1
|
Bergeron HC, Crabtree J, Nagy T, Martin DE, Tripp RA. Probenecid Inhibits Human Metapneumovirus (HMPV) Replication In Vitro and in BALB/c Mice. Viruses 2024; 16:1087. [PMID: 39066249 PMCID: PMC11281683 DOI: 10.3390/v16071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of acute respiratory tract infection and causes significant morbidity and mortality. There is no specific antiviral drug to treat HMPV or vaccine to prevent HMPV. This study determined if probenecid, a host-targeting antiviral drug, had prophylactic (pre-virus) or therapeutic (post-virus) efficacy to inhibit HMPV replication in LLC-MK2 cells in vitro and in the lungs of BALB/c mice. This study showed that ≥0.5 μM probenecid significantly inhibited HMPV replication in vitro, and 2-200 mg/kg probenecid prophylaxis or treatment reduced HMPV replication in BALB/c mice.
Collapse
Affiliation(s)
- Harrison C. Bergeron
- Department of Infectious Diseases, University of Georgia, Athens, GA 30605, USA; (H.C.B.)
| | - Jackelyn Crabtree
- Department of Infectious Diseases, University of Georgia, Athens, GA 30605, USA; (H.C.B.)
| | - Tamas Nagy
- Department of Pathology, University of Georgia, Athens, GA 30605, USA
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA 30605, USA; (H.C.B.)
- TrippBio, Inc., Jacksonville, FL 32256, USA;
| |
Collapse
|
2
|
Jurkowicz M, Cohen H, Nemet I, Keller N, Leibovitz E, Sherman G, Kriger O, Barkai G, Mandelboim M, Stein M. Epidemiological and clinical characteristics of hospitalized human metapneumovirus patients in Israel, 2015-2021: A retrospective cohort study. J Med Virol 2024; 96:e29709. [PMID: 38828947 DOI: 10.1002/jmv.29709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024]
Abstract
This study evaluated the epidemiological and clinical characteristics of human metapneumovirus (hMPV) infection among hospitalized patients with acute respiratory infections during 2015-2021 and assessed the impact of the coronavirus disease 2019 pandemic on hMPV infection. A single-center, retrospective cohort study was performed, including pediatric and adult patients with laboratory-confirmed hMPV. Of a total of 990 patients, 253 (25.6%), 105 (10.6%), 121 (12.2%), and 511 (51.6%) belonged to age groups 0-2, 3-17, 18-59, and ≥60 years, respectively. The highest percentage (23.0%) of patients were hospitalized during 2019 and the lowest (4.7%) during 2020. Patients < 18 years experienced high rates of comorbidities (immunodeficiencies: 14.4% and malignancies: 29.9%). Here, 37/39 (94.9%) of all bronchiolitis cases were diagnosed in patients < 2 years, whereas more patients in older age groups were diagnosed with pneumonia. A greater proportion of hMPV patients diagnosed with viral coinfection (mostly respiratory syncytial virus and adenovirus) were <18 years. The highest percentages of intensive care unit admissions were recorded among patients < 18 years. Our findings demonstrate that hMPV is an important cause of morbidity in young children and a possibly underestimated cause of morbidity among older adults.
Collapse
Affiliation(s)
- Menucha Jurkowicz
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Hodaya Cohen
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Ital Nemet
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Nathan Keller
- Faculty of Medicine, Ariel University, Ariel, Israel
| | - Eugene Leibovitz
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Gilad Sherman
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Or Kriger
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Galia Barkai
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
| | - Michal Mandelboim
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Michal Stein
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Centre, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Zhang Y, Xu J, Miranda-Katz M, Sojati J, Tollefson SJ, Manni ML, Alcorn JF, Sarkar SN, Williams JV. Distinct roles for type I and type III interferons in virulent human metapneumovirus pathogenesis. PLoS Pathog 2024; 20:e1011840. [PMID: 38315735 PMCID: PMC10868789 DOI: 10.1371/journal.ppat.1011840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/15/2024] [Accepted: 11/17/2023] [Indexed: 02/07/2024] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of acute lower respiratory infection in children and adults worldwide. There are four genetic subgroups of HMPV and both neutralizing antibodies and T cells contribute to protection. However, little is known about mechanisms of pathogenesis and most published work is based on a few extensively passaged, laboratory-adapted strains of HMPV. In this study, we isolated and characterized a panel of low passage HMPV clinical isolates representing all four genetic subgroups. The clinical isolates exhibited lower levels of in vitro replication compared to a lab-adapted strain. We compared disease phenotypes using a well-established mouse model. Several virulent isolates caused severe weight loss, lung pathology, airway dysfunction, and fatal disease in mice, which was confirmed in three inbred mouse strains. Disease severity did not correlate with lung viral titer, as virulent strains exhibited restricted replication in the lower airway. Virulent HMPV isolates were associated with markedly increased proinflammatory cytokine production and neutrophil influx; however, depletion of neutrophils or genetic ablation of inflammasome components did not reverse disease. Virulent clinical isolates induced markedly increased type I and type III interferon (IFN) secretion in vitro and in vivo. STAT1/2-deficient mice lacking both type I and type III IFN signaling showed reduced disease severity and increased lung viral replication. Inhibition of type I IFN signaling using a blocking antibody or genetic ablation of the type I IFN receptor reduced pathology with minimal effect on viral replication. Conversely, blockade of type III IFN signaling with a neutralizing antibody or genetic ablation of the IFN-lambda receptor had no effect on pathogenesis but restored viral replication. Collectively, these results demonstrate distinct roles for type I and type III IFN in HMPV pathogenesis and immunity.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jiuyang Xu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Tsinghua University School of Medicine, Beijing, China
| | - Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jorna Sojati
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sharon J. Tollefson
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle L. Manni
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - John F. Alcorn
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Saumendra N. Sarkar
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania, United States of America
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology & Molecular Genetics, University of Pittsburgh School of Medicine, Pennsylvania, United States of America
- Institute for Infection, Inflammation, and Immunity in Children, University of Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
4
|
Yim KC, Mousa JJ, Blanco JCG, Kim S, Boukhvalova MS. Human Metapneumovirus (hMPV) Infection and MPV467 Treatment in Immunocompromised Cotton Rats Sigmodon hispidus. Viruses 2023; 15:476. [PMID: 36851691 PMCID: PMC9966515 DOI: 10.3390/v15020476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Human metapneumovirus (hMPV) is an important cause of respiratory disease in immunocompromised individuals, yet hMPV infection has not been modeled before in immunocompromised animals. In this work, cotton rats S. hispidus immunosuppressed by cyclophosphamide were infected with hMPV, and viral replication and pulmonary inflammation in these animals were compared to those in normal hMPV-infected S. hispidus. The efficacy of prophylactic and therapeutic administration of the anti-hMPV antibody MPV467 was also evaluated. Immunosuppressed animals had higher pulmonary and nasal titers of hMPV on day 5 post-infection compared to normal animals, and large amounts of hMPV were still present in the respiratory tract of immunosuppressed animals on days 7 and 9 post-infection, indicating prolonged viral replication. Immunosuppression was accompanied by reduced pulmonary histopathology in hMPV-infected cotton rats compared to normal animals; however, a delayed increase in pathology and pulmonary chemokine expression was seen in immunosuppressed cotton rats. Prophylactic and therapeutic MPV467 treatments protected both upper and lower respiratory tracts against hMPV infection. The lung pathology and pulmonary expression of IP-10 and MIP-1α mRNA were reduced by therapeutic MPV467 administration. These results indicate that immunosuppressed cotton rats represent a useful model for studying hMPV pathogenesis and for evaluating therapeutics that could alleviate hMPV-induced disease in immunocompromised subjects.
Collapse
Affiliation(s)
- Kevin C. Yim
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Jorge C. G. Blanco
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| | - Sonnie Kim
- NIH/NIAID, Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, Rockville, MD 20852, USA
| | - Marina S. Boukhvalova
- Sigmovir Biosystems, Inc., 9610 Medical Center Drive, Suite 100, Rockville, MD 20850, USA
| |
Collapse
|
5
|
Miranda-Katz M, Erickson JJ, Lan J, Ecker A, Zhang Y, Joyce S, Williams JV. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8 + T cells. Sci Rep 2021; 11:20769. [PMID: 34675220 PMCID: PMC8531189 DOI: 10.1038/s41598-021-00023-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Human metapneumovirus (HMPV) is a leading cause of acute lower respiratory tract illness in children and adults. Repeated infections are common and can be severe in young, elderly, and immunocompromised persons due to short-lived protective humoral immunity. In turn, few protective T cell epitopes have been identified in humans. Thus, we infected transgenic mice expressing the common human HLA MHC-I allele B*07:02 (HLA-B7) with HMPV and screened a robust library of overlapping and computationally predicted HLA-B7 binding peptides. Six HLA-B7-restricted CD8+ T cell epitopes were identified using ELISPOT screening in the F, M, and N proteins, with M195-203 (M195) eliciting the strongest responses. MHC-tetramer flow cytometric staining confirmed HLA-B7 epitope-specific CD8+ T cells migrated to lungs and spleen of HMPV-immune mice. Immunization with pooled HLA-B7-restricted peptides reduced viral titer and protected mice from virulent infection. Finally, we confirmed that CD8+ T cells from HLA-B7 positive humans also recognize the identified epitopes. These results enable identification of HMPV-specific CD8+ T cells in humans and help to inform future HMPV vaccine design.
Collapse
Affiliation(s)
- Margot Miranda-Katz
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - John J Erickson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
| | - Jie Lan
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Alwyn Ecker
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Yu Zhang
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, USA
- Vanderbilt Institute for Infection, Immunity, and Inflammation (VI4), Nashville, TN, 37232, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, 4401 Penn Ave, Rangos 9122, Pittsburgh, PA, 15224, USA.
- Institute for Infection, Inflammation, and Immunity in Children (i4Kids), Pittsburgh, PA, 15224, USA.
| |
Collapse
|
6
|
Abstract
Respiratory viruses are commonly detected in both healthy and immunocompromised children. In most healthy children, respiratory viruses are associated with self-limited upper respiratory tract infections and are not accompanied by significant morbidity. In immunocompromised hosts, including hematopoietic cell transplant recipients, solid organ transplant recipients, and oncology patients, respiratory viruses can be associated with significant clinical manifestations, including prolonged viral shedding, lower respiratory tract disease, the need for supplemental oxygen, late airflow obstruction, and even death. This chapter reviews the major respiratory viruses, including respiratory syncytial virus, human metapneumovirus, influenza, parainfluenza viruses, human rhinoviruses, and human coronaviruses. Other viruses can manifest as pulmonary infection; however, these viruses are discussed elsewhere (see Chapter 17 for discussion of cytomegalovirus and Chapter 22 for discussion of adenoviruses).
Collapse
|
7
|
Martinez-Rodriguez C, Banos-Lara MDR. HMPV in Immunocompromised Patients: Frequency and Severity in Pediatric Oncology Patients. Pathogens 2020; 9:pathogens9010051. [PMID: 31936721 PMCID: PMC7168653 DOI: 10.3390/pathogens9010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer is the first cause of death by disease in childhood globally. The most frequent types of cancers in children and adolescents are leukemias, followed by brain and central nervous system tumors and lymphomas. The recovery rate of cancer in children is around 80% in developed countries and up to 30% in developing countries. Some of the main causes of complications in children and adolescents with cancer are respiratory viral infections, mainly in bone marrow-transplanted patients. Respiratory viruses have been detected in the bronchoalveolar lavage or nasal wash specimens from cancer patients with or without respiratory illness symptoms. Human metapneumovirus (HMPV) is within the ten most common viruses that are encountered in samples from pediatric patients with underlying oncology conditions. In most of cases, HMPV is found as the only viral agent, but co-infection with other viruses or with bacterial agents has also been reported. The discrepancies between the most prevalent viral agents may be due to the different populations studied or the range of viral agents tested. Some of the cases of infection with HMPV in cancer patients have been fatal, especially in those who have received a hematopoietic stem cell transplant. This review seeks to show a general view of the participation of HMPV in respiratory illness as a complication of cancer in childhood and adolescence.
Collapse
Affiliation(s)
- Cesar Martinez-Rodriguez
- School of Medicine. Instituto Universitario de Ciencias Médicas y Humanísticas de Nayarit; Tepic 63190, Mexico;
| | - Ma. del Rocio Banos-Lara
- Centro de Investigación Oncológica Una Nueva Esperanza-Universidad Popular Autónoma del Estado de Puebla; Universidad Popular Autónoma del Estado de Puebla, 21 sur #1103, Barrio de Santiago, Puebla 72410, Mexico
- Correspondence:
| |
Collapse
|
8
|
Dulek DE, Mueller NJ. Pneumonia in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13545. [PMID: 30900275 PMCID: PMC7162188 DOI: 10.1111/ctr.13545] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
These guidelines from the AST Infectious Diseases Community of Practice review the diagnosis and management of pneumonia in the post-transplant period. Clinical presentations and differential diagnosis for pneumonia in the solid organ transplant recipient are reviewed. A two-tier approach is proposed based on the net state of immunosuppression and the severity of presentation. With a lower risk of opportunistic, hospital-acquired, or exposure-specific pathogens and a non-severe presentation, empirical therapy may be initiated under close clinical observation. In all other patients, or those not responding to the initial therapy, a more aggressive diagnostic approach including sampling of tissue for microbiological and pathological testing is warranted. Given the broad range of potential pathogens, a microbiological diagnosis is often key for optimal care. Given the limited literature comparatively evaluating diagnostic approaches to pneumonia in the solid organ transplant recipient, much of the proposed diagnostic algorithm reflects clinical experience rather than evidence-based data. It should serve as a template which may be modified according to local needs. The same holds true for the suggested empiric therapies, which need to be adapted to the local resistance patterns. Further study is needed to comparatively evaluate diagnostic and empiric treatment strategies in SOT recipients.
Collapse
Affiliation(s)
- Daniel E Dulek
- Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zürich, Switzerland
| | | |
Collapse
|
9
|
Vliora C, Papadakis V, Doganis D, Tourkantoni N, Paisiou A, Kottaridi C, Kourlamba G, Zaoutis T, Kosmidis H, Kattamis A, Polychronopoulou S, Goussetis E, Giannouli G, Syridou G, Priftis K, Papaevangelou V. A prospective study on the epidemiology and clinical significance of viral respiratory infections among pediatric oncology patients. Pediatr Hematol Oncol 2019; 36:173-186. [PMID: 31215284 DOI: 10.1080/08880018.2019.1613462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Respiratory infections in oncology are both common and potentially severe. However, there is still a gap in the literature, regarding the epidemiology of viral respiratory infections in children with cancer. We prospectively enrolled 224 patients, from September 2012 to August 2015. The cohort included children with hematologic or solid malignancies receiving chemotherapy, or undergoing hemopoietic stem cell transplantation, outpatients/inpatients exhibiting signs/symptoms of febrile/afebrile upper/lower respiratory infection. Viral infection was diagnosed by detection of ≥1 viruses from a sample at time of enrollment, using the CLART® PneumoVir kit (GENOMICA, Spain). Α detailed questionnaire including demographics and medical history was also completed. Samples were processed in batches, results were communicated as soon as they became available. Children recruited in whom no virus was detected composed the no virus detected group. Viral prevalence was 38.4% in children presenting with respiratory illness. A single virus was found in 30.4%, with RSV being the most frequent. Viral coinfections were detected in 8%. Children with viral infection were more likely to be febrile upon enrollment and to present with lower respiratory signs/symptoms. They had longer duration of illness and they were more likely to receive antibiotics/antifungals. Only 22% of children with influenza received oseltamivir. Mortality was low (2.7%), however, pediatric intensive care unit (PICU) admission and death were correlated with virus detection. In our study mortality was low and PICU admission was related to virus identification. Further research is needed to clarify whether antibiotics in virus-proven infection are of value and underline the importance of oseltamivir's timely administration in influenza.
Collapse
Affiliation(s)
- Christianna Vliora
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| | - Vassilios Papadakis
- b Department of Pediatric Hematology-Oncology , Athens , Greece , "Aghia Sofia" Children's Hospital
| | - Dimitrios Doganis
- c Oncology Department , " P&A Kyriakou" Children's Hospital , Athens , Greece
| | - Natalia Tourkantoni
- d Hematology-Oncology Unit, First Department of Pediatrics , National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital , Athens , Greece
| | - Anna Paisiou
- e Stem Cell Transplant Unit , Aghia Sofia Children's Hospital , Athens , Greece
| | | | - Georgia Kourlamba
- g The Stavros Niarchos Foundation-Collaborative Center for Clinical Epidemiology and Outcomes Research (CLEO), First and Second Departments of Pediatrics, National and Kapodistrian University of Athens , Athens , Greece
| | - Theoklis Zaoutis
- g The Stavros Niarchos Foundation-Collaborative Center for Clinical Epidemiology and Outcomes Research (CLEO), First and Second Departments of Pediatrics, National and Kapodistrian University of Athens , Athens , Greece
| | - Helen Kosmidis
- c Oncology Department , " P&A Kyriakou" Children's Hospital , Athens , Greece
| | - Antonis Kattamis
- d Hematology-Oncology Unit, First Department of Pediatrics , National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital , Athens , Greece
| | - Sophia Polychronopoulou
- b Department of Pediatric Hematology-Oncology , Athens , Greece , "Aghia Sofia" Children's Hospital
| | - Evgenios Goussetis
- e Stem Cell Transplant Unit , Aghia Sofia Children's Hospital , Athens , Greece
| | - Georgia Giannouli
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| | - Garyfallia Syridou
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| | - Kostas Priftis
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| | - Vassiliki Papaevangelou
- a Third Department of Pediatrics , National and Kapodistrian University of Athens, "ATTIKON" University Hospital , Athens , Greece
| |
Collapse
|
10
|
Pochon C, Voigt S. Respiratory Virus Infections in Hematopoietic Cell Transplant Recipients. Front Microbiol 2019; 9:3294. [PMID: 30687278 PMCID: PMC6333648 DOI: 10.3389/fmicb.2018.03294] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022] Open
Abstract
Highly immunocompromised pediatric and adult hematopoietic cell transplant (HCT) recipients frequently experience respiratory infections caused by viruses that are less virulent in immunocompetent individuals. Most of these infections, with the exception of rhinovirus as well as adenovirus and parainfluenza virus in tropical areas, are seasonal variable and occur before and after HCT. Infectious disease management includes sampling of respiratory specimens from nasopharyngeal washes or swabs as well as sputum and tracheal or tracheobronchial lavages. These are subjected to improved diagnostic tools including multiplex PCR assays that are routinely used allowing for expedient detection of all respiratory viruses. Disease progression along with high mortality is frequently associated with respiratory syncytial virus, parainfluenza virus, influenza virus, and metapneumovirus infections. In this review, we discuss clinical findings and the appropriate use of diagnostic measures. Additionally, we also discuss treatment options and suggest new drug formulations that might prove useful in treating respiratory viral infections. Finally, we shed light on the role of the state of immune reconstitution and on the use of immunosuppressive drugs on the outcome of infection.
Collapse
Affiliation(s)
- Cécile Pochon
- Allogeneic Hematopoietic Stem Cell Transplantation Unit, Department of Pediatric Oncohematology, Nancy University Hospital, Vandœuvre-lès-Nancy, France
| | - Sebastian Voigt
- Department of Pediatric Oncology/Hematology/Stem Cell Transplantation, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
11
|
Kumar P, Srivastava M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease 2018; 29:434-444. [PMID: 30539045 PMCID: PMC6261883 DOI: 10.1007/s13337-018-0498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important pneumovirus which causes acute respiratory disease in human beings. The viral infection leads to mild to severe respiratory symptoms depending on the age and immune status of the infected individual. Several groups across the world are working on the development of immunogens and therapy to manage HMPV infection with promising results under laboratory conditions but till date any virus specific vaccine or therapy has not been approved for clinical use. This minireview gives an overview of the prophylactic and therapeutic approaches to manage HMPV infections.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| | - Mansi Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| |
Collapse
|
12
|
Ogimi C, Englund JA, Bradford MC, Qin X, Boeckh M, Waghmare A. Characteristics and Outcomes of Coronavirus Infection in Children: The Role of Viral Factors and an Immunocompromised State. J Pediatric Infect Dis Soc 2018; 8:21-28. [PMID: 29447395 PMCID: PMC6437838 DOI: 10.1093/jpids/pix093] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immunocompromised children might be predisposed to serious infections from human coronaviruses (HCoVs), including strains OC43, NL63, HKU1, and 229E; however, the virologic and clinical features of HCoV infection in immunocompromised children have not been compared to those in nonimmunocompromised children. METHODS We retrospectively analyzed a cohort of children who presented to Seattle Children's Hospital and in whom HCoV was detected by a multiplex respiratory polymerase chain reaction assay of a nasal sample between October 2012 and March 2016. Lower respiratory tract disease (LRTD) was defined as possible or definite infiltrate seen in chest imaging, need for oxygen, or abnormal lung examination in conjunction with a physician diagnosis of LRTD. We used logistic regression modeling to evaluate risk factors for LRTD and LRTD that necessitated oxygen use (severe LRTD), including an immunocompromised state, in children with HCoV infection. RESULTS The median ages of 85 immunocompromised and 1152 nonimmunocompromised children with HCoV infection were 6.3 and 1.6 years, respectively. The prevalence of LRTD and of severe LRTD did not differ greatly between the immunocompromised and nonimmunocompromised patients (22% vs 26% [LRTD] and 15% vs 11% [severe LRTD], respectively); however, in a multivariable model, an immunocompromised state was associated with an increased likelihood of severe LRTD (adjusted odds ratio, 2.5 [95% confidence interval, 1.2-4.9]; P = .01). Younger age, having an underlying pulmonary disorder, and the presence of respiratory syncytial virus were also associated with LRTD or severe LRTD in multivariable models. The risks of LRTD or severe LRTD did not differ among the children with different HCoV strains. CONCLUSIONS The presence of a copathogen and host factors, including an immunocompromised state, were associated with increased risk for severe LRTD. Recognizing risk factors for severe respiratory illness might assist in risk stratification.
Collapse
Affiliation(s)
- Chikara Ogimi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Department of Pediatrics, University of Washington, Seattle,Pediatric Infectious Diseases Division, Seattle Children’s Hospital, Washington
| | - Janet A Englund
- Department of Pediatrics, University of Washington, Seattle,Pediatric Infectious Diseases Division, Seattle Children’s Hospital, Washington
| | - Miranda C Bradford
- Children’s Core for Biomedical Statistics, Center for Clinical and Translational Research, Seattle Children’s Research Institute, Washington
| | - Xuan Qin
- Department of Laboratory Medicine, University of Washington, Seattle,Microbiology Laboratory, Seattle Children’s Hospital, Washington
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Department of Medicine, University of Washington, Seattle,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Alpana Waghmare
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington,Department of Pediatrics, University of Washington, Seattle,Pediatric Infectious Diseases Division, Seattle Children’s Hospital, Washington,Correspondence: A. Waghmare, MD, Pediatric Infectious Diseases Division, Seattle Children’s Hospital, 4800 Sand Point Way NE, MA 7.226, Seattle, WA 98105 ()
| |
Collapse
|
13
|
Hilmes MA, Dunnavant FD, Singh SP, Ellis WD, Payne DC, Zhu Y, Griffin MR, Edwards KM, Williams JV. Chest radiographic features of human metapneumovirus infection in pediatric patients. Pediatr Radiol 2017; 47:1745-1750. [PMID: 28831577 PMCID: PMC5901753 DOI: 10.1007/s00247-017-3943-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/28/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Human metapneumovirus (HMPV) was identified in 2001 and is a common cause of acute respiratory illness in young children. The radiologic characteristics of laboratory-confirmed HMPV acute respiratory illness in young children have not been systematically assessed. OBJECTIVE We systematically evaluated the radiographic characteristics of acute respiratory illness associated with HMPV in a prospective cohort of pediatric patients. MATERIALS AND METHODS We included chest radiographs from children <5 years old with acute respiratory illness who were enrolled in the prospective New Vaccine Surveillance Network (NVSN) study from 2003 to 2009 and were diagnosed with HMPV by reverse transcription-polymerase chain reaction (RT-PCR). Of 215 HMPV-positive subjects enrolled at our tertiary care children's hospital, 68 had chest radiographs obtained by the treating clinician that were available for review. Two fellowship-trained pediatric radiologists, independently and then in consensus, retrospectively evaluated these chest radiographs for their radiographic features. RESULTS Parahilar opacities were the most commonly observed abnormality, occurring in 87% of children with HMPV. Hyperinflation also occurred frequently (69%). Atelectasis (40%) and consolidation (18%) appeared less frequently. Pleural effusion and pneumothorax were not seen on any radiographs. CONCLUSION The clinical presentations of HMPV include bronchiolitis, croup and pneumonia. Dominant chest radiographic abnormalities include parahilar opacities and hyperinflation, with occasional consolidation. Recognition of the imaging patterns seen with common viral illnesses like respiratory syncytial virus (RSV) and HMPV might facilitate diagnosis and limit unnecessary antibiotic treatment.
Collapse
Affiliation(s)
- Melissa A. Hilmes
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - F. Daniel Dunnavant
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sudha P. Singh
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wendy D. Ellis
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Marie R. Griffin
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kathryn M. Edwards
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John V. Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children’s Hospital of Pittsburgh of University of Pittsburgh Medical Center, 4401 Penn Ave., Pittsburgh, PA 15224, USA
| |
Collapse
|
14
|
Moe N, Stenseng IH, Krokstad S, Christensen A, Skanke LH, Risnes KR, Nordbø SA, Døllner H. The Burden of Human Metapneumovirus and Respiratory Syncytial Virus Infections in Hospitalized Norwegian Children. J Infect Dis 2017; 216:110-116. [PMID: 28838133 PMCID: PMC7107394 DOI: 10.1093/infdis/jix262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/26/2017] [Indexed: 01/13/2023] Open
Abstract
Background The burden of severe human metapneumovirus (HMPV) respiratory tract infections (RTIs) in European children has not been clarified. We assessed HMPV in Norwegian children and compared hospitalization rates for HMPV and respiratory syncytial virus (RSV). Methods We prospectively enrolled children (<16 years old) hospitalized with RTI and asymptomatic controls (2006-2015). Nasopharyngeal aspirate samples were analyzed with polymerase chain reaction (PCR) tests for HMPV, RSV, and 17 other pathogens. We genotyped HMPV-positive samples and assessed shedding time in 32 HMPV-infected children. Results In children with RTI, HMPV was detected in 7.3% (267 of 3650) and RSV in 28.7% (1048 of 3650). Among controls, 2.1% (7 of 339) had low HMPV levels detected by PCR, but all were culture negative. HMPV primarily occurred from January to April and in regular epidemics. At least 2 HMPV subtypes occurred each season. The average annual hospitalization rates in children <5 years old with lower RTI were 1.9/1000 (HMPV) and 10.4/1000 (RSV). Among children with RTI, the median HMPV shedding time by PCR was 13 days (range, 6-28 days), but all were culture negative (noninfectious) after 13 days. Conclusions HMPV appears in epidemics in Norwegian children, with a hospitalization rate 5 times lower than RSV. Low levels of HMPV are rarely detected in healthy children.
Collapse
Affiliation(s)
- Nina Moe
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Inger Heimdal Stenseng
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology
| | - Sidsel Krokstad
- Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andreas Christensen
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars Høsøien Skanke
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Kari Ravndal Risnes
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| | - Svein Arne Nordbø
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Medical Microbiology, St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology.,Department of Pediatrics
| |
Collapse
|
15
|
Respiratory Viral Infections and Coinfections Caused by Human Metapneumovirus in Children With Cancer. Pediatr Infect Dis J 2017; 36:917. [PMID: 28806356 DOI: 10.1097/inf.0000000000001624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Affiliation(s)
- Bobbi S Pritt
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Marie Christine Aubry
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
17
|
Grim SA, Reid GE, Clark NM. Update in the treatment of non-influenza respiratory virus infection in solid organ transplant recipients. Expert Opin Pharmacother 2017; 18:767-779. [PMID: 28425766 PMCID: PMC7103702 DOI: 10.1080/14656566.2017.1322063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Despite the improved outcomes in solid organ transplantation with regard to prevention of rejection and increased patient and graft survival, infection remains a common cause of morbidity and mortality. Respiratory viruses are a frequent and potentially serious cause of infection after solid organ transplantation. Furthermore, clinical manifestations of respiratory virus infection (RVI) may be more severe and unusual in solid organ transplant recipients (SOTRs) compared with the non-immunocompromised population. Areas covered: This article reviews the non-influenza RVIs that are commonly encountered in SOTRs. Epidemiologic and clinical characteristics are highlighted and available treatment options are discussed. Expert opinion: New diagnostic tools, particularly rapid molecular assays, have expanded the ability to identify specific RVI pathogens in SOTRs. This is not only useful from a treatment standpoint but also to guide infection control practices. More data are needed on RVIs in the solid organ transplant population, particularly regarding their effect on rejection and graft dysfunction. There is also a need for new antiviral agents active against these infections as well as markers that can identify which patients would most benefit from treatment.
Collapse
Affiliation(s)
- Shellee A. Grim
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Gail E. Reid
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| | - Nina M. Clark
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
18
|
Abstract
Globally, as a leading agent of acute respiratory tract infections in children <5 years of age and the elderly, the human metapneumovirus (HMPV) has gained considerable attention. As inferred from studies comparing vaccinated and experimentally infected mice, the acquired immune response elicited by this pathogen fails to efficiently clear the virus from the airways, which leads to an exaggerated inflammatory response and lung damage. Furthermore, after disease resolution, there is a poor development of T and B cell immunological memory, which is believed to promote reinfections and viral spread in the community. In this article, we discuss the molecular mechanisms that shape the interactions of HMPV with host tissues that lead to pulmonary pathology and to the development of adaptive immunity that fails to protect against natural infections by this virus.
Collapse
|
19
|
Samuel S, Nanjappa S, Cooper CD, Greene JN. Human Metapneumovirus Infection in Immunocompromised Patients. Cancer Control 2017; 23:442-445. [PMID: 27842334 DOI: 10.1177/107327481602300416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human metapneumovirus (HMPV) is a pathogen associated with respiratory tract infection and is related to avian pneumovirus. Typically, children, the elderly, and those who are immunocompromised are the most susceptible to HMPV infection; however, the virus can infect persons of all ages. In otherwise healthy individuals, HMPV infection is generally self-limiting, but immunocompromised individuals can develop fatal complications. We present a case series of 3 severely immunocompromised patients who were infected with HMPV and describe their clinical course. All 3 patients had acute myeloid leukemia, histories of neutropenic fever, and prolonged hospitalization stays. This case series highlights the severe sequelae observed in individuals infected with HMPV, particularly among those who are immunocompromised.
Collapse
Affiliation(s)
- Sharmeen Samuel
- Department of Infectious Diseases, Moffitt Cancer Center, Tampa, FL, USA.
| | | | | | | |
Collapse
|
20
|
Esposito S, Mastrolia MV. Metapneumovirus Infections and Respiratory Complications. Semin Respir Crit Care Med 2016; 37:512-21. [PMID: 27486733 PMCID: PMC7171707 DOI: 10.1055/s-0036-1584800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute respiratory tract infections (ARTIs) are the most common illnesses experienced by people of all ages worldwide. In 2001, a new respiratory pathogen called human metapneumovirus (hMPV) was identified in respiratory secretions. hMPV is an RNA virus of the Paramyxoviridae family, and it has been isolated on every continent and from individuals of all ages. hMPV causes 7 to 19% of all cases of ARTIs in both hospitalized and outpatient children, and the rate of detection in adults is approximately 3%. Symptoms of hMPV infection range from a mild cold to a severe disease requiring a ventilator and cardiovascular support. The main risk factors for severe disease upon hMPV infection are the presence of a high viral load, coinfection with other agents (especially human respiratory syncytial virus), being between 0 and 5 months old or older than 65 years, and immunodeficiency. Currently, available treatments for hMPV infections are only supportive, and antiviral drugs are employed in cases of severe disease as a last resort. Ribavirin and immunoglobulins have been used in some patients, but the real efficacy of these treatments is unclear. At present, the direction of research on therapy for hMPV infection is toward the development of new approaches, and a variety of vaccination strategies are being explored and tested in animal models. However, further studies are required to define the best treatment and prevention strategies.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Vincenza Mastrolia
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
21
|
Scheuerman O, Barkai G, Mandelboim M, Mishali H, Chodick G, Levy I. Human metapneumovirus (hMPV) infection in immunocompromised children. J Clin Virol 2016; 83:12-6. [PMID: 27522636 DOI: 10.1016/j.jcv.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Human metapneumovirus (hMPV) is a major cause of upper and lower respiratory tract infection (URTI, LRTI) in children. The prognosis of hMPV is unclear in immunocompromised patients. OBJECTIVES To describe the characteristics of hMPV infection in immunocompromised pediatric patients and to review the literature. STUDY DESIGN This retrospective study included 39 immunocompromised children (age 0-18 years) with proven hMPV infection attending two tertiary pediatric medical centers in 2004-2014. Demographic, clinical, laboratory, and radiological data were collected from the medical files. RESULTS Median age was 6 years. Seven patients had primary immune deficiency and 32, secondary immune deficiency, including 9 patients who underwent hematopoietic stem cell transplantation (HSCT). Most cases (92%) occurred in January-May. Twenty patients (51%) had lower respiratory tract infection and 17 (44%), upper respiratory tract infection; 2 patients (5%) had fever only. Presenting symptoms were fever (70%), cough (54%), and rhinorrhea (35%). Severe lymphopenia (<1000lymphocytes/mL) was noted in 64% of patients and elevated liver enzyme levels in 49%. Seventeen patients had pneumonia: bilateral and alveolar in 13 patients, each. HSCT was not associated with more severe disease. Respiratory failure occurred in 6 patients, of whom 4 died (10% of cohort). All children who died had severe lymphopenia. On multivariate analysis, bacterial or fungal co-infection was the only major risk factor for death. Review of the literature showed variable clinical presentations and severity in pediatric patients with hMPV infection. CONCLUSIONS Infection with hMPV may be associated with relatively high morbidity and mortality in immunocompromised children. Death was associated with bacterial and fungal co-infection.
Collapse
Affiliation(s)
- Oded Scheuerman
- Pediatric Infectious Diseases Unit, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Department of Pediatrics B, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel.
| | - Galia Barkai
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Tel Hashomer, Ramat Gan 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| | - Michal Mandelboim
- Department of Virology, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Hagit Mishali
- National Center for Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Gabriel Chodick
- Department of Epidemiology & Preventive Medicine, Tel Aviv, Ramat Aviv 6997801, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| | - Itzhak Levy
- Department of Pediatrics B, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| |
Collapse
|
22
|
Stittelaar KJ, de Waal L, van Amerongen G, Veldhuis Kroeze EJB, Fraaij PLA, van Baalen CA, van Kampen JJA, van der Vries E, Osterhaus ADME, de Swart RL. Ferrets as a Novel Animal Model for Studying Human Respiratory Syncytial Virus Infections in Immunocompetent and Immunocompromised Hosts. Viruses 2016; 8:v8060168. [PMID: 27314379 PMCID: PMC4926188 DOI: 10.3390/v8060168] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 12/21/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is an important cause of severe respiratory tract disease in immunocompromised patients. Animal models are indispensable for evaluating novel intervention strategies in this complex patient population. To complement existing models in rodents and non-human primates, we have evaluated the potential benefits of an HRSV infection model in ferrets (Mustela putorius furo). Nine- to 12-month-old HRSV-seronegative immunocompetent or immunocompromised ferrets were infected with a low-passage wild-type strain of HRSV subgroup A (105 TCID50) administered by intra-tracheal or intra-nasal inoculation. Immune suppression was achieved by bi-daily oral administration of tacrolimus, mycophenolate mofetil, and prednisolone. Throat and nose swabs were collected daily and animals were euthanized four, seven, or 21 days post-infection (DPI). Virus loads were determined by quantitative virus culture and qPCR. We observed efficient HRSV replication in both the upper and lower respiratory tract. In immunocompromised ferrets, virus loads reached higher levels and showed delayed clearance as compared to those in immunocompetent animals. Histopathological evaluation of animals euthanized 4 DPI demonstrated that the virus replicated in the respiratory epithelial cells of the trachea, bronchi, and bronchioles. These animal models can contribute to an assessment of the efficacy and safety of novel HRSV intervention strategies.
Collapse
Affiliation(s)
| | - Leon de Waal
- Viroclinics Biosciences, 3029 AK Rotterdam, The Netherlands.
| | | | - Edwin J B Veldhuis Kroeze
- Viroclinics Biosciences, 3029 AK Rotterdam, The Netherlands.
- Department of Viroscience, Erasmus MC, 3015 CN Rotterdam, The Netherlands.
| | - Pieter L A Fraaij
- Department of Viroscience, Erasmus MC, 3015 CN Rotterdam, The Netherlands.
| | | | | | - Erhard van der Vries
- Department of Viroscience, Erasmus MC, 3015 CN Rotterdam, The Netherlands.
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - Albert D M E Osterhaus
- Viroclinics Biosciences, 3029 AK Rotterdam, The Netherlands.
- Department of Viroscience, Erasmus MC, 3015 CN Rotterdam, The Netherlands.
- Research Centre for Emerging Infections and Zoonoses, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
23
|
Hastings AK, Gilchuk P, Joyce S, Williams JV. Novel HLA-A2-restricted human metapneumovirus epitopes reduce viral titers in mice and are recognized by human T cells. Vaccine 2016; 34:2663-70. [PMID: 27105560 DOI: 10.1016/j.vaccine.2016.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 11/25/2022]
Abstract
Human metapneumovirus (HMPV) is a major cause of morbidity and mortality from acute lower respiratory tract illness, with most individuals seropositive by age five. Despite the presence of neutralizing antibodies, secondary infections are common and can be severe in young, elderly, and immunocompromised persons. Preclinical vaccine studies for HMPV have suggested a need for a balanced antibody and T cell immune response to enhance protection and avoid lung immunopathology. We infected transgenic mice expressing human HLA-A*0201 with HMPV and used ELISPOT to screen overlapping and predicted epitope peptides. We identified six novel HLA-A2 restricted CD8(+) T cell (TCD8) epitopes, with M39-47 (M39) immunodominant. Tetramer staining detected M39-specific TCD8 in lungs and spleen of HMPV-immune mice. Immunization with adjuvant-formulated M39 peptide reduced lung virus titers upon challenge. Finally, we show that TCD8 from HLA-A*0201 positive humans recognize M39 by IFNγ ELISPOT and tetramer staining. These results will facilitate HMPV vaccine development and human studies.
Collapse
Affiliation(s)
- Andrew K Hastings
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Veterans Administration Tennessee Valley Healthcare System, Nashville, TN 37332, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, USA.
| |
Collapse
|
24
|
Ljungman P, Snydman D, Boeckh M. Respiratory Syncytial Virus and Human Metapneumovirus Infection in Transplant Recipients. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7123147 DOI: 10.1007/978-3-319-28797-3_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Respiratory viral infections due to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) cause infections in immunocompromised transplant patients ranging from mild upper respiratory infections to severe lower respiratory tract disease with respiratory failure. These viruses are more readily diagnosed due to improvements in sensitive molecular diagnostic methods. The epidemiology of RSV and hMPV is similarly becoming more readily appreciated in hematopoietic stem cell transplant (HSCT) patients of all ages as well as solid organ transplant (SOT) patients, with lung transplant recipients having evidence of more frequent and severe complications related to these viruses. RSV and hMPV infection typically but not always present with upper respiratory signs and symptoms that progress to lower respiratory tract disease. Treatment options for RSV are limited, with aerosolized, intravenous, and oral ribavirin all studied in HSCT and lung transplant patients. No antiviral therapy for the treatment of hMPV is available, although ribavirin has shown some effectiveness in vitro. New antiviral agents including RSV fusion inhibitors and nucleoside analogs are being developed, with some under clinical evaluation.
Collapse
Affiliation(s)
- Per Ljungman
- Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - David Snydman
- Tufts University School of Medicine Tufts Medical Center, Boston, Massachusetts USA
| | - Michael Boeckh
- University of Washington Fred Hutchinson Cancer Research Center, Seattle, Washington USA
| |
Collapse
|
25
|
Hoellein A, Hecker J, Hoffmann D, Göttle F, Protzer U, Peschel C, Götze K. Serious outbreak of human metapneumovirus in patients with hematologic malignancies. Leuk Lymphoma 2015; 57:623-7. [DOI: 10.3109/10428194.2015.1067699] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Alexander Hoellein
- III. Medical Department, Technische Universität München, Munich, Germany
| | - Judith Hecker
- III. Medical Department, Technische Universität München, Munich, Germany
| | - Dieter Hoffmann
- Department of Virology, Technische Universität München and Helmholtz Zentrum, Munich, Germany
| | - Franziska Göttle
- Department of Pediatrics, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Ulrike Protzer
- Department of Virology, Technische Universität München and Helmholtz Zentrum, Munich, Germany
| | - Christian Peschel
- III. Medical Department, Technische Universität München, Munich, Germany
| | - Katharina Götze
- III. Medical Department, Technische Universität München, Munich, Germany
| |
Collapse
|