1
|
Yang S, Tian L, Feng Y, Song Y, Li R, Guo Y, Li H, Li C, Lu J. Molecularly imprinted electrochemiluminescence sensor based on luminol functionalized Co-MOF for rifampicin detection. Mikrochim Acta 2024; 191:711. [PMID: 39470828 DOI: 10.1007/s00604-024-06774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/12/2024] [Indexed: 11/01/2024]
Abstract
A highly sensitive molecularly imprinted electrochemiluminescence (MIECL) sensor was developed for detecting rifampicin (RIF) based on luminol@Co-MOF. Co-MOF had a significant enhancement of ECL signaling in the luminol-O2 system. Molecular imprinted polymers (MIPs) with the introduction of RIF provide new properties for the specific recognition of RIF. A noteworthy decrease in ECL intensity was observed with higher concentrations of RIF. Consequently, the ECL signal was controlled by RIF elution from and adsorption by the MIP, thus establishing a new method for RIF detection. Under optimal conditions, this sensor exhibited linear detection ranges of RIF between 1.0 × 10-11 mol L-1 and 1.0 × 10-6 mol L-1, with a detection limit of 3.3 × 10-12 mol L-1 (S/N = 3). The recoveries ranged between 98.1 and 106.0% in fish samples. This method can be used as a sensitive and rapid method to detect RIF in real samples.
Collapse
Affiliation(s)
- Shuning Yang
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China.
| | - Yongbo Feng
- College of Medicine, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yujia Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Huiling Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Chao Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China
| | - Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, People's Republic of China.
| |
Collapse
|
2
|
Thu NQ, Tien NTN, Yen NTH, Duong TH, Long NP, Nguyen HT. Push forward LC-MS-based therapeutic drug monitoring and pharmacometabolomics for anti-tuberculosis precision dosing and comprehensive clinical management. J Pharm Anal 2024; 14:16-38. [PMID: 38352944 PMCID: PMC10859566 DOI: 10.1016/j.jpha.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 02/16/2024] Open
Abstract
The spread of tuberculosis (TB), especially multidrug-resistant TB and extensively drug-resistant TB, has strongly motivated the research and development of new anti-TB drugs. New strategies to facilitate drug combinations, including pharmacokinetics-guided dose optimization and toxicology studies of first- and second-line anti-TB drugs have also been introduced and recommended. Liquid chromatography-mass spectrometry (LC-MS) has arguably become the gold standard in the analysis of both endo- and exo-genous compounds. This technique has been applied successfully not only for therapeutic drug monitoring (TDM) but also for pharmacometabolomics analysis. TDM improves the effectiveness of treatment, reduces adverse drug reactions, and the likelihood of drug resistance development in TB patients by determining dosage regimens that produce concentrations within the therapeutic target window. Based on TDM, the dose would be optimized individually to achieve favorable outcomes. Pharmacometabolomics is essential in generating and validating hypotheses regarding the metabolism of anti-TB drugs, aiding in the discovery of potential biomarkers for TB diagnostics, treatment monitoring, and outcome evaluation. This article highlighted the current progresses in TDM of anti-TB drugs based on LC-MS bioassay in the last two decades. Besides, we discussed the advantages and disadvantages of this technique in practical use. The pressing need for non-invasive sampling approaches and stability studies of anti-TB drugs was highlighted. Lastly, we provided perspectives on the prospects of combining LC-MS-based TDM and pharmacometabolomics with other advanced strategies (pharmacometrics, drug and vaccine developments, machine learning/artificial intelligence, among others) to encapsulate in an all-inclusive approach to improve treatment outcomes of TB patients.
Collapse
Affiliation(s)
- Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Thuc-Huy Duong
- Department of Chemistry, University of Education, Ho Chi Minh City, 700000, Viet Nam
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Viet Nam
| |
Collapse
|
3
|
Thomas TA, Lukumay S, Yu S, Rao P, Siemiątkowska A, Kagan L, Augustino D, Mejan P, Mosha R, Handler D, Petros de Guex K, Mmbaga B, Pfaeffle H, Reiss R, Peloquin CA, Vinnard C, Mduma E, Xie YL, Heysell SK. Rifampin urinary excretion to predict serum targets in children with tuberculosis: a prospective diagnostic accuracy study. Arch Dis Child 2023; 108:616-621. [PMID: 37171408 PMCID: PMC10766442 DOI: 10.1136/archdischild-2022-325250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVE Pharmacokinetic variability drives tuberculosis (TB) treatment outcomes but measurement of serum drug concentrations for personalised dosing is inaccessible for children in TB-endemic settings. We compared rifampin urine excretion for prediction of a serum target associated with treatment outcome. DESIGN Prospective diagnostic accuracy study. SETTING Inpatient wards and outpatient clinics, northern Tanzania. PATIENTS Children aged 4-17 years were consecutively recruited on initiation of WHO-approved treatment regimens. INTERVENTIONS Samples were collected after directly observed therapy at least 2 weeks after initiation in the intensive phase: serum at pre-dose and 1, 2 and 6 hours post-dose, later analysed by liquid chromatography-tandem mass spectrometry for calculation of rifampin total exposure or area under the concentration time curve (AUC0-24); urine at post-dose intervals of 0-4, 4-8 and 8-24 hours, with rifampin excretion amount measured onsite by spectrophotometry. MAIN OUTCOME MEASURES Receiver operating characteristic (ROC) curve for percentage of rifampin dose excreted in urine measured by spectrophotometry to predict serum rifampin AUC0-24 target of 31.7 mg*hour/L. RESULTS 89 children, 52 (58%) female, with median age of 9.1 years, had both serum and urine collection. Only 59 (66%) reached the serum AUC0-24 target, reflected by a range of urine excretion patterns. Area under the ROC curve for percentage of rifampin dose excreted in urine over 24 hours predicting serum AUC0-24 target was 69.3% (95% CI 56.7% to 81.8%), p=0.007. CONCLUSIONS Urine spectrophotometry correlated with a clinically relevant serum target for rifampin, representing a step toward personalised dosing for children in TB-endemic settings.
Collapse
Affiliation(s)
- Tania A Thomas
- Department of Medicine, Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Saning'o Lukumay
- Department of Global Health Research, Haydom Lutheran Hospital, Mbulu, Tanzania, United Republic of
| | - Sijia Yu
- Pharmacy, Rutgers The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Prakruti Rao
- Department of Medicine, Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Anna Siemiątkowska
- Pharmacy, Rutgers The State University of New Jersey, New Brunswick, New Jersey, USA
- Pharmacy, Poznań University, Poznan, Poland
| | - Leonid Kagan
- Pharmacy, Rutgers The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Domitila Augustino
- Department of Global Health Research, Haydom Lutheran Hospital, Mbulu, Tanzania, United Republic of
| | - Paulo Mejan
- Department of Global Health Research, Haydom Lutheran Hospital, Mbulu, Tanzania, United Republic of
| | - Restituta Mosha
- Department of Global Health Research, Haydom Lutheran Hospital, Mbulu, Tanzania, United Republic of
| | - Deborah Handler
- Department of Medicine, Infectious Diseases, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Kristen Petros de Guex
- Department of Medicine, Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Blandina Mmbaga
- Department of Pediatrics, Kilimanjaro Christian Medical College, Moshi, Tanzania, United Republic of
| | - Herman Pfaeffle
- Department of Medicine, Naval Medical Center Portsmouth, Portsmouth, Virginia, USA
| | - Robert Reiss
- Department of Medicine, Infectious Diseases, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | | | - Christopher Vinnard
- Department of Medicine, Infectious Diseases, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Estomih Mduma
- Department of Global Health Research, Haydom Lutheran Hospital, Mbulu, Tanzania, United Republic of
| | - Yingda L Xie
- Department of Medicine, Infectious Diseases, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Scott K Heysell
- Department of Medicine, Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
4
|
Rao PS, Modi N, Nguyen NTT, Vu DH, Xie YL, Gandhi M, Gerona R, Metcalfe J, Heysell SK, Alffenaar JWC. Alternative Methods for Therapeutic Drug Monitoring and Dose Adjustment of Tuberculosis Treatment in Clinical Settings: A Systematic Review. Clin Pharmacokinet 2023; 62:375-398. [PMID: 36869170 PMCID: PMC10042915 DOI: 10.1007/s40262-023-01220-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Quantifying exposure to drugs for personalized dose adjustment is of critical importance in patients with tuberculosis who may be at risk of treatment failure or toxicity due to individual variability in pharmacokinetics. Traditionally, serum or plasma samples have been used for drug monitoring, which only poses collection and logistical challenges in high-tuberculosis burden/low-resourced areas. Less invasive and lower cost tests using alternative biomatrices other than serum or plasma may improve the feasibility of therapeutic drug monitoring. METHODS A systematic review was conducted to include studies reporting anti-tuberculosis drug concentration measurements in dried blood spots, urine, saliva, and hair. Reports were screened to include study design, population, analytical methods, relevant pharmacokinetic parameters, and risk of bias. RESULTS A total of 75 reports encompassing all four biomatrices were included. Dried blood spots reduced the sample volume requirement and cut shipping costs whereas simpler laboratory methods to test the presence of drug in urine can allow point-of-care testing in high-burden settings. Minimal pre-processing requirements with saliva samples may further increase acceptability for laboratory staff. Multi-analyte panels have been tested in hair with the capacity to test a wide range of drugs and some of their metabolites. CONCLUSIONS Reported data were mostly from small-scale studies and alternative biomatrices need to be qualified in large and diverse populations for the demonstration of feasibility in operational settings. High-quality interventional studies will improve the uptake of alternative biomatrices in guidelines and accelerate implementation in programmatic tuberculosis treatment.
Collapse
Affiliation(s)
- Prakruti S Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Nisha Modi
- Global TB Institute and Department of Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Nam-Tien Tran Nguyen
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Dinh Hoa Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Yingda L Xie
- Global TB Institute and Department of Medicine, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Monica Gandhi
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Roy Gerona
- Maternal-Fetal Medicine Division, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - John Metcalfe
- Division of Pulmonary and Critical Care Medicine, Zuckerberg San Francisco General Hospital and Trauma Center, University of California, San Francisco, CA, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jan-Willem C Alffenaar
- Pharmacy School, The University of Sydney, Pharmacy Building (A15), Science Road, Sydney, NSW, 2006, Australia.
- The University of Sydney at Westmead Hospital, Sydney, NSW, Australia.
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Moriiwa Y, Oyama N, Otsuka R, Morioka K, Shoji A, Yanagida A. Development of a colorimetric assay for quantification of favipiravir in human serum using ferrihydrite. Talanta 2023; 252:123827. [DOI: 10.1016/j.talanta.2022.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/29/2022]
|
6
|
Alffenaar JWC, de Steenwinkel JEM, Diacon AH, Simonsson USH, Srivastava S, Wicha SG. Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of in vitro, in vivo methodologies and human studies. Front Pharmacol 2022; 13:1063453. [PMID: 36569287 PMCID: PMC9780293 DOI: 10.3389/fphar.2022.1063453] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
Collapse
Affiliation(s)
- Jan-Willem C. Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia,School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Hospital, Sydney, NSW, Australia,*Correspondence: Jan-Willem C. Alffenaar,
| | | | | | | | - Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Akkerman OW, Duarte R, Tiberi S, Schaaf HS, Lange C, Alffenaar JWC, Denholm J, Carvalho ACC, Bolhuis MS, Borisov S, Bruchfeld J, Cabibbe AM, Caminero JA, Carvalho I, Chakaya J, Centis R, Dalcomo MP, D Ambrosio L, Dedicoat M, Dheda K, Dooley KE, Furin J, García-García JM, van Hest NAH, de Jong BC, Kurhasani X, Märtson AG, Mpagama S, Torrico MM, Nunes E, Ong CWM, Palmero DJ, Ruslami R, Saktiawati AMI, Semuto C, Silva DR, Singla R, Solovic I, Srivastava S, de Steenwinkel JEM, Story A, Sturkenboom MGG, Tadolini M, Udwadia ZF, Verhage AR, Zellweger JP, Migliori GB. Clinical standards for drug-susceptible pulmonary TB. Int J Tuberc Lung Dis 2022; 26:592-604. [PMID: 35768923 PMCID: PMC9272737 DOI: 10.5588/ijtld.22.0228] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: The aim of these clinical standards is to provide guidance on 'best practice´ for diagnosis, treatment and management of drug-susceptible pulmonary TB (PTB).METHODS: A panel of 54 global experts in the field of TB care, public health, microbiology, and pharmacology were identified; 46 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all 46 participants.RESULTS: Seven clinical standards were defined: Standard 1, all patients (adult or child) who have symptoms and signs compatible with PTB should undergo investigations to reach a diagnosis; Standard 2, adequate bacteriological tests should be conducted to exclude drug-resistant TB; Standard 3, an appropriate regimen recommended by WHO and national guidelines for the treatment of PTB should be identified; Standard 4, health education and counselling should be provided for each patient starting treatment; Standard 5, treatment monitoring should be conducted to assess adherence, follow patient progress, identify and manage adverse events, and detect development of resistance; Standard 6, a recommended series of patient examinations should be performed at the end of treatment; Standard 7, necessary public health actions should be conducted for each patient. We also identified priorities for future research into PTB.CONCLUSION: These consensus-based clinical standards will help to improve patient care by guiding clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment for PTB.
Collapse
Affiliation(s)
- O W Akkerman
- TB Center Beatrixoord, University Medical Center Groningen, University of Groningen, Haren, the Netherlands, Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R Duarte
- Centro Hospitalar de Vila Nova de Gaia/Espinho; Instituto de Ciencias Biomédicas de Abel Saalazar, Universidade do Porto, Instituto de Saúde Publica da Universidade do Porto, Unidade de Investigação Clínica, ARS Norte, Porto, Portugal
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Division of Infection, Royal London Hospital, Barts Health NHS Trust, London, UK
| | - H S Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - C Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany, German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany, Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany, The Global Tuberculosis Program, Texas Children´s Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - J Denholm
- Victorian Tuberculosis Program, Melbourne Health, Department of Infectious diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - M S Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Borisov
- Moscow Research and Clinical Center for Tuberculosis Control, Moscow, Russia
| | - J Bruchfeld
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden, Department of Infectious Disease, Karolinska University Hospital, Stockholm, Sweden
| | - A M Cabibbe
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - J A Caminero
- Department of Pneumology, University General Hospital of Gran Canaria "Dr Negrin", Las Palmas, Spain, ALOSA (Active Learning over Sanitary Aspects) TB Academy, Spain
| | - I Carvalho
- Pediatric Department, Vila Nova de Gaia Outpatient Tuberculosis Centre, Vila Nova de Gaia Hospital Centre, Vila Nova de Gaia, Portugal
| | - J Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences. Liverpool School of Tropical Medicine, Liverpool, UK
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| | - M P Dalcomo
- Reference Center Helio Fraga, FIOCRUZ, Brazil
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - K Dheda
- Centre for Lung Infection and Immunity Unit, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, South African Medical Research Council Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - K E Dooley
- Center for Tuberculosis Research, Johns Hopkins, Baltimore, MD
| | - J Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | | | - N A H van Hest
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands, Municipal Public Health Service Groningen, Groningen, The Netherlands
| | - B C de Jong
- Mycobacteriology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - X Kurhasani
- UBT-Higher Education Institution Prishtina, Kosovo
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - S Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzani, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, México City, Mexico
| | - E Nunes
- Department of Pulmonology of Central Hospital of Maputo, Maputo, Mozambique, Faculty of Medicine of Eduardo Mondlane University, Maputo, Mozambique
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, National University of Singapore, Yong Loo Lin School of Medicine, Singapore, National University of Singapore Institute for Health Innovation & Technology (iHealthtech), Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - D J Palmero
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Research Center for Care and Control of Infectious Disease (RC3iD), Universitas Padjadjaran, Bandung, Indonesia
| | - A M I Saktiawati
- Department of Internal Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia, Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - C Semuto
- Research, Innovation and Data Science Division, Rwanda Biomedical Center, Kigali, Rwanda
| | - D R Silva
- Instituto Vaccarezza, Hospital Muñiz, Buenos Aires, Argentina
| | - R Singla
- National Institute of Tuberculosis & Respiratory Diseases, New Delhi, India
| | - I Solovic
- National Institute of Tuberculosis, Lung Diseases and Thoracic Surgery, Faculty of Health, Catholic University, Ružomberok, Vyšné Hágy, Slovakia
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Centre at Tyler, Tyler, TX, USA
| | - J E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - A Story
- Institute of Epidemiology and Healthcare, University College London, London, UK, Find and Treat, University College Hospitals NHS Foundation Trust, London, UK
| | - M G G Sturkenboom
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - A R Verhage
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J P Zellweger
- TB Competence Center, Swiss Lung Association, Berne, Switzerland
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS, Tradate, Italy
| |
Collapse
|
8
|
Alffenaar JWC, Stocker SL, Forsman LD, Garcia-Prats A, Heysell SK, Aarnoutse RE, Akkerman OW, Aleksa A, van Altena R, de Oñata WA, Bhavani PK, Van't Boveneind-Vrubleuskaya N, Carvalho ACC, Centis R, Chakaya JM, Cirillo DM, Cho JG, D Ambrosio L, Dalcolmo MP, Denti P, Dheda K, Fox GJ, Hesseling AC, Kim HY, Köser CU, Marais BJ, Margineanu I, Märtson AG, Torrico MM, Nataprawira HM, Ong CWM, Otto-Knapp R, Peloquin CA, Silva DR, Ruslami R, Santoso P, Savic RM, Singla R, Svensson EM, Skrahina A, van Soolingen D, Srivastava S, Tadolini M, Tiberi S, Thomas TA, Udwadia ZF, Vu DH, Zhang W, Mpagama SG, Schön T, Migliori GB. Clinical standards for the dosing and management of TB drugs. Int J Tuberc Lung Dis 2022; 26:483-499. [PMID: 35650702 PMCID: PMC9165737 DOI: 10.5588/ijtld.22.0188] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND: Optimal drug dosing is important to ensure adequate response to treatment, prevent development of drug resistance and reduce drug toxicity. The aim of these clinical standards is to provide guidance on 'best practice´ for dosing and management of TB drugs.METHODS: A panel of 57 global experts in the fields of microbiology, pharmacology and TB care were identified; 51 participated in a Delphi process. A 5-point Likert scale was used to score draft standards. The final document represents the broad consensus and was approved by all participants.RESULTS: Six clinical standards were defined: Standard 1, defining the most appropriate initial dose for TB treatment; Standard 2, identifying patients who may be at risk of sub-optimal drug exposure; Standard 3, identifying patients at risk of developing drug-related toxicity and how best to manage this risk; Standard 4, identifying patients who can benefit from therapeutic drug monitoring (TDM); Standard 5, highlighting education and counselling that should be provided to people initiating TB treatment; and Standard 6, providing essential education for healthcare professionals. In addition, consensus research priorities were identified.CONCLUSION: This is the first consensus-based Clinical Standards for the dosing and management of TB drugs to guide clinicians and programme managers in planning and implementation of locally appropriate measures for optimal person-centred treatment to improve patient care.
Collapse
Affiliation(s)
- J W C Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - S L Stocker
- School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Department of Clinical Pharmacology and Toxicology, St Vincent´s Hospital, Sydney, NSW, Australia, St Vincent´s Clinical Campus, University of NSW, Kensington, NSW, Australia
| | - L Davies Forsman
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet, Solna, Sweden, Department of Infectious Diseases Karolinska University Hospital, Solna, Sweden
| | - A Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa, Department of Pediatrics, University of Wisconsin, Madison, WI
| | - S K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - R E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - O W Akkerman
- University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands, University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord, Haren, The Netherlands
| | - A Aleksa
- Educational Institution "Grodno State Medical University", Grodno, Belarus
| | - R van Altena
- Asian Harm Reduction Network (AHRN) and Medical Action Myanmar (MAM) in Yangon, Myanmar
| | - W Arrazola de Oñata
- Belgian Scientific Institute for Public Health (Belgian Lung and Tuberculosis Association), Brussels, Belgium
| | - P K Bhavani
- Indian Council of Medical Research-National Institute for Research in Tuberculosis-International Center for Excellence in Research, Chennai, India
| | - N Van't Boveneind-Vrubleuskaya
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, Department of Public Health TB Control, Metropolitan Public Health Services, The Hague, The Netherlands
| | - A C C Carvalho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - R Centis
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| | - J M Chakaya
- Department of Medicine, Therapeutics and Dermatology, Kenyatta University, Nairobi, Kenya, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - D M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - J G Cho
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia, Parramatta Chest Clinic, Parramatta, NSW, Australia
| | - L D Ambrosio
- Public Health Consulting Group, Lugano, Switzerland
| | - M P Dalcolmo
- Reference Center Hélio Fraga, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - P Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - K Dheda
- Centre for Lung Infection and Immunity, Department of Medicine, Division of Pulmonology and UCT Lung Institute, University of Cape Town, Cape Town, South Africa, University of Cape Town Lung Institute & South African MRC Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa, Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - G J Fox
- Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia, Woolcock Institute of Medical Research, Glebe, NSW, Australia
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - H Y Kim
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia, Westmead Hospital, Sydney, NSW, Australia
| | - C U Köser
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - B J Marais
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia, Department of Infectious Diseases and Microbiology, The Children´s Hospital at Westmead, Westmead, NSW, Australia
| | - I Margineanu
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - A G Märtson
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - M Munoz Torrico
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México, Mexico
| | - H M Nataprawira
- Division of Paediatric Respirology, Department of Child Health, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - C W M Ong
- Infectious Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Institute for Health Innovation & Technology (iHealthtech), National University of Singapore, Singapore, Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - R Otto-Knapp
- German Central Committee against Tuberculosis (DZK), Berlin, Germany
| | - C A Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - D R Silva
- Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - R Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia, Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - P Santoso
- Division of Respirology and Critical Care, Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung, Indonesia
| | - R M Savic
- Department of Bioengineering and Therapeutic Sciences, Division of Pulmonary and Critical Care Medicine, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - R Singla
- Department of TB & Respiratory Diseases, National Institute of TB & Respiratory Diseases, New Delhi, India
| | - E M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - A Skrahina
- The Republican Research and Practical Centre for Pulmonology and TB, Minsk, Belarus
| | - D van Soolingen
- National Institute for Public Health and the Environment, TB Reference Laboratory (RIVM), Bilthoven, The Netherlands
| | - S Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - M Tadolini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - S Tiberi
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - T A Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Z F Udwadia
- P. D. Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - D H Vu
- National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - W Zhang
- Department of Infectious Diseases, National Medical Center for Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People´s Republic of China
| | - S G Mpagama
- Kilimanjaro Christian Medical University College, Moshi, United Republic of Tanzania, Kibong´oto Infectious Diseases Hospital, Sanya Juu, Siha, Kilimanjaro, United Republic of Tanzania
| | - T Schön
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden, Institute of Biomedical and Clinical Sciences, Division of Infection and Inflammation, Linköping University, Linköping, Sweden, Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Linköping University, Linköping, Sweden
| | - G B Migliori
- Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Tradate, Italy
| |
Collapse
|
9
|
Margineanu I, Akkerman O, Cattaneo D, Goletti D, Marriott DJE, Migliori GB, Mirzayev F, Peloquin CA, Stienstra Y, Alffenaar JW. Practices of therapeutic drug monitoring in tuberculosis: an international survey. Eur Respir J 2022; 59:2102787. [PMID: 35086830 PMCID: PMC9030066 DOI: 10.1183/13993003.02787-2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/02/2022] [Indexed: 11/08/2022]
Abstract
Tuberculosis (TB) is still one of the top 10 causes of death in low and lower-middle income countries [1]. TB's long and complex treatment, side-effects, and development of resistant bacteria compromise treatment success. To improve treatment outcomes, therapeutic drug monitoring (TDM) has been included in TB treatment guidelines [2–4] to be considered for specific situations in which there is documented or expected poor response to treatment, drug toxicity, or a lower drug concentration. Several strategies for implementation of TDM for programmatic use have been proposed to overcome barriers to widespread use of TDM [5, 6], including more accessible techniques such as dried blood spot analysis or saliva and urine testing [7], but uptake in programmatic care is still limited [8]. Survey responses indicate that there is concern surrounding cost-effectiveness and the resources available in different settings to implement therapeutic drug monitoring in TB. Robust research is needed to better inform of the potential long-term benefits. https://bit.ly/34PFSfd
Collapse
Affiliation(s)
- Ioana Margineanu
- Dept of Clinical Pharmacy and Pharmacology, Rijksuniversiteit Groningen, University Medical Centrum Groningen, Groningen, The Netherlands
| | - Onno Akkerman
- University of Groningen, University Medical Centrum Groningen, Dept of Pulmonary Diseases and Tuberculosis, Groningen, The Netherlands
- University Of Groningen, University Medical Centrum Groningen, TB center Beatrixoord, Groningen, The Netherlands
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco University Hospital, Milan, Italy
- In alphabetical order
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases (INMI), Rome, Italy
- In alphabetical order
| | - Deborah J E Marriott
- Dept of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Sydney, Australia
- In alphabetical order
| | | | - Fuad Mirzayev
- Global TB Programme, World Health Organization, Geneva, Switzerland
- In alphabetical order
| | - Charles A Peloquin
- University of Florida, College of Pharmacy and Emerging Pathogens Institute, Gainesville, FL, USA
- In alphabetical order
| | - Ymkje Stienstra
- Dept of Internal Medicine, Rijksuniversiteit Groningen, University Medical Centrum Groningen, Groningen, The Netherlands
| | - Jan-Willem Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Kim HY, Byashalira KC, Heysell SK, Märtson AG, Mpagama SG, Rao P, Sturkenboom MG, Alffenaar JWC. Therapeutic Drug Monitoring of Anti-infective Drugs: Implementation Strategies for 3 Different Scenarios. Ther Drug Monit 2022; 44:3-10. [PMID: 34686647 PMCID: PMC8755585 DOI: 10.1097/ftd.0000000000000936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) supports personalized treatment. For successful implementation, TDM must have a turnaround time suited to the clinical needs of patients and their health care settings. Here, the authors share their views of how a TDM strategy can be tailored to specific settings and patient groups. METHODS The authors selected distinct scenarios for TDM: high-risk, complex, and/or critically ill patient population; outpatients; and settings with limited laboratory resources. In addition to the TDM scenario approach, they explored potential issues with the legal framework governing dose escalation. RESULTS The most important issues identified in the different scenarios are that critically ill patients require rapid turnaround time, outpatients require an easy sampling procedure for the sample matrix and sample collection times, settings with limited laboratory resources necessitate setting-specific analytic techniques, and all scenarios warrant a legal framework to capture the use of escalated dosages, ideally with the use of trackable dosing software. CONCLUSIONS To benefit patients, TDM strategies need to be tailored to the intended population. Strategies can be adapted for rapid turnaround time for critically ill patients, convenient sampling for outpatients, and feasibility for those in settings with limited laboratory resources.
Collapse
Affiliation(s)
- Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Scott K. Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Anne-Grete Märtson
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Virginia, USA
| | - Marieke G.G. Sturkenboom
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Jan-Willem C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Hospital, Sydney, NSW 2145, Australia
- Marie Bashir Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Alffenaar JWC, Marais BJ, Thomas TA. Is a high dose sufficient to achieve high isoniazid exposure in children affected by multidrug-resistant TB? Int J Tuberc Lung Dis 2021; 25:879-880. [PMID: 34686227 PMCID: PMC9811372 DOI: 10.5588/ijtld.21.0451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- J-W. C. Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, NSW, Australia;,Westmead Hospital, Sydney, NSW, Australia;,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia
| | - B. J Marais
- Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia;,Children’s Hospital Westmead, Sydney, NSW, Australia
| | - T. A. Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Said BN, Heysell SK, Yimer G, Aarnoutse RE, Kibiki GS, Mpagama S, Mbelele PM. Pharmacodynamic biomarkers for quantifying the mycobacterial effect of high doses of rifampin in patients with rifampin-susceptible pulmonary tuberculosis. Int J Mycobacteriol 2021; 10:457-462. [PMID: 34916467 PMCID: PMC7612567 DOI: 10.4103/ijmy.ijmy_178_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background Suboptimal drug exposure in patients with drug-susceptible tuberculosis (DS-TB) can drive treatment failure. Pharmacodynamics (PD) biomarkers such as the plasma TB drug-activity (TDA) assay may guide dose finding studies and predict microbiological outcomes differently than conventional indices. Methods A study was nested from phase 2b randomized double-blind controlled trial of Tanzanian patients who received a 600 mg, 900 mg, or 1200 mg with a standard dose for DS-TB. Serum at 6 weeks collected over 24-h at 2-h intervals was collected for rifampin area under the concentration-time curve relative to minimum inhibitory concentration (AUC0-24/MIC) or peak concentration and MIC (Cmax/MIC). TDA was the ratio of time-to-positive growth of the patient's Mycobacterium tuberculosis isolates with and without coculture of patient's plasma collected at Cmax. Spearman's rank correlation (r) between PD parameters and culture convention on both liquid and solid culture media. Results Among 10 patients, 600 mg (3), 900 mg (3), and 1200 mg (4) of rifampin dosages. The mean ± standard deviation (SD) of AUC0-24/MIC for patients on 600 mg was 168 ± 159 mg·h/L, on 900 mg was 169 ± 166 mg·h/L, and on 1200 mg was 308 ± 238 mg·h/L. The mean-TDA (SD) was 2.56 (±0.75), 1.5 (±0.59), and 2.29 (±1.08) for patients on 600 mg, 900 mg, and 1200 mg rifampin doses, respectively. Higher TDA values correlated with faster time to culture convention on both liquid (r = -0.55, P = 0.099) and solid media (r = -0.65, P = 0.04). Conclusions TDA and rifampin AUC0-24/MIC did not trend as expected with rifampin dose, but TDA better predicted the time to sputum culture conversion. TDA may provide additional discrimination in predicting treatment response for some regimens distinct from plasma exposure relative to MIC or mg/kg dose.
Collapse
Affiliation(s)
- Bibie N Said
- Kibong'oto Infectious Diseases Hospital (KIDH), Research Department, Siha, Kilimanjaro, Tanzania; Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Charlottesville, Virginia, USA
| | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Getnet Yimer
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Charlottesville, Virginia; Global One Health initiative, Office of International Affairs, The Ohio State University, Columbus, Ohio, USA
| | - Rob E Aarnoutse
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the, Netherlands
| | - Gibson S Kibiki
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Tumaini University, Moshi, Tanzania
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital (KIDH), Research Department, Siha, Kilimanjaro, Tanzania
| | - Peter M Mbelele
- Kibong'oto Infectious Diseases Hospital (KIDH), Research Department, Siha, Kilimanjaro; Department of Global Health and Biomedical Sciences, School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|
13
|
First Screen-Printed Sensor (Electrochemically Activated Screen-Printed Boron-Doped Diamond Electrode) for Quantitative Determination of Rifampicin by Adsorptive Stripping Voltammetry. MATERIALS 2021; 14:ma14154231. [PMID: 34361425 PMCID: PMC8347414 DOI: 10.3390/ma14154231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/28/2023]
Abstract
In this paper, a screen-printed boron-doped electrode (aSPBDDE) was subjected to electrochemical activation by cyclic voltammetry (CV) in 0.1 M NaOH and the response to rifampicin (RIF) oxidation was used as a testing probe. Changes in surface morphology and electrochemical behaviour of RIF before and after the electrochemical activation of SPBDDE were studied by scanning electron microscopy (SEM), CV and electrochemical impedance spectroscopy (EIS). The increase in number and size of pores in the modifier layer and reduction of charge transfer residence were likely responsible for electrochemical improvement of the analytical signal from RIF at the SPBDDE. Quantitative analysis of RIF by using differential pulse adsorptive stripping voltammetry in 0.1 mol L−1 solution of PBS of pH 3.0 ± 0.1 at the aSPBDDE was carried out. Using optimized conditions (Eacc of −0.45 V, tacc of 120 s, ΔEA of 150 mV, ν of 100 mV s−1 and tm of 5 ms), the RIF peak current increased linearly with the concentration in the four ranges: 0.002–0.02, 0.02–0.2, 0.2–2.0, and 2.0–20.0 nM. The limits of detection and quantification were calculated at 0.22 and 0.73 pM. The aSPBDDE showed satisfactory repeatability, reproducibility, and selectivity towards potential interferences. The applicability of the aSPBDDE for control analysis of RIF was demonstrated using river water samples and certified reference material of bovine urine.
Collapse
|
14
|
Alffenaar JWC, Jongedijk EM, van Winkel CAJ, Sariko M, Heysell SK, Mpagama S, Touw DJ. A mobile microvolume UV/visible light spectrophotometer for the measurement of levofloxacin in saliva. J Antimicrob Chemother 2021; 76:423-429. [PMID: 33089322 PMCID: PMC7816168 DOI: 10.1093/jac/dkaa420] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Therapeutic drug monitoring (TDM) for personalized dosing of fluoroquinolones has been recommended to optimize efficacy and reduce acquired drug resistance in the treatment of MDR TB. Therefore, the aim of this study was to develop a simple, low-cost, robust assay for TDM using mobile UV/visible light (UV/VIS) spectrophotometry to quantify levofloxacin in human saliva at the point of care for TB endemic settings. METHODS All experiments were performed on a mobile UV/VIS spectrophotometer. The levofloxacin concentration was quantified by using the amplitude of the second-order spectrum between 300 and 400 nm of seven calibrators. The concentration of spiked samples was calculated from the spectrum amplitude using linear regression. The method was validated for selectivity, specificity, linearity, accuracy and precision. Drugs frequently co-administered were tested for interference. RESULTS The calibration curve was linear over a range of 2.5-50.0 mg/L for levofloxacin, with a correlation coefficient of 0.997. Calculated accuracy ranged from -5.2% to 2.4%. Overall precision ranged from 2.1% to 16.1%. Application of the Savitsky-Golay method reduced the effect of interferents on the quantitation of levofloxacin. Although rifampicin and pyrazinamide showed analytical interference at the lower limit of quantitation of levofloxacin concentrations, this interference had no implication on decisions regarding the levofloxacin dose. CONCLUSIONS A simple UV/VIS spectrophotometric method to quantify levofloxacin in saliva using a mobile nanophotometer has been validated. This method can be evaluated in programmatic settings to identify patients with low levofloxacin drug exposure to trigger personalized dose adjustment.
Collapse
Affiliation(s)
- Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead Hospital, Sydney, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW, Australia.,University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Erwin M Jongedijk
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | - Claudia A J van Winkel
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| | | | - Scott K Heysell
- University of Virginia, Division of Infectious Diseases and International Health, Charlottesville, VA, USA
| | - Stellah Mpagama
- Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania
| | - Daan J Touw
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands
| |
Collapse
|
15
|
Mohamed S, Mvungi HC, Sariko M, Rao P, Mbelele P, Jongedijk EM, van Winkel CAJ, Touw DJ, Stroup S, Alffenaar JWC, Mpagama S, Heysell SK. Levofloxacin pharmacokinetics in saliva as measured by a mobile microvolume UV spectrophotometer among people treated for rifampicin-resistant TB in Tanzania. J Antimicrob Chemother 2021; 76:1547-1552. [PMID: 33675664 PMCID: PMC8120342 DOI: 10.1093/jac/dkab057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Early detection and correction of low fluoroquinolone exposure may improve treatment of MDR-TB. OBJECTIVES To explore a recently developed portable, battery-powered, UV spectrophotometer for measuring levofloxacin in saliva of people treated for MDR-TB. METHODS Patients treated with levofloxacin as part of a regimen for MDR-TB in Northern Tanzania had serum and saliva collected concurrently at 1 and 4 h after 2 weeks of observed levofloxacin administration. Saliva levofloxacin concentrations were quantified in the field via spectrophotometry, while serum was analysed at a regional laboratory using HPLC. A Bayesian population pharmacokinetics model was used to estimate the area under the concentration-time curve (AUC0-24). Subtarget exposures of levofloxacin were defined by serum AUC0-24 <80 mg·h/L. The study was registered at Clinicaltrials.gov with clinical trial identifier NCT04124055. RESULTS Among 45 patients, 11 (25.6%) were women and 16 (37.2%) were living with HIV. Median AUC0-24 in serum was 140 (IQR = 102.4-179.09) mg·h/L and median AUC0-24 in saliva was 97.10 (IQR = 74.80-121.10) mg·h/L. A positive linear correlation was observed with serum and saliva AUC0-24, and a receiver operating characteristic curve constructed to detect serum AUC0-24 below 80 mg·h/L demonstrated excellent prediction [AUC 0.80 (95% CI = 0.62-0.94)]. Utilizing a saliva AUC0-24 cut-off of 91.6 mg·h/L, the assay was 88.9% sensitive and 69.4% specific in detecting subtarget serum AUC0-24 values, including identifying eight of nine patients below target. CONCLUSIONS Portable UV spectrophotometry as a point-of-care screen for subtarget levofloxacin exposure was feasible. Use for triage to other investigation or personalized dosing strategy should be tested in a randomized study.
Collapse
Affiliation(s)
- Sagal Mohamed
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | | | - Prakruti Rao
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Peter Mbelele
- Kibong'oto Infectious Diseases Hospital, Sanya Juu, Tanzania
| | - Erwin M Jongedijk
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Claudia A J van Winkel
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne Stroup
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jan-Willem C Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
- Westmead Hospital, Sydney, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| | | | - Scott K Heysell
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|