1
|
Suzuki N, Kanzaki M, Koide M, Izumi R, Fujita R, Takahashi T, Ogawa K, Yabe Y, Tsuchiya M, Suzuki M, Harada R, Ohno A, Ono H, Nakamura N, Ikeda K, Warita H, Osana S, Oikawa Y, Toyohara T, Abe T, Rui M, Ebihara S, Nagatomi R, Hagiwara Y, Aoki M. Sporadic inclusion body myositis-derived myotube culture revealed muscle cell-autonomous expression profiles. PLoS One 2024; 19:e0306021. [PMID: 39088432 PMCID: PMC11293708 DOI: 10.1371/journal.pone.0306021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/10/2024] [Indexed: 08/03/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a muscle disease in older people and is characterized by inflammatory cell invasion into intact muscle fibers and rimmed vacuoles. The pathomechanism of sIBM is not fully elucidated yet, and controversy exists as to whether sIBM is a primary autoimmune disease or a degenerative muscle disease with secondary inflammation. Previously, we established a method of collecting CD56-positive myoblasts from human skeletal muscle biopsy samples. We hypothesized that the myoblasts derived from these patients are useful to see the cell-autonomous pathomechanism of sIBM. With these resources, myoblasts were differentiated into myotubes, and the expression profiles of cell-autonomous pathology of sIBM were analyzed. Myoblasts from three sIBM cases and six controls were differentiated into myotubes. In the RNA-sequencing analysis of these "myotube" samples, 104 differentially expressed genes (DEGs) were found to be significantly upregulated by more than twofold in sIBM, and 13 DEGs were downregulated by less than twofold. For muscle biopsy samples, a comparative analysis was conducted to determine the extent to which "biopsy" and "myotube" samples differed. Fifty-three DEGs were extracted of which 32 (60%) had opposite directions of expression change (e.g., increased in biopsy vs decreased in myotube). Apolipoprotein E (apoE) and transmembrane protein 8C (TMEM8C or MYMK) were commonly upregulated in muscle biopsies and myotubes from sIBM. ApoE and myogenin protein levels were upregulated in sIBM. Given that enrichment analysis also captured changes in muscle contraction and development, the triggering of muscle atrophy signaling and abnormal muscle differentiation via MYMK or myogenin may be involved in the pathogenesis of sIBM. The presence of DEGs in sIBM suggests that the myotubes formed from sIBM-derived myoblasts revealed the existence of muscle cell-autonomous degeneration in sIBM. The catalog of DEGs will be an important resource for future studies on the pathogenesis of sIBM focusing on primary muscle degeneration.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Masashi Koide
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Rumiko Izumi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Fujita
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tadahisa Takahashi
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazumi Ogawa
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yutaka Yabe
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Masako Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuhei Harada
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiyuki Ohno
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroya Ono
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Iwate Hospital, Ichinoseki, Iwate, Japan
| | - Naoko Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Ikeda
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshitsugu Oikawa
- Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Toyohara
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Takaaki Abe
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muliang Rui
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoru Ebihara
- Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yoshihiro Hagiwara
- Department of Orthopedic Surgery, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Guglielmi V, Cheli M, Tonin P, Vattemi G. Sporadic Inclusion Body Myositis at the Crossroads between Muscle Degeneration, Inflammation, and Aging. Int J Mol Sci 2024; 25:2742. [PMID: 38473988 PMCID: PMC10932328 DOI: 10.3390/ijms25052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is the most common muscle disease of older people and is clinically characterized by slowly progressive asymmetrical muscle weakness, predominantly affecting the quadriceps, deep finger flexors, and foot extensors. At present, there are no enduring treatments for this relentless disease that eventually leads to severe disability and wheelchair dependency. Although sIBM is considered a rare muscle disorder, its prevalence is certainly higher as the disease is often undiagnosed or misdiagnosed. The histopathological phenotype of sIBM muscle biopsy includes muscle fiber degeneration and endomysial lymphocytic infiltrates that mainly consist of cytotoxic CD8+ T cells surrounding nonnecrotic muscle fibers expressing MHCI. Muscle fiber degeneration is characterized by vacuolization and the accumulation of congophilic misfolded multi-protein aggregates, mainly in their non-vacuolated cytoplasm. Many players have been identified in sIBM pathogenesis, including environmental factors, autoimmunity, abnormalities of protein transcription and processing, the accumulation of several toxic proteins, the impairment of autophagy and the ubiquitin-proteasome system, oxidative and nitrative stress, endoplasmic reticulum stress, myonuclear degeneration, and mitochondrial dysfunction. Aging has also been proposed as a contributor to the disease. However, the interplay between these processes and the primary event that leads to the coexistence of autoimmune and degenerative changes is still under debate. Here, we outline our current understanding of disease pathogenesis, focusing on degenerative mechanisms, and discuss the possible involvement of aging.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Cellular and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Marta Cheli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Paola Tonin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| | - Gaetano Vattemi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (M.C.); (P.T.)
| |
Collapse
|
3
|
Oxidative stress, mitochondrial dysfunction, and respiratory chain enzyme defects in inflammatory myopathies. Autoimmun Rev 2023; 22:103308. [PMID: 36822387 DOI: 10.1016/j.autrev.2023.103308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
We investigated the relationship between oxidative stress and inflammatory myopathies. We searched in the current literature the role of mitochondria and respiratory chain defects as sources of oxidative stress and reactive oxygen species production that led to muscle weakness and fatigue. Different molecules and pathways contribute to redox milieu, reactive oxygen species generation, accumulation of misfolded and carbonylated proteins that lose their ability to fulfil cellular activities. Small peptides and physical techniques proved, in mice models, to reduce oxidative stress. We focused on inclusion body myositis, as a major expression of myopathy related to oxidative stress, where mitochondrial abnormalities are causative agents as well. We described the effect of physical exercise in inclusion body myositis that showed to increase strength and to reduce beta amyloid accumulation with subsequent improvement of the mitochondrial functions. We illustrated the influence of epigenetic control on the immune system by non-coding genetic material in the interaction between oxidative stress and inflammatory myopathies.
Collapse
|
4
|
Giglio V, Puddu PE, Holland MR, Camastra G, Ansalone G, Ricci E, Mela J, Sciarra F, Di Gennaro M. Ultrasound tissue characterization does not differentiate genotype, but indexes ejection fraction deterioration in becker muscular dystrophy. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2777-2785. [PMID: 25308949 DOI: 10.1016/j.ultrasmedbio.2014.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/08/2014] [Accepted: 06/17/2014] [Indexed: 06/04/2023]
Abstract
The aims of the study were, first, to assess whether myocardial ultrasound tissue characterization (UTC) in Becker muscular dystrophy (BMD) can be used to differentiate between patients with deletions and those without deletions; and second, to determine whether UTC is helpful in diagnosing the evolution of left ventricular dysfunction, a precursor of dilated cardiomyopathy. Both cyclic variation of integrated backscatter and calibrated integrated backscatter (cIBS) were assessed in 87 patients with BMD and 70 controls. The average follow-up in BMD patients was 48 ± 12 mo. UTC analysis was repeated only in a subgroup of 40 BMD patients randomly selected from the larger overall group (15 with and 25 without left ventricular dysfunction). Discrimination between BMD patients with and without dystrophin gene deletion was not possible on the basis of UTC data: average cvIBS was 5.2 ± 1.2 and 5.5 ± 1.4 dB, and average cIBS was 29.9 ± 4.7 and 29.6 ± 5.8, respectively, significantly different (p < 0.001) only from controls (8.6 ± 0.5 and 24.6 ± 1.2 dB). In patients developing left ventricular dysfunction during follow-up, cIBS increased to 31.3 ± 5.4 dB, but not significantly (p = 0.08). The highest cIBS values (34.6 ± 5.3 dB, p < 0.09 vs. baseline, p < 0.01 vs BMD patients without left ventricular dysfunction) were seen in the presence of severe left ventricular dysfunction. Multivariate statistics indicated that an absolute change of 6 dB in cIBS is associated with a high probability of left ventricular dysfunction. UTC analysis does not differentiate BMD patients with or without dystrophin gene deletion, but may be useful in indexing left ventricular dysfunction during follow-up.
Collapse
Affiliation(s)
- Vincenzo Giglio
- Centre for Neuromuscular Diseases, Unione Italiana Lotta alla Distrofia Muscolare (UILDM), Rome, Italy; Cardiology Division and ICU, Ospedale San Paolo, Civitavecchia, Rome, Italy.
| | - Paolo Emilio Puddu
- Laboratory of Biotechnologies Applied to Cardiovascular Medicine, Department of Cardiovascular, Respiratory, Nephrological and Geriatrical Sciences, La Sapienza, University of Rome, Rome, Italy
| | - Mark R Holland
- Physics Department, Washington University, St Louis, Missouri, USA
| | - Giovanni Camastra
- Cardiology Division and ICU, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Gerardo Ansalone
- Cardiology Division and ICU, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Enzo Ricci
- Centre for Neuromuscular Diseases, Unione Italiana Lotta alla Distrofia Muscolare (UILDM), Rome, Italy; Neurology Institute, Catholic University, Rome, Italy
| | - Julia Mela
- Muscular Dystrophy Research Unit, UILDM, Rome, Italy
| | - Federico Sciarra
- Centre for Neuromuscular Diseases, Unione Italiana Lotta alla Distrofia Muscolare (UILDM), Rome, Italy
| | - Marco Di Gennaro
- Cardiology Division and ICU, Ospedale San Paolo, Civitavecchia, Rome, Italy
| |
Collapse
|
5
|
Morosetti R, Gliubizzi C, Sancricca C, Broccolini A, Gidaro T, Lucchini M, Mirabella M. TWEAK in inclusion-body myositis muscle: possible pathogenic role of a cytokine inhibiting myogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1603-13. [PMID: 22314077 DOI: 10.1016/j.ajpath.2011.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/19/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor Fn14 exert pleiotropic effects, including regulation of myogenesis. Sporadic inclusion-body myositis (IBM) is the most common muscle disease of the elderly population and leads to severe disability. IBM mesoangioblasts, different from mesoangioblasts in other inflammatory myopathies, display a myogenic differentiation defect. The objective of the present study was to investigate TWEAK-Fn14 expression in IBM and other inflammatory myopathies and explore whether TWEAK modulation affects myogenesis in IBM mesoangioblasts. TWEAK, Fn14, and NF-κB expression was assessed by immunohistochemistry and Western blot in cell samples from both muscle biopsies and primary cultures. Mesoangioblasts isolated from samples of IBM, dermatomyositis, polymyositis, and control muscles were treated with recombinant human TWEAK, Fn14-Fc chimera, and anti-TWEAK antibody. TWEAK-RNA interference was performed in IBM and dermatomyositis mesoangioblasts. TWEAK levels in culture media were determined by enzyme-linked immunosorbent assay. In IBM muscle, we found increased TWEAK-Fn14 expression. Increased levels of TWEAK were found in differentiation medium from IBM mesoangioblasts. Moreover, TWEAK inhibited myogenic differentiation of mesoangioblasts. Consistent with this evidence, TWEAK inhibition by Fn14-Fc chimera or short interfering RNA induced myogenic differentiation of IBM mesoangioblasts. We provide evidence that TWEAK is a negative regulator of human mesoangioblast differentiation. Dysregulation of the TWEAK-Fn14 axis in IBM muscle may induce progressive muscle atrophy and reduce activation and differentiation of muscle precursor cells.
Collapse
Affiliation(s)
- Roberta Morosetti
- Department of Neurosciences, Institute of Neurology, Università Cattolica, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
6
|
Nogalska A, D’Agostino C, Engel WK, Davies KJ, Askanas V. Decreased SIRT1 deacetylase activity in sporadic inclusion-body myositis muscle fibers. Neurobiol Aging 2010; 31:1637-48. [DOI: 10.1016/j.neurobiolaging.2008.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/26/2008] [Accepted: 08/29/2008] [Indexed: 11/16/2022]
|
7
|
Increased aging in primary muscle cultures of sporadic inclusion-body myositis. Neurobiol Aging 2010; 31:1205-14. [DOI: 10.1016/j.neurobiolaging.2008.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/13/2008] [Accepted: 08/19/2008] [Indexed: 11/23/2022]
|
8
|
Abstract
OBJECTIVE To understand belief in a specific scientific claim by studying the pattern of citations among papers stating it. DESIGN A complete citation network was constructed from all PubMed indexed English literature papers addressing the belief that beta amyloid, a protein accumulated in the brain in Alzheimer's disease, is produced by and injures skeletal muscle of patients with inclusion body myositis. Social network theory and graph theory were used to analyse this network. MAIN OUTCOME MEASURES Citation bias, amplification, and invention, and their effects on determining authority. RESULTS The network contained 242 papers and 675 citations addressing the belief, with 220,553 citation paths supporting it. Unfounded authority was established by citation bias against papers that refuted or weakened the belief; amplification, the marked expansion of the belief system by papers presenting no data addressing it; and forms of invention such as the conversion of hypothesis into fact through citation alone. Extension of this network into text within grants funded by the National Institutes of Health and obtained through the Freedom of Information Act showed the same phenomena present and sometimes used to justify requests for funding. CONCLUSION Citation is both an impartial scholarly method and a powerful form of social communication. Through distortions in its social use that include bias, amplification, and invention, citation can be used to generate information cascades resulting in unfounded authority of claims. Construction and analysis of a claim specific citation network may clarify the nature of a published belief system and expose distorted methods of social citation.
Collapse
Affiliation(s)
- Steven A Greenberg
- Children's Hospital Informatics Program and Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
9
|
Morosetti R, Mirabella M, Gliubizzi C, Broccolini A, Sancricca C, Pescatori M, Gidaro T, Tasca G, Frusciante R, Tonali PA, Cossu G, Ricci E. Isolation and Characterization of Mesoangioblasts from Facioscapulohumeral Muscular Dystrophy Muscle Biopsies. Stem Cells 2007; 25:3173-82. [PMID: 17761758 DOI: 10.1634/stemcells.2007-0465] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is the third most frequent inherited muscle disease. Because in FSHD patients the coexistence of affected and unaffected muscles is common, myoblasts expanded from unaffected FSHD muscles have been proposed as suitable tools for autologous cell transplantation. Mesoangioblasts are a new class of adult stem cells of mesodermal origin, potentially useful for the treatment of primitive myopathies of different etiology. Here, we report the isolation and characterization of mesoangioblasts from FSHD muscle biopsies and describe morphology, proliferation, and differentiation abilities of both mesoangioblasts and myoblasts derived from various affected and unaffected muscles of nine representative FSHD patients. We demonstrate that mesoangioblasts can be efficiently isolated from FSHD muscle biopsies and expanded to an amount of cells necessary to transplant into an adult patient. Proliferating mesoangioblasts from all muscles examined did not differ from controls in terms of morphology, phenotype, proliferation rate, or clonogenicity. However, their differentiation ability into skeletal muscle was variably impaired, and this defect correlated with the overall disease severity and the degree of histopathologic abnormalities of the muscle of origin. A remarkable differentiation defect was observed in mesoangioblasts from all mildly to severely affected FSHD muscles, whereas mesoangioblasts from morphologically normal muscles showed no myogenic differentiation block. Our study could open the way to cell therapy for FSHD patients to limit muscle damage in vivo through the use of autologous mesoangioblasts capable of reaching damaged muscles and engrafting into them, without requiring immune suppression or genetic correction in vitro. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Roberta Morosetti
- Department of Neurosciences, Catholic University School of Medicine, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Inclusion-body myositis, a multifactorial muscle disease associated with aging: current concepts of pathogenesis. Curr Opin Rheumatol 2007; 19:550-9. [DOI: 10.1097/bor.0b013e3282efdc7c] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Amsili S, Shlomai Z, Levitzki R, Krause S, Lochmuller H, Ben-Bassat H, Mitrani-Rosenbaum S. Characterization of hereditary inclusion body myopathy myoblasts: possible primary impairment of apoptotic events. Cell Death Differ 2007; 14:1916-24. [PMID: 17673919 DOI: 10.1038/sj.cdd.4402208] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hereditary inclusion body myopathy (HIBM) is a unique muscular disorder caused by mutations in the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) gene. GNE encodes a bi-functional enzyme acting in the biosynthetic pathway of sialic acid. Since the underlying myopathological mechanism leading to the disease phenotype is poorly understood, we have established human myoblasts cultures, derived from HIBM satellite cells carrying the homozygous M712T mutation, and identified cellular and molecular characteristics of these cells. HIBM and control myoblasts showed similar heterogeneous patterns of proliferation and differentiation. Upon apoptosis induction, phosphatidylserine externalization was similar in HIBM and controls. In contrast, the active forms of caspase-3 and -9 were strongly enhanced in most HIBM cultures compared to controls, while pAkt, downregulated in controls, remained high in HIBM cells. These results could indicate impaired apoptotic signaling in HIBM cells. Since satellite cells enable partial regeneration of the post-mitotic muscle tissue, these altered processes could contribute to the muscle mass loss seen in patients. The identification of survival defects in HIBM affected muscle cells could disclose new functions for GNE in muscle cells.
Collapse
Affiliation(s)
- S Amsili
- Goldyne Savad Institute for Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
12
|
Pescatori M, Broccolini A, Minetti C, Bertini E, Bruno C, D'amico A, Bernardini C, Mirabella M, Silvestri G, Giglio V, Modoni A, Pedemonte M, Tasca G, Galluzzi G, Mercuri E, Tonali PA, Ricci E. Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression. FASEB J 2007; 21:1210-26. [PMID: 17264171 DOI: 10.1096/fj.06-7285com] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Genome-wide gene expression profiling of skeletal muscle from Duchenne muscular dystrophy (DMD) patients has been used to describe muscle tissue alterations in DMD children older than 5 years. By studying the expression profile of 19 patients younger than 2 years, we describe with high resolution the gene expression signature that characterizes DMD muscle during the initial or "presymptomatic" phase of the disease. We show that in the first 2 years of the disease, DMD muscle is already set to express a distinctive gene expression pattern considerably different from the one expressed by normal, age-matched muscle. This "dystrophic" molecular signature is characterized by a coordinate induction of genes involved in the inflammatory response, extracellular matrix (ECM) remodeling and muscle regeneration, and the reduced transcription of those involved in energy metabolism. Despite the lower degree of muscle dysfunction experienced, our younger patients showed abnormal expression of most of the genes reported as differentially expressed in more advanced stages of the disease. By analyzing our patients as a time series, we provide evidence that some genes, including members of three pathways involved in morphogenetic signaling-Wnt, Notch, and BMP-are progressively induced or repressed in the natural history of DMD.
Collapse
Affiliation(s)
- Mario Pescatori
- Institute of Neurology, Catholic University, L.go A. Gemelli 8, 0018, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Celegato B, Capitanio D, Pescatori M, Romualdi C, Pacchioni B, Cagnin S, Viganò A, Colantoni L, Begum S, Ricci E, Wait R, Lanfranchi G, Gelfi C. Parallel protein and transcript profiles of FSHD patient muscles correlate to the D4Z4 arrangement and reveal a common impairment of slow to fast fibre differentiation and a general deregulation of MyoD-dependent genes. Proteomics 2006; 6:5303-21. [PMID: 17013991 DOI: 10.1002/pmic.200600056] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we present the first study of a human neuromuscular disorder at transcriptional and proteomic level. Autosomal dominant facio-scapulo-humeral muscular dystrophy (FSHD) is caused by a deletion of an integral number of 3.3-kb KpnI repeats inside the telomeric region D4Z4 at the 4q35 locus. We combined a muscle-specific cDNA microarray platform with a proteomic investigation to analyse muscle biopsies of patients carrying a variable number of KpnI repeats. Unsupervised cluster analysis divides patients into three classes, according to their KpnI repeat number. Expression data reveal a transition from fast-glycolytic to slow-oxidative phenotype in FSHD muscle, which is accompanied by a deficit of proteins involved in response to oxidative stress. Besides, FSHD individuals show a disruption in the MyoD-dependent gene network suggesting a coregulation at transcriptional level during myogenesis. We also discuss the hypothesis that D4Z4 contraction may affect in trans the expression of a set of genes involved in myogenesis, as well as in the regeneration pathway of satellite cells in adult tissue. Muscular wasting could result from the inability of satellite cells to successfully differentiate into mature fibres and from the accumulation of structural damages caused by a reactive oxygen species (ROS) imbalance induced by an increased oxidative metabolism in fibres.
Collapse
Affiliation(s)
- Barbara Celegato
- CRIBI Biotechnology Centre and Department of Biology, Università degli Studi di Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Morosetti R, Mirabella M, Gliubizzi C, Broccolini A, De Angelis L, Tagliafico E, Sampaolesi M, Gidaro T, Papacci M, Roncaglia E, Rutella S, Ferrari S, Tonali PA, Ricci E, Cossu G. MyoD expression restores defective myogenic differentiation of human mesoangioblasts from inclusion-body myositis muscle. Proc Natl Acad Sci U S A 2006; 103:16995-7000. [PMID: 17077152 PMCID: PMC1636567 DOI: 10.1073/pnas.0603386103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inflammatory myopathies (IM) are acquired diseases of skeletal muscle comprising dermatomyositis (DM), polymyositis (PM), and inclusion-body myositis (IBM). Immunosuppressive therapies, usually beneficial for DM and PM, are poorly effective in IBM. We report the isolation and characterization of mesoangioblasts, vessel-associated stem cells, from diagnostic muscle biopsies of IM. The number of cells isolated, proliferation rate and lifespan, markers expression, and ability to differentiate into smooth muscle do not differ among normal and IM mesoangioblasts. At variance with normal, DM and PM mesoangioblasts, cells isolated from IBM, fail to differentiate into skeletal myotubes. These data correlate with lack in connective tissue of IBM muscle of alkaline phosphatase (ALP)-positive cells, conversely dramatically increased in PM and DM. A myogenic inhibitory basic helix-loop-helix factor B3 is highly expressed in IBM mesoangioblasts. Indeed, silencing this gene or overexpressing MyoD rescues the myogenic defect of IBM mesoangioblasts, opening novel cell-based therapeutic strategies for this crippling disorder.
Collapse
MESH Headings
- Alkaline Phosphatase/metabolism
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Cell Differentiation
- Cells, Cultured
- Gene Expression
- Gene Silencing
- Humans
- Muscle Development
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- MyoD Protein/genetics
- MyoD Protein/metabolism
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/pathology
- Myositis, Inclusion Body/metabolism
- Myositis, Inclusion Body/pathology
- Myositis, Inclusion Body/therapy
- RNA, Small Interfering/genetics
Collapse
Affiliation(s)
- Roberta Morosetti
- *Department of Neurosciences and
- Interdisciplinary Laboratory for Stem Cell Research and Cellular Therapy, Catholic University, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Massimiliano Mirabella
- *Department of Neurosciences and
- Fondazione Don Carlo Gnocchi, 00194 Rome, Italy
- To whom correspondence should be addressed. E-mail:
| | - Carla Gliubizzi
- *Department of Neurosciences and
- Fondazione Don Carlo Gnocchi, 00194 Rome, Italy
| | | | - Luciana De Angelis
- Department of Histology and Embriology, University “La Sapienza,” 00161 Rome, Italy
| | - Enrico Tagliafico
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | | | | | - Enrica Roncaglia
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Sergio Rutella
- Institute of Hematology, Catholic University, 00168 Rome, Italy; and
| | - Stefano Ferrari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | | | - Enzo Ricci
- *Department of Neurosciences and
- Fondazione Don Carlo Gnocchi, 00194 Rome, Italy
| | - Giulio Cossu
- Institute of Cell Biology and Tissue Engineering, San Raffaele Biomedical Science Park, 00128 Rome, Italy
- **Stem Cell Research Institute, San Raffaele Hospital, 20132 Milan, Italy
- Department of Biology, University of Milan, 20133 Milan, Italy
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW We provide an update of progress gained from research into sporadic inclusion body myositis (s-IBM). RECENT FINDINGS Most research on s-IBM has focused on the inflammatory reaction or the accumulation of pathological proteins in vacuolated muscle fibres. The inflammatory reaction is characterized by clonal expansions of lymphocytes, predominantly CD8 cytotoxic T cells, which invade and destroy muscle fibres. That costimulatory molecules have been identified demonstrates that muscle fibres can act as antigen presenting cells, and the expression of various chemokines in muscle indicates their importance in the immunopathogenesis of s-IBM. The region of interest for a susceptibility gene in the major histocompatibility complex has been narrowed, and for the first time it has been demonstrated that a chronic viral infection can trigger the inflammatory process leading to s-IBM. The nature of the accumulated material associated with the vacuoles has been extensively investigated over the past few years. Amyloid-beta and phosphorylated tau protein in intracellular inclusions are a characteristic finding in s-IBM, which may lead to calcium dyshomeostasis and endoplasmic reticulum stress. The proteasomal system is upregulated, including immunoproteasomes. 'Molecular misreading' leading to ubiquitin mRNA mutations and accumulation of pathological ubiquitin in muscle fibres may be associated with proteasomal dysfunction. There is still no efficient treatment for s-IBM, but the effects of new, more specific immunotherapies have begun to be explored. SUMMARY Recent findings indicate that both inflammatory reaction and abnormal protein accumulation are important for the pathogenesis in s-IBM. The link between them continues to await elucidation.
Collapse
Affiliation(s)
- Anders Oldfors
- Göteborg Neuromuscular Center, Department of Pathology, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | |
Collapse
|
16
|
Fucile S, Sucapane A, Grassi F, Eusebi F, Engel AG. The human adult subtype ACh receptor channel has high Ca2+ permeability and predisposes to endplate Ca2+ overloading. J Physiol 2006; 573:35-43. [PMID: 16527851 PMCID: PMC1779694 DOI: 10.1113/jphysiol.2006.108092] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Slow-channel congenital myasthenic syndrome, caused by mutations in subunits of the endplate ACh receptor (AChR), results in prolonged synaptic currents and excitotoxic injury of the postsynaptic region by Ca2+ overloading. The Ca2+ overloading could be due entirely to the prolonged openings of the AChR channel or could be abetted by enhanced Ca2+ permeability of the mutant channels. We therefore measured the fractional Ca2+ current, defined as the percentage of the total ACh-evoked current carried by Ca2+ ions (Pf), for AChRs harbouring the alphaG153S or the alphaV249F slow-channel mutation, and for wild-type human AChRs in which Pf has not yet been determined. Experiments were performed in transiently transfected GH4C1 cells and human myotubes with simultaneous recording of ACh-evoked whole-cell currents and fura-2 fluorescence signals. We found that the Pf of the wild-type human endplate AChR was unexpectedly high (Pf approximately 7%), but neither the alphaV249F nor the alphaG153S mutation altered Pf. Fetal human AChRs containing either the wild-type or the mutated alpha subunit had a much lower Pf (2-3%). We conclude that the Ca2+ permeability of human endplate AChRs is higher than that reported for any other human nicotinic AChR, with the exception of alpha7-containing AChRs (Pf > 10%); and that neither the alphaG153S nor the alphaV249F mutations affect the Pf of fetal or adult endplate AChRs. However, the intrinsically high Ca2+ permeability of human AChRs probably predisposes to development of the endplate myopathy when opening events of the AChR channel are prolonged by altered AChR-channel kinetics.
Collapse
Affiliation(s)
- Sergio Fucile
- Pasteur Institute -Cenci Bolognetti Foundation & Department of Human Physiology and Pharmacology & Centre of Excellence for Biology and Molecular Medicine, University of Rome La Sapienza, Piazzale Aldo Moro 5; I-00185 Rome, Italy
| | | | | | | | | |
Collapse
|
17
|
Broccolini A, Gidaro T, Morosetti R, Gliubizzi C, Servidei T, Pescatori M, Tonali PA, Ricci E, Mirabella M. Neprilysin participates in skeletal muscle regeneration and is accumulated in abnormal muscle fibres of inclusion body myositis. J Neurochem 2006; 96:777-89. [PMID: 16405511 DOI: 10.1111/j.1471-4159.2005.03584.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neprilysin (NEP, EP24.11), a metallopeptidase originally shown to modulate signalling events by degrading small regulatory peptides, is also an amyloid-beta- (Abeta) degrading enzyme. We investigated a possible role of NEP in inclusion body myositis (IBM) and other acquired and hereditary muscle disorders and found that in all myopathies NEP expression was directly associated with the degree of muscle fibre regeneration. In IBM muscle, NEP protein was also strongly accumulated in Abeta-bearing abnormal fibres. In vitro, during the experimental differentiation of myoblasts, NEP protein expression was regulated at the post-transcriptional level with a rapid increase in the early stage of myoblast differentiation followed by a gradual reduction thereafter, coincident with the progression of the myogenic programme. Treatment of differentiating muscle cells with the NEP inhibitor dl-3-mercapto-2-benzylpropanoylglycine resulted in impaired differentiation that was mainly associated with an abnormal regulation of Akt activation. Therefore, NEP may play an important role during muscle cell differentiation, possibly through the regulation, either directly or indirectly, of the insulin-like growth factor I-driven myogenic programme. In IBM muscle increased NEP may be instrumental in (i) reducing the Abeta accumulation in vulnerable fibres and (ii) promoting a repair/regenerative attempt of muscle fibres possibly through the modulation of insulin-like growth factor I-dependent pathways.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Amyloid beta-Peptides/metabolism
- Blotting, Northern/methods
- Blotting, Western/methods
- Cell Cycle/physiology
- Cells, Cultured
- Cycloheximide/pharmacology
- Desmin/metabolism
- Dose-Response Relationship, Drug
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation/physiology
- Humans
- Immunohistochemistry/methods
- Insulin-Like Growth Factor Binding Proteins/metabolism
- Middle Aged
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myoblasts
- Myosins/metabolism
- Myositis, Inclusion Body/metabolism
- Myositis, Inclusion Body/pathology
- Myositis, Inclusion Body/physiopathology
- Neprilysin/metabolism
- Neprilysin/physiology
- Oncogene Protein v-akt/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/biosynthesis
- Regeneration/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Thiophanate/pharmacology
- Time Factors
Collapse
|
18
|
Broccolini A, Gliubizzi C, Pavoni E, Gidaro T, Morosetti R, Sciandra F, Giardina B, Tonali P, Ricci E, Brancaccio A, Mirabella M. α-Dystroglycan does not play a major pathogenic role in autosomal recessive hereditary inclusion-body myopathy. Neuromuscul Disord 2005; 15:177-84. [PMID: 15694140 DOI: 10.1016/j.nmd.2004.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 09/27/2004] [Accepted: 10/04/2004] [Indexed: 10/26/2022]
Abstract
Mutations of the GNE gene are responsible for autosomal recessive hereditary inclusion-body myopathy (HIBM). In this study we searched for the presence of any significant abnormality of alpha-dystroglycan (alpha-DG), a highly glycosylated component of the dystrophin-glycoprotein complex, in 5 HIBM patients which were previously clinically and genetically characterized. Immunocytochemical and immunoblot analysis showed that alpha-DG extracted from muscle biopsies was normally expressed and displayed its typical molecular mass. Immunoblot analysis on the wheat germ lectin-enriched glycoprotein fraction of muscles and primary myotubes showed a reduced amount of alpha-DG in 4 out of 5 HIBM patients, compared to normal and other diseased muscles. However, such altered lectin-binding behaviour, possibly reflecting a partial hyposialylation of alpha-DG, did not affect the laminin binding properties of alpha-DG. Therefore, the subtle changes within the alpha-DG glycosylation pattern, detected in HIBM muscles, likely do not play a key pathogenic role in this disorder.
Collapse
Affiliation(s)
- Aldobrando Broccolini
- Department of Neuroscience, Catholic University, L.go A. Gemelli 8, 00168 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Grassi F, Pagani F, Spinelli G, De Angelis L, Cossu G, Eusebi F. Fusion-independent expression of functional ACh receptors in mouse mesoangioblast stem cells contacting muscle cells. J Physiol 2004; 560:479-89. [PMID: 15319417 PMCID: PMC1665253 DOI: 10.1113/jphysiol.2004.070607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mesoangioblasts are vessel-associated fetal stem cells that can be induced to differentiate into skeletal muscle, both in vitro and in vivo. Whether this is due to fusion or to transdifferentiation into bona fide satellite cells is still an open question, for mesoangioblasts as well as for other types of stem cells. The early steps of satellite cell myogenic differentiation involve MyoD activation, membrane hyperpolarization and the appearance of ACh sensitivity and gap junctional communication. If mesoangioblasts differentiate into satellite cells, these characteristics should be observed in stem cells prior to fusion into multinucleated myotubes. We have investigated the functional properties acquired by mononucleated green fluorescent protein (GFP)-positive mesoangioblasts co-cultured with differentiating C2C12 myogenic cells, using the patch-clamp technique. Mesoangioblasts whose membrane contacted myogenic cells developed a hyperpolarized membrane resting potential and ACh-evoked current responses. Dye and electrical coupling was observed among mesoangioblasts but not between mesoangioblasts and myotubes. Mouse MyoD was detected by RT-PCR both in single, mononucleated mesoangioblasts co-cultured with C2C12 myotubes and in the total mRNA from mouse mesoangioblasts co-cultured with human myotubes, but not in human myotubes or stem cells cultured in isolation. In conclusion, when co-cultured with muscle cells, mesoangioblasts acquire many of the functional characteristics of differentiating satellite cells in the absence of cell fusion, strongly indicating that these stem cells undergo transdifferentiation into satellite cells, when exposed to a myogenic environment.
Collapse
Affiliation(s)
- Francesca Grassi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Fisiologia Umana e Farmacologia and Centro di Eccellenza BEMM, Università La Sapienza Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| | | | | | | | | | | |
Collapse
|