1
|
Khanal P, Patil VS, Bhattacharya K, Patil BM. Multifaceted targets of cannabidiol in epilepsy: Modulating glutamate signaling and beyond. Comput Biol Med 2024; 179:108898. [PMID: 39047503 DOI: 10.1016/j.compbiomed.2024.108898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/16/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
Cannabidiol has been reported to interact with broad-spectrum biological targets with pleiotropic pharmacology including epilepsy although a cohesive mechanism is yet to be determined. Even though some studies propose that cannabidiol may manipulate glutamatergic signals, there is insufficient evidence to support cannabidiol direct effect on glutamate signaling, which is important in intervening epilepsy. Therefore, the present study aimed to analyze the epilepsy-related targets for cannabidiol, assess the differentially expressed genes with its treatment, and identify the possible glutamatergic signaling target. In this study, the epileptic protein targets of cannabidiol were identified using the Tanimoto coefficient and similarity index-based targets fishing which were later overlapped with the altered expression, epileptic biomarkers, and genetically altered proteins in epilepsy. The common proteins were then screened for possible glutamatergic signaling targets with differentially expressed genes. Later, molecular docking and simulation were performed using AutoDock Vina and GROMACS to evaluate binding affinity, ligand-protein stability, hydrophilic interaction, protein compactness, etc. Cannabidiol identified 30 different epilepsy-related targets of multiple protein classes including G-protein coupled receptors, enzymes, ion channels, etc. Glutamate receptor 2 was identified to be genetically varied in epilepsy which was targeted by cannabidiol and its expression was increased with its treatment. More importantly, cannabidiol showed a direct binding affinity with Glutamate receptor 2 forming a stable hydrophilic interaction and comparatively lower root mean squared deviation and residual fluctuations, increasing protein compactness with broad conformational changes. Based on the cheminformatic target fishing, evaluation of differentially expressed genes, molecular docking, and simulations, it can be hypothesized that cannabidiol may possess glutamate receptor 2-mediated anti-epileptic activities.
Collapse
Affiliation(s)
- Pukar Khanal
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India; Silicon Script Sciences Private Limited, Bharatpur, Ghorahi, Dang, Nepal.
| | - Vishal S Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India
| | | | - B M Patil
- KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research (KAHER), Belagavi, 590010, India; PRES's Pravara Rural College of Pharmacy Pravaranagar, Loni, Maharashtra, India
| |
Collapse
|
2
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
3
|
mTOR-Related Cell-Clearing Systems in Epileptic Seizures, an Update. Int J Mol Sci 2020; 21:ijms21051642. [PMID: 32121250 PMCID: PMC7084443 DOI: 10.3390/ijms21051642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that autophagy impairment is implicated in the epileptogenic mechanisms downstream of mTOR hyperactivation. This holds true for a variety of genetic and acquired epileptic syndromes besides malformations of cortical development which are classically known as mTORopathies. Autophagy suppression is sufficient to induce epilepsy in experimental models, while rescuing autophagy prevents epileptogenesis, improves behavioral alterations, and provides neuroprotection in seizure-induced neuronal damage. The implication of autophagy in epileptogenesis and maturation phenomena related to seizure activity is supported by evidence indicating that autophagy is involved in the molecular mechanisms which are implicated in epilepsy. In general, mTOR-dependent autophagy regulates the proliferation and migration of inter-/neuronal cortical progenitors, synapse development, vesicular release, synaptic plasticity, and importantly, synaptic clustering of GABAA receptors and subsequent excitatory/inhibitory balance in the brain. Similar to autophagy, the ubiquitin–proteasome system is regulated downstream of mTOR, and it is implicated in epileptogenesis. Thus, mTOR-dependent cell-clearing systems are now taking center stage in the field of epilepsy. In the present review, we discuss such evidence in a variety of seizure-related disorders and models. This is expected to provide a deeper insight into the molecular mechanisms underlying seizure activity.
Collapse
|
4
|
Batool A, Hill TDM, Nguyen NT, Langa E, Diviney M, Mooney C, Brennan GP, Connolly NMC, Sanz-Rodriguez A, Cavanagh BL, Henshall DC. Altered Biogenesis and MicroRNA Content of Hippocampal Exosomes Following Experimental Status Epilepticus. Front Neurosci 2020; 13:1404. [PMID: 32009885 PMCID: PMC6978807 DOI: 10.3389/fnins.2019.01404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Repetitive or prolonged seizures (status epilepticus) can damage neurons within the hippocampus, trigger gliosis, and generate an enduring state of hyperexcitability. Recent studies have suggested that microvesicles including exosomes are released from brain cells following stimulation and tissue injury, conveying contents between cells including microRNAs (miRNAs). Here, we characterized the effects of experimental status epilepticus on the expression of exosome biosynthesis components and analyzed miRNA content in exosome-enriched fractions. Status epilepticus induced by unilateral intra-amygdala kainic acid in mice resulted in acute subfield-specific, bi-directional changes in hippocampal transcripts associated with exosome biosynthesis including up-regulation of endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. Increased expression of exosome components including Alix were detectable in samples obtained 2 weeks after status epilepticus and changes occurred in both the ipsilateral and contralateral hippocampus. RNA sequencing of exosome-enriched fractions prepared using two different techniques detected a rich diversity of conserved miRNAs and showed that status epilepticus selectively alters miRNA contents. We also characterized editing sites of the exosome-enriched miRNAs and found six exosome-enriched miRNAs that were adenosine-to-inosine (ADAR) edited with the majority of the editing events predicted to occur within miRNA seed regions. However, the prevalence of these editing events was not altered by status epilepticus. These studies demonstrate that status epilepticus alters the exosome pathway and its miRNA content, but not editing patterns. Further functional studies will be needed to determine if these changes have pathophysiological significance for epileptogenesis.
Collapse
Affiliation(s)
- Aasia Batool
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Thomas D M Hill
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ngoc T Nguyen
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elena Langa
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mairéad Diviney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Catherine Mooney
- FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Computer Science, University College Dublin, Dublin, Ireland
| | - Gary P Brennan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Niamh M C Connolly
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Amaya Sanz-Rodriguez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
5
|
Tanguy E, Wang Q, Vitale N. Role of Phospholipase D-Derived Phosphatidic Acid in Regulated Exocytosis and Neurological Disease. Handb Exp Pharmacol 2020; 259:115-130. [PMID: 30570690 DOI: 10.1007/164_2018_180] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lipids play a vital role in numerous cellular functions starting from a structural role as major constituents of membranes to acting as signaling intracellular or extracellular entities. Accordingly, it has been known for decades that lipids, especially those coming from diet, are important to maintain normal physiological functions and good health. On the other side, the exact molecular nature of these beneficial or deleterious lipids, as well as their precise mode of action, is only starting to be unraveled. This recent improvement in our knowledge is largely resulting from novel pharmacological, molecular, cellular, and genetic tools to study lipids in vitro and in vivo. Among these important lipids, phosphatidic acid plays a unique and central role in a great variety of cellular functions. This review will focus on the proposed functions of phosphatidic acid generated by phospholipase D in the last steps of regulated exocytosis with a specific emphasis on hormonal and neurotransmitter release and its potential impact on different neurological diseases.
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, Strasbourg, France.
- INSERM, Paris, Cedex 13, France.
| |
Collapse
|
6
|
Fahimi A, Baktir MA, Moghadam S, Mojabi FS, Sumanth K, McNerney MW, Ponnusamy R, Salehi A. Physical exercise induces structural alterations in the hippocampal astrocytes: exploring the role of BDNF-TrkB signaling. Brain Struct Funct 2016; 222:1797-1808. [PMID: 27686571 DOI: 10.1007/s00429-016-1308-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Abstract
While it has been known that physical activity can improve cognitive function and protect against neurodegeneration, the underlying mechanisms for these protective effects are yet to be fully elucidated. There is a large body of evidence indicating that physical exercise improves neurogenesis and maintenance of neurons. Yet, its possible effects on glial cells remain poorly understood. Here, we tested whether physical exercise in mice alters the expression of trophic factor-related genes and the status of astrocytes in the dentate gyrus of the hippocampus. In addition to a significant increase in Bdnf mRNA and protein levels, we found that 4 weeks of treadmill and running wheel exercise in mice, led to (1) a significant increase in synaptic load in the dentate gyrus, (2) alterations in astrocytic morphology, and (3) orientation of astrocytic projections towards dentate granule cells. Importantly, these changes were possibly linked to increased TrkB receptor levels in astrocytes. Our study suggests that astrocytes actively respond and could indeed mediate the positive effects of physical exercise on the central nervous system and potentially counter degenerative processes during aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Atoossa Fahimi
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Mehmet Akif Baktir
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Sarah Moghadam
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Fatemeh S Mojabi
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Krithika Sumanth
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - M Windy McNerney
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Ravikumar Ponnusamy
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Ahmad Salehi
- VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA. .,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
7
|
Phospholipase D1 has a pivotal role in interleukin-1β-driven chronic autoimmune arthritis through regulation of NF-κB, hypoxia-inducible factor 1α, and FoxO3a. Mol Cell Biol 2013; 33:2760-72. [PMID: 23689131 DOI: 10.1128/mcb.01519-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interleukin-1β (IL-1β) is a potent proinflammatory and immunoregulatory cytokine playing an important role in the progression of rheumatoid arthritis (RA). However, the signaling network of IL-1β in synoviocytes from RA patients is still poorly understood. Here, we show for the first time that phospholipase D1 (PLD1), but not PLD2, is selectively upregulated in IL-1β-stimulated synoviocytes, as well as synovium, from RA patients. IL-1β enhanced the binding of NF-κB and ATF-2 to the PLD1 promoter, thereby enhancing PLD1 expression. PLD1 inhibition abolished the IL-1β-induced expression of proinflammatory mediators and angiogenic factors by suppressing the binding of NF-κB or hypoxia-inducible factor 1α to the promoter of its target genes, as well as IL-1β-induced proliferation or migration. However, suppression of PLD1 activity promoted cell cycle arrest via transactivation of FoxO3a. Furthermore, PLD1 inhibitor significantly suppressed joint inflammation and destruction in IL-1 receptor antagonist-deficient (IL-1Ra(-/-)) mice, a model of spontaneous arthritis. Taken together, these results suggest that the abnormal upregulation of PLD1 may contribute to the pathogenesis of IL-1β-induced chronic arthritis and that a selective PLD1 inhibitor might provide a potential therapeutic molecule for the treatment of chronic inflammatory autoimmune disorders.
Collapse
|
8
|
Abstract
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Collapse
Affiliation(s)
- Chang Hoon Cho
- Epilepsy Research Laboratory Department of Pediatrics Children's Hospital of Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
9
|
VanElzakker M, Fevurly RD, Breindel T, Spencer RL. Environmental novelty is associated with a selective increase in Fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn Mem 2008; 15:899-908. [PMID: 19050162 PMCID: PMC2632843 DOI: 10.1101/lm.1196508] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 10/07/2008] [Indexed: 11/24/2022]
Abstract
If the hippocampus plays a role in the detection of novel environmental features, then novelty should be associated with altered hippocampal neural activity and perhaps also measures of neuroplasticity. We examined Fos protein expression within subregions of rat hippocampal formation as an indicator of recent increases in neuronal excitation and cellular processes that support neuroplasticity. Environmental novelty, but not environmental complexity, led to a selective increase of Fos induction in the final "output" subregion of the dorsal hippocampal trisynaptic circuit (CA1) and a primary projection site (layer five of the lateral entorhinal cortex, ERC), as well as in the perirhinal cortex. There was no selective effect of novelty on Fos expression within "input" elements of the trisynaptic circuit (ERC layer two, the dentate gyrus or CA3) or other comparison brain regions that may be responsive to overall motor-sensory activity or anxiety levels (primary somatosensory and motor cortex or hypothalamic paraventricular nucleus). Test session ambulatory behavior increased with both novelty and environmental complexity and was not significantly correlated with Fos expression patterns in any of the brain regions examined. In contrast, the extent of manipulated environmental novelty was strongly correlated with Fos expression in CA1. These results support the prospect that a novelty-associated signal is generated within hippocampal neurocircuitry, is relayed to cortical projection sites, and specifically up-regulates neuroplasticity-supporting processes with dorsal hippocampal CA1 and ERC layer five. Whether novelty-dependent Fos induction in perirhinal cortex depends on this hippocampal output or reflects an independent process remains to be determined.
Collapse
Affiliation(s)
- Michael VanElzakker
- Department of Psychology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Rebecca D. Fevurly
- Department of Psychology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Tressa Breindel
- Department of Psychology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Robert L. Spencer
- Department of Psychology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
10
|
Min DS, Choi JS, Kim HY, Shin MK, Kim MK, Lee MY. Ischemic preconditioning upregulates expression of phospholipase D2 in the rat hippocampus. Acta Neuropathol 2007; 114:157-62. [PMID: 17393174 DOI: 10.1007/s00401-007-0218-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 03/11/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
To investigate the possible involvement of phospholipase D2 (PLD2) in the induction of ischemic tolerance, we analyzed the distribution and time course of PLD2 expression in the rat hippocampus after a sublethal period of ischemia. Forebrain ischemia was induced by four-vessel occlusion for 3 min. Increased PLD2 immunoreactivity after this sublethal ischemia was observed in CA1 pyramidal neurons of the rat hippocampus. In tolerance-acquired CA1 neurons, PLD2 immunoreactivity was upregulated as early as 12 h post-ischemia and was most prominent at 1-3 days, with expression sustained for at least 7 days, as shown by a time course of immunoblotting and measurement of the enzymatic activity of PLD. PLD2 expression was also increased in ischemia-resistant CA3 neurons and dentate granule cells, although weaker staining intensity was noted. Further, we showed that, in cultured SK-N-BE(2)C human neuroblastoma cells, overexpression of PLD2 inhibited cell death by chemical hypoxia induced with potassium cyanide and deoxyglucose. These data suggest that upregulation of PLD2 might be involved in the neuroprotective mechanism of ischemic tolerance in the rat hippocampus.
Collapse
Affiliation(s)
- Do Sik Min
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, 609-735, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Jin JK, Ahn BH, Na YJ, Kim JI, Kim YS, Choi EK, Ko YG, Chung KC, Kozlowski PB, Min DS. Phospholipase D1 is associated with amyloid precursor protein in Alzheimer's disease. Neurobiol Aging 2006; 28:1015-27. [PMID: 16797788 DOI: 10.1016/j.neurobiolaging.2006.05.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/08/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Amyloid precursor protein (APP) is a widely expressed transmembrane protein of unknown function that is involved in the pathogenesis of Alzheimer's disease (AD). We investigated the involvement of phospholipase D (PLD) in the pathophysiology of AD. We showed dramatic upregulation of PLD1 immunoreactivity in reactive astroglial cells in brain tissue sections from authentic AD patients. Expression and activity of PLD1 were up-regulated in brain tissues from AD patients, especially caveolae membrane fraction, compared with those of control brains. Interestingly, PLD1 physically interacts and colocalizes with APP and caveolin-3. We found that APP was associated with the pleckstrin homology domain of PLD1, and the amyloid region of APP interacted with PLD. Elevated expression of APP stimulated PLD activity in human astroglioma cells. These results suggest that up-regulation of PLD might have a role in the neuronal pathology associated with AD.
Collapse
Affiliation(s)
- Jae-Kwang Jin
- Ilsong Institute of Life Science, Hallym University, Kwanyang-dong, Dongan-gu, Anyang, Kyonggi-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Ten years after the isoforms of mammalian phospholipase D (PLD), PLD1 and 2, were cloned, their roles in the brain remain speculative but several lines of evidence now implicate these enzymes in basic cell functions such as vesicular trafficking as well as in brain development. Many mitogenic factors, including neurotransmitters and growth factors, activate PLD in neurons and astrocytes. Activation of PLD downstream of protein kinase C seems to be a required step for astroglial proliferation. The characteristic disruption of the PLD signaling pathway by ethanol probably contributes to the delay of brain growth in fetal alcohol syndrome. The post-natal increase of PLD activities concurs with synapto- and myelinogenesis in the brain and PLD is apparently involved in neurite formation. In the adult and aging brain, PLD activity has antiapoptotic properties suppressing ceramide formation. Increased PLD activities in acute and chronic neurodegeneration as well as in inflammatory processes are evidently due to astrogliosis and may be associated with protective responses of tissue repair and remodeling. ARF-regulated PLD participates in receptor endocytosis as well as in exocytosis of neurotransmitters where PLD seems to favor vesicle fusion by modifications of the shape and charge of lipid membranes. Finally, PLD activities contribute free choline for the synthesis of acetylcholine in the brain. Novel tools such as RNA interference should help to further elucidate the roles of PLD isoforms in brain physiology and pathology.
Collapse
Affiliation(s)
- Jochen Klein
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, Texas 79106, USA.
| |
Collapse
|