the effect of Pik3ip1 on T-cell-mediated antitumor immunity in MC38 and B16-F10 tumor models. Immunoblotting and confocal microscopy were used to identify inhibitory effects of Pik3ip1 on T-cell receptor (TCR) signaling. Pik3ip1 expression was quantified, and its impact on T-cell function in human tumors was measured. RESULTS We demonstrated that Pik3ip1 was predominantly expressed on T cells and served as an essential rheostat for T-cell-mediated immunity. A Pik3ip1 genetic deficiency led to enhanced T-cell responsiveness upon immunization with a neoantigen. Pik3ip1 -/- mice exhibited a marked increase in antitumor immunity and were resistant to tumor growth. Furthermore, Pik3ip1 extracellular domain fusion protein enhanced MC38 tumor growth was observed. Mechanistically, we found that Pik3ip1 inhibited TCR signaling by mediating the degradation of SLP76 through Pik3ip1 oligomerization via its extracellular region. Consistent with the results from the mouse models, PIK3IP1 expression correlated with T-cell dysfunction in human tumors. CONCLUSIONS Our data reveal a critical role for Pik3ip1 as a novel inhibitory immune regulator of T-cell responses and provide a potential molecular target for cancer immunotherapy.
Collapse
Affiliation(s)
- Yichen Chen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jun Wang
- Department of Immunobiology and Yale Cancer Center, Yale University, New Haven, Connecticut
| | - Xi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xinye Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jingjing Song
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Juan Fang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xiangqi Liu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Tao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Dikan Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qunxing Li
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shuqiong Wen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Da Ma
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Juan Xia
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Liqun Luo
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | - Gucheng Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, P.R. China
| | - Lieping Chen
- Department of Immunobiology and Yale Cancer Center, Yale University, New Haven, Connecticut
| | - Bin Cheng
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| | - Zhi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| |
Collapse
|
24
|
Bessich JL, Sterman DH. Improving electromagnetic navigation: One nodule at a time. Respirology 2019; 25:130-131. [PMID: 31344764 DOI: 10.1111/resp.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Jamie L Bessich
- NYU Pulmonary Oncology Research Team (PORT), Section of Interventional Pulmonology, Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine, New York, NY, USA
| | - Daniel H Sterman
- NYU Pulmonary Oncology Research Team (PORT), Section of Interventional Pulmonology, Division of Pulmonary, Critical Care, and Sleep Medicine, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
25
|
Bloom AC, Bender LH, Tiwary S, Pasquet L, Clark K, Jiang T, Xia Z, Morales-Kastresana A, Jones JC, Walters I, Terabe M, Berzofsky JA. Intratumorally delivered formulation, INT230-6, containing potent anticancer agents induces protective T cell immunity and memory. Oncoimmunology 2019; 8:e1625687. [PMID: 31646070 DOI: 10.1080/2162402x.2019.1625687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/02/2019] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
The benefits of anti-cancer agents extend beyond direct tumor killing. One aspect of cell death is the potential to release antigens that initiate adaptive immune responses. Here, a diffusion enhanced formulation, INT230-6, containing potent anti-cancer cytotoxic agents, was administered intratumorally into large (approx. 300mm3) subcutaneous murine Colon26 tumors. Treatment resulted in regression from baseline in 100% of the tumors and complete response in up to 90%. CD8+ or CD8+/CD4+ T cell double-depletion at treatment onset prevented complete responses, indicating a critical role of T cells in promoting complete tumor regression. Mice with complete response were protected from subcutaneous and intravenous re-challenge of Colon26 cells in a CD4+/CD8+ dependent manner. Thus, immunological T cell memory was induced by INT230-6. Colon26 tumors express the endogenous retroviral protein gp70 containing the CD8+ T-cell AH-1 epitope. AH-1-specific CD8+ T cells were detected in peripheral blood of tumor-bearing mice and their frequency increased 14 days after treatment onset. AH-1-specific CD8+ T cells were also significantly enriched in tumors of untreated mice. These cells had an activated phenotype and highly expressed Programmed cell-death protein-1 (PD-1) but did not lead to tumor regression. CD8+ T cell tumor infiltrate also increased 11 days after treatment. INT230-6 synergized with checkpoint blockade, inducing a complete remission of the primary tumors and shrinking of untreated contralateral tumors, which demonstrates not only a local but also systemic immunological effect of the combined therapy. Similar T-cell dependent inhibition of tumor growth was also found in an orthotopic 4T1 breast cancer model.
Collapse
Affiliation(s)
- Anja C Bloom
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Shweta Tiwary
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lise Pasquet
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Katharine Clark
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Tianbo Jiang
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zheng Xia
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Jennifer C Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
26
|
Bilusic M, Gulley JL. Editorial: Local Immunotherapy: A Way to Convert Tumors From "Cold" to "Hot". J Natl Cancer Inst 2019; 109:4085226. [PMID: 30053078 DOI: 10.1093/jnci/djx132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Affiliation(s)
- Marijo Bilusic
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
27
|
Katzman D, Wu S, Sterman DH. Immunological Aspects of Cryoablation of Non-Small Cell Lung Cancer: A Comprehensive Review. J Thorac Oncol 2018; 13:624-635. [PMID: 29391289 DOI: 10.1016/j.jtho.2018.01.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/18/2023]
Abstract
In cryoimmunotherapy, target tumors are treated with cryoablation to generate antitumor immune responses. Because immune checkpoint inhibitors have demonstrated that lung cancer can be an immunotherapy-responsive disease, there has been renewed interest in the immunological aspects of cryoablation of lung cancer. Herein, we review preclinical and clinical trials of cryoablation of primary lung tumors. We examine the magnitude of cryoablation-induced antitumor immune responses and the synergy between cryoablation and either other immunotherapies or molecular targeted therapies to improve treatment responses in advanced lung cancer. We further discuss a rationale for the addition of cryoablation to immune checkpoint inhibitors for the treatment of advanced lung cancer, which is currently under clinical investigation.
Collapse
Affiliation(s)
- Daniel Katzman
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University Langone Health, New York, New York.
| | - Shirley Wu
- New York University School of Medicine, New York, New York
| | - Daniel H Sterman
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University Langone Health, New York, New York
| |
Collapse
|
28
|
Abstract
Pleural malignancies remain a serious therapeutic challenge, and are frequently refractory to standard treatment; however, they have the advantage of occurring in an enclosed cavity readily accessible for examination, biopsy, and serial sampling. Novel therapeutics can be administered via intracavitary delivery to maximize efficacy by targeting the site of involvement and potentially mitigating the adverse effects of systemic therapies. The easy accessibility of the pleural space lends itself well to repeated sampling and analysis to determine efficacy and toxicity of a given treatment paradigm. These factors support the rationale for delivery of novel therapeutics directly into the pleural space.
Collapse
Affiliation(s)
- Vivek Murthy
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA
| | - Keshav Mangalick
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA
| | - Daniel H Sterman
- NYU PORT (Pulmonary Oncology Research Team), Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, NYU Langone Health, 550 First Avenue Suite 5D, New York, NY 10016, USA.
| |
Collapse
|