1
|
Javed S, Shahzadi Z, Yousaf Z, Anjum I, Aftab A, Hanif S, Maqbool Z, Ullah R, Raza MA, Iqbal Z. Anti-anemic potential of Eruca sativa L. in iron-deficient rat model; network pharmacology profiling. Food Sci Nutr 2024; 12:7331-7346. [PMID: 39479620 PMCID: PMC11521654 DOI: 10.1002/fsn3.4314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 11/02/2024] Open
Abstract
Iron deficiency anemia is a global health concern, affecting around 2 billion people. Oral iron therapy often causes severe gastro-intestinal issues. Eruca sativa, member of the Brassicaceae family, is valued in traditional medicine and renowned for its rich iron and vitamin C content. This study aims to evaluate the anti-anemic properties of E. sativa extract in vivo and identify its compounds targeting anemia mechanisms using network pharmacology. Thirty-two Sprague-Dawley rats (200 ± 250 g) were split into two distinct groups, iron-deficient and iron-sufficient. Three different doses (200, 400, and 800 mg/kg) of aqueous extract of E. sativa were checked against anemia by studying hematological, oxidative stress, and histopathological parameters. GC-MS analysis of E. sativa revealed its phytochemical profile, followed by ADME screening. Network pharmacology explored targets related to iron deficiency anemia, with oral bioavailability and drug likeness assessment for compounds. The administration of extracts significantly improved various blood parameters, including osmotic fragility, Hb, RBCs, MCV, PCV, and alkaline phosphatase; catalase activity; and histopathological parameters such as liver in both iron-deficient and iron-sufficient rats (p < .001). Seventy-nine compounds were identified in E. sativa aqueous extract, with only six of them found to be bioavailable and drug-like against multiple targets. Gene ontology and pathway analysis revealed their diverse molecular, biological, and cellular functions. One gene EGFR was found to have functional association with ID anemia, suggesting potential for using E. sativa extracts. The study concludes that E. sativa extract has potential for iron deficiency anemia treatment, offering hope for future pharmaceutical interventions.
Collapse
Affiliation(s)
- Sana Javed
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Zainab Shahzadi
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Zubaida Yousaf
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Irfan Anjum
- Department of Basic Medical SciencesShifa College of Pharmaceutical Sciences, Shifa Tameer‐e‐Millat UniversityIslamabadPakistan
| | - Arusa Aftab
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Samina Hanif
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Zainab Maqbool
- Department of BotanyLahore College for Women UniversityLahorePakistan
| | - Riaz Ullah
- Department of PharmacognosyCollege of Pharmacy King Saud UniversityRiyadhSaudi Arabia
| | - Muhammad Ahmer Raza
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec KrálovéCharles University in PraguePragueCzech Republic
| | - Zafar Iqbal
- Department of SurgeryCollege of Medicine, King Saud UniversityRiyadhKingdom of Saudi Arabia
| |
Collapse
|
2
|
Huang H, Xie Y, Li X, Gui F, Yang P, Li Y, Zhang L, Du H, Bi S, Cao L. Danggui Buxue decoction regulates the immune function and intestinal microbiota of cyclophosphamide induced immunosuppressed mice. Front Pharmacol 2024; 15:1420411. [PMID: 39224776 PMCID: PMC11366653 DOI: 10.3389/fphar.2024.1420411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Ethnopharmacological relevance Danggui Buxue decoction (DBD) is a traditional Chinese herbal formula. According to the theory of traditional Chinese medicine, the combination of Astragali Radix (AR) and Angelica sinensis (AS) is a classic prescription of tonifying qi and enriching blood. DBD has the functions of hematopoietic, immune enhancement and inflammation inhibition, usually used to treat qi and blood deficiency symptoms. Aim of the study Cyclophosphamide (CY) can inhibit humoral and cellular immunity, leading to the overall immune disorder of the body, resulting in immunosuppressive (IS). Pre-laboratory studies confirmed the immunomodulatory effects of DBD, but its mechanisms have not been thoroughly studied. In this study, the main purpose was to determine the effects of DBD on the immune function and intestinal mucosal barrier function of IS mice induced by CY, and initially explored the immunomodulatory mechanism of DBD. Materials and methods 100 g of AR and 20 g of AS were accurately weighed and 0.5 g/mL of the DBD was obtained by boiling, filtration and rotary evaporation. Then, mice in the DBD group were administered 5 g/kg of DBD by gavage, positive group were administered 40 mg/kg of levamisole hydrochloride, whereas those in the control and model groups were given the corresponding volume of normal saline by gavage for 1 week. At the end of the experiment, blood, spleen, thymus, ileum and cecum contents of all the experimental mice were collected aseptically. IS mouse model induced by intraperitoneal injection of 80 mg/kg CY for three consecutive days. Pathomorphology was used to observe the physical barrier of the intestine, flow cytometry to detect splenic lymphocytes, immunohistochemistry to determine the content of intestinal barrier-associated proteins, ELISA to measure the secretion of ileal SIgA, qRT-PCR to detect the mRNA expression of immune-related genes in the intestine, and high-throughput sequencing and analysis of cecum contents. Results DBD alleviated spleen tissue damage and restored impaired immune functions, such as increased thymus index and CD4+/CD8+ subsets of spleen lymphocytes. In addition, DBD could increase ileum villi length and the ratio of villi length to crypt depth (V/C), and decrease crypt depth. Moreover, DBD administration up-regulated the expression of ZO-1, Occludin, Claudin-1, MUC-2 mRNA in ileum. And the secretions of sIgA and ZO-1 in ileum were also significantly improved. Furthermore, the administration of DBD can increase the diversity of gut microbiota, improve the composition of intestinal flora and increase the relative abundance of beneficial genus, such as Bacteroides. Conclusion DBD alleviated CY-induced immune damage by decreasing the ratio of spleen index to CD4+/CD8+ of T lymphocyte subsets. And the intestinal barrier function of mice was by improves improving the intestinal morphology of the ileum and up-regulating the expression levels of ZO-1, MUC-2 and SIgA. DBD regulates CY-induced gut microbiota dysregulation in mice by increasing species diversity and richness, regulating the phylum, class and order levels of Bacteroidetes.
Collapse
Affiliation(s)
- Huan Huang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yufei Xie
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xifeng Li
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fuxing Gui
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Pingrui Yang
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yutao Li
- Weifang Academy of Agricultural Sciences, Institute of Animal Husbandry, Shandong, China
| | - Li Zhang
- Hanzhong Animal Disease Prevention and Control Center, Shaanxi, China
| | - Hongxu Du
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| | - Shicheng Bi
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| | - Liting Cao
- Department of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
- Chi Institute of Traditional Chinese Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Tang X, Han JY, Pan C, Li CY, Zhao Y, Yi Y, Zhang YS, Zheng BX, Yue XN, Liang AH. Angelicin: A leading culprit involved in fructus Psoraleae liver injury via inhibition of VKORC1. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117917. [PMID: 38442807 DOI: 10.1016/j.jep.2024.117917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The adverse effects of Fructus Psoraleae (FP), especially liver injury, have attracted wide attention in recent years. AIM OF THE STUDY To establish a system to explore potential hepatotoxic targets and the chief culprit of liver injury based on clinical experience, network pharmacological method, molecular docking, and in vitro and in vivo experiments. MATERIALS AND METHODS Clinical applications and adverse reactions to FP were obtained from public literatures. Components absorbed in the blood were selected as candidates to search for potential active targets (PATs) of FP. Subsequently, potential pharmacological core targets (PPCTs) were screened through the "drug targets-disease targets" network. Non-drug active targets (NPATs) were obtained by subtracting the PPCTs from the PATs. The potential hepatotoxic targets (PHTs) of FP were the intersection targets obtained from Venn analysis using NPATs, hepatotoxic targets, and adverse drug reaction (ADR) targets provided by the databases. Then, potential hepatotoxic components and targets were obtained using the "NPATS-component" network relationship. Molecular docking and in vitro and in vivo hepatotoxicity experiments were performed to verify the targets and related components. RESULTS Overall, 234 NPATs were acquired from our analysis, and 6 targets were identified as PHTs. Results from molecular docking and in vitro and in vivo experiments showed that angelicin is the leading cause of liver injury in FP, and VKORC1 plays an important role. CONCLUSION The results indicate that six targets, especially VKORC1, are associated with the PHTs of FP, and angelicin is the leading culprit involved in FP liver injury via inhibition of VKORC1.
Collapse
Affiliation(s)
- Xuan Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jia-Yin Han
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Engineering Research Center for Pharmaceutics of Chinese Materia Medica and New Drug Development, Ministry of Education, Beijing, 100029, China.
| | - Chen Pan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chun-Ying Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yong Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yan Yi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yu-Shi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bao-Xin Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xing-Nan Yue
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ai-Hua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
4
|
Shi Y, Shi X, Zhao M, Ma S, Zhang Y. Pharmacological potential of Astragali Radix for the treatment of kidney diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155196. [PMID: 37952410 DOI: 10.1016/j.phymed.2023.155196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND With the increasing prevalence of hypertension, diabetes, and obesity, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Conventional treatments for kidney diseases have unsatisfactory effects and are associated with adverse reactions. Traditional Chinese medicines have good curative effects and advantages over conventional treatments for preventing and treating kidney diseases. Astragali Radix is a Chinese herbal medicine widely used to treat kidney diseases. PURPOSE To review the potential applications and molecular mechanisms underlying the renal protective effects of Astragali Radix and its components and to provide direction and reference for new therapeutic strategies and future research and development of Astragali Radix. STUDY DESIGN AND METHODS PubMed, Google Scholar, and Web of Science were searched using keywords, including "Astragali Radix," "Astragalus," "Astragaloside IV" (AS-IV), "Astragali Radix polysaccharide" (APS), and "kidney diseases." Reports on the effects of Astragali Radix and its components on kidney diseases were identified and reviewed. RESULTS The main components of Astragali Radix with kidney-protective properties include AS-IV, APS, calycosin, formononetin, and hederagenin. Astragali Radix and its active components have potential pharmacological effects for the treatment of kidney diseases, including acute kidney injury, diabetic nephropathy, hypertensive renal damage, chronic glomerulonephritis, and kidney stones. The pharmacological effects of Astragali Radix are manifested through the inhibition of inflammation, oxidative stress, fibrosis, endoplasmic reticulum stress, apoptosis, and ferroptosis, as well as the regulation of autophagy. CONCLUSION Astragali Radix is a promising drug candidate for treating kidney diseases. However, current research is limited to animal and cell studies, underscoring the need for further verifications using high-quality clinical data.
Collapse
Affiliation(s)
- Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Sijia Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
5
|
Lv Y, Xu X, Yang J, Gao Y, Xin J, Chen W, Zhang L, Li J, Wang J, Wei Y, Wei X, He J, Zu X. Identification of chemical components and rat serum metabolites in Danggui Buxue decoction based on UPLC-Q-TOF-MS, the UNIFI platform and molecular networks. RSC Adv 2023; 13:32778-32785. [PMID: 37942447 PMCID: PMC10628667 DOI: 10.1039/d3ra04419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
Danggui Buxue Decoction (DBD), consisting of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (Huangqi, HQ) and Angelica sinensis (Oliv.) Diels (Danggui, DG), is a traditional Chinese medicine (TCM) formula with the function of tonifying Qi and promoting blood. In this study, ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was used to comprehensively identify the chemical constituents in DBD and those entering into the rat serum after gastric perfusion. A combination of the UNIFI platform and Global Natural Product Social molecular networking (GNPS) was used to analyze the chemical composition of DBD. As a result, 207 compounds were unambiguously or tentatively identified including 60 flavonoids, 38 saponins, 35 organic acids, 26 phthalides, 12 phenylpropanoids, 11 amino acids and 25 others. Furthermore, a total of 80 compounds, including 29 prototype components and 51 exogenous metabolites, were detected in the serum of rats. Phase I reactions (oxidation, reduction, and hydration), phase II reactions (methylation, sulfation, and glucuronidation), and their combinations were the main metabolic pathways of DBD. The results provided fundamental information for further studying the pharmacological mechanisms of DBD, as well as its quality control research.
Collapse
Affiliation(s)
- Yanhui Lv
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Xike Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| | - Jishun Yang
- Medical Security Center, Naval Medical Center, Naval Medical University Shanghai 200433 China
| | - Yuan Gao
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Jiayun Xin
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| | - Li Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Jiali Li
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Jie Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Yanping Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Xintong Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Jixiang He
- Department of Pharmaceutical Analysis, School of Pharmacy, School of Pharmacy, Shandong University of Traditional Chinese Medicine Jinan 250355 China
| | - Xianpeng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University Shanghai 200433 China
| |
Collapse
|
6
|
Hu L, Chen J, Duan H, Zou Z, Qiu Y, Du J, Chen J, Yao X, Kiyohara H, Nagai T, Yao Z. A screening strategy for bioactive components of Bu-Zhong-Yi-Qi-Tang regulating spleen-qi deficiency based on "endobiotics-targets-xenobiotics" association network. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116605. [PMID: 37178982 DOI: 10.1016/j.jep.2023.116605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bu-Zhong-Yi-Qi-Tang is a famous traditional Chinese medicine formula that has been prevalent in China for over 700 years to treat spleen-qi deficiency related diseases, such as gastrointestinal and respiratory disorders. However, the bioactive components responsible for regulating spleen-qi deficiency remain unclear and have puzzled many researchers. AIM OF THE STUDY The current study focuses on efficacy evaluation of regulating spleen-qi deficiency and screening the bioactive components of Bu-Zhong-Yi-Qi-Tang. MATERIALS AND METHODS The effects of Bu-Zhong-Yi-Qi-Tang were evaluated through blood routine examination, immune organ index, and biochemical analysis. Metabolomics was utilized to analyze the potential endogenous biomarkers (endobiotics) in the plasma, and the prototypes (xenobiotics) of Bu-Zhong-Yi-Qi-Tang in the bio-samples were characterized using ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Then, these endobiotics were used as "bait" to predict targets based on network pharmacology and to screen potential bioactive components from the absorbed prototypes in the plasma by constructing an "endobiotics-targets-xenobiotics" association network. Further, the anti-inflammatory activities of representative compounds (calycosin and nobiletin) were validated through poly(I:C)-induced pulmonary inflammation mice model. RESULTS Bu-Zhong-Yi-Qi-Tang exhibited immunomodulatory and anti-inflammatory activities in spleen-qi deficiency rat, as supported by the observation of increased levels of D-xylose and gastrin in serum, an increase in the thymus index and number of lymphocytes in blood, as well as a reduction in the level of IL-6 in bronchoalveolar lavage fluid. Furthermore, plasma metabolomic analysis revealed a total of 36 Bu-Zhong-Yi-Qi-Tang related endobiotics, which were mainly enriched in primary bile acids biosynthesis, the metabolism of linoleic acid, and the metabolism of phenylalanine pathways. Meanwhile, 95 xenobiotics were characterized in plasma, urine, small intestinal contents, and tissues of spleen-qi deficiency rat after Bu-Zhong-Yi-Qi-Tang treatment. Using an integrated association network, six potential bioactive components of Bu-Zhong-Yi-Qi-Tang were screened. Among them, calycosin was found to significantly reduce the levels of IL-6 and TNF-α in the bronchoalveolar lavage fluid, increase the number of lymphocytes, while nobiletin dramatically decreased the levels of CXCL10, TNF-α, GM-CSF, and IL-6. CONCLUSION Our study proposed an available strategy for screening bioactive components of BYZQT regulating spleen-qi deficiency based on "endobiotics-targets-xenobiotics" association network.
Collapse
Affiliation(s)
- Liufang Hu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiali Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Huifang Duan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhenyu Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuan Qiu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jing Du
- Tong Ren Tang Technologies Co. Ltd, Beijing, 100079, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Hiroaki Kiyohara
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 1088641, Japan
| | - Takayuki Nagai
- Laboratory of Biochemical Pharmacology for Phytomedicines, Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, 1088641, Japan.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
7
|
Ying-ying G, Yan-fang W, Yan D, Su-ying Z, Dong L, Bin L, Xue W, Miao D, Rui-lin M, Xiao-hui L, Yu-pei J, Ai-jun S. Metabolomic mechanism and pharmacodynamic material basis of Buxue Yimu pills in the treatment of anaemia in women of reproductive age. Front Pharmacol 2023; 13:962850. [PMID: 36703727 PMCID: PMC9871362 DOI: 10.3389/fphar.2022.962850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Objective: To explore the pharmacological basis and mechanism of Buxue Yimu pills (BYP) in the treatment of anaemia in women from the perspective of metabolomics and network analysis. Materials and Methods: Forty-six women of reproductive age with haemoglobin 70-110 g/L were recruited. Blood samples were collected before and after 4 weeks of oral BYP treatment to assess the changes in haemoglobin, coagulation function, and iron metabolism indices. An integrated analysis of metabolomics (liquid chromatography mass spectrometry) and network analysis was performed to identify the potential pharmacodynamic mechanisms of BYP. Results: After BYP treatment, the haemoglobin level of patients significantly increased from 93.67 ± 9.77 g/L to 109.28 ± 12.62 g/L (p < 0.01), while no significant changes were found in iron metabolism and coagulation-related indicators. A total of 22 differential metabolites were identified after metabolomics analysis, which were mainly related to the inhibition of inflammation and oxidative stress. Integrating pharmacodynamics and metabolomics, a network of drug-active components-targets-metabolic pathways-metabolomics was established. Acetylcholinesterase, phospholipase A2 group IIA, and phospholipase A2 group IVA may be the most promising therapeutic targets. Conclusion: BYP can inhibit inflammation and oxidative stress as well as promote haematopoiesis, potentially improving anaemia.
Collapse
Affiliation(s)
- Guo Ying-ying
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Yan-fang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng Yan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhang Su-ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Liu Dong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu, China,Ministry of Education, Sichuan University, Chengdu, China
| | - Luo Bin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital, Sichuan University, Chengdu, China,Ministry of Education, Sichuan University, Chengdu, China
| | - Wang Xue
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Healthcare Hospital), Hangzhou, China
| | - Deng Miao
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Healthcare Hospital), Hangzhou, China
| | - Ma Rui-lin
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liu Xiao-hui
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiao Yu-pei
- National Protein Science Technology Center, Tsinghua University, Beijing, China
| | | |
Collapse
|
8
|
Wang YX, Yang Z, Wang WX, Huang YX, Zhang Q, Li JJ, Tang YP, Yue SJ. Methodology of network pharmacology for research on Chinese herbal medicine against COVID-19: A review. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:477-487. [PMID: 36182651 PMCID: PMC9508683 DOI: 10.1016/j.joim.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/09/2022]
Abstract
Traditional Chinese medicine, as a complementary and alternative medicine, has been practiced for thousands of years in China and possesses remarkable clinical efficacy. Thus, systematic analysis and examination of the mechanistic links between Chinese herbal medicine (CHM) and the complex human body can benefit contemporary understandings by carrying out qualitative and quantitative analysis. With increasing attention, the approach of network pharmacology has begun to unveil the mystery of CHM by constructing the heterogeneous network relationship of "herb-compound-target-pathway," which corresponds to the holistic mechanisms of CHM. By integrating computational techniques into network pharmacology, the efficiency and accuracy of active compound screening and target fishing have been improved at an unprecedented pace. This review dissects the core innovations to the network pharmacology approach that were developed in the years since 2015 and highlights how this tool has been applied to understanding the coronavirus disease 2019 and refining the clinical use of CHM to combat it.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China; Department of Scientific Research, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Zhen Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Xi Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| |
Collapse
|
9
|
Xie KH, Liu XH, Jia J, Zhong X, Han RY, Tan RZ, Wang L. Hederagenin ameliorates cisplatin-induced acute kidney injury via inhibiting long non-coding RNA A330074k22Rik/Axin2/β-catenin signalling pathway. Int Immunopharmacol 2022; 112:109247. [PMID: 36155281 DOI: 10.1016/j.intimp.2022.109247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Acute kidney injury (AKI), a kidney disease with high morbidity and mortality, is characterized by a dramatic decline in renal function. Hederagenin (HDG), a pentacyclic triterpenoid saponin isolated from astragalus membranaceus, has been shown to have significant anti-inflammatory effects on various diseases. However, the effects of HDG on renal injury and inflammation in AKI has not been elucidated. METHODS In this research, mice model of AKI was established by intraperitoneal injection of cisplatin in vivo, the inflammatory model of renal tubular epithelial cells was established by LPS stimulation in vitro, and HDG was used to intervene in vitro and in vivo models. Transcriptome sequencing was used to analyze the alterations of LncRNA and mRNA expression in AKI model and LncRNA-A330074k22Rik (A33) knockdown cells, respectively. Renal in situ electrotransfer knockdown plasmid was used to establish mice model of AKI with low expression of A33 in kidney. RESULTS The results showed that HDG effectively alleviate cisplatin-induced kidney injury and inflammation in mice. Transcriptome sequencing results showed that multiple LncRNAs in kidney of AKI model exhibited significant changes, among which LncRNA-A33 had the most obvious change trend. Subsequent results showed that A33 was highly expressed in kidney of AKI mice and LPS-induced renal tubular cells. After in situ renal electroporation knockdown plasmid down-regulated A33 in kidney of AKI mice, it was found that inhibition of A33 could significantly relieve cisplatin-induced kidney injury and inflammation of AKI, while HDG could effectively suppress the expression of A33 in vitro and in vivo, respectively. Subsequently, transcriptome sequencing was again used to analyze the changes in mRNA expression of renal tubular cells after A33 knockdown by siRNA. The results showed that a large number of inflammation-related signaling pathways were down-regulated, Axin2 and its downstream β-catenin signal were significantly inhibited. Cell recovery test showed that HDG inhibited Axin2/β-catenin signal by down-regulating A33, and improved kidney injury and inflammation of AKI. CONCLUSION Taken together, HDG significantly ameliorated cisplatin-induced kidney injury through LncRNA-A330074k22Rik/Axin2/β-catenin signal axis, which providing a potential therapeutic approach for the treatment of AKI.
Collapse
Affiliation(s)
- Ke-Huan Xie
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiao-Heng Liu
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jian Jia
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rang-Yue Han
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Rui-Zhi Tan
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| | - Li Wang
- Research Center of Intergated Traditional Chinese and Western Medicine, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
10
|
Xiong H, Li N, Zhao L, Li Z, Yu Y, Cui X, Liu Q, Zhao C. Integrated Serum Pharmacochemistry, Metabolomics, and Network Pharmacology to Reveal the Material Basis and Mechanism of Danggui Shaoyao San in the Treatment of Primary Dysmenorrhea. Front Pharmacol 2022; 13:942955. [PMID: 35899122 PMCID: PMC9310033 DOI: 10.3389/fphar.2022.942955] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Danggui Shaoyao San (DSS), a well-known formula, has been successfully applied in treating primary dysmenorrhea (PD) in China. However, its material basis and mechanism are still unrevealed. This current research aims to reveal the material basis and mechanism of DSS in treating PD by an integrative approach of serum pharmacochemistry, metabolomics, and network pharmacology. The results showed that DSS markedly relieved the physiological and pathological symptoms of PD as confirmed by the improvement of writhing behavior, inhibition of uterine edema, callback of clinical biochemical indexes, and metabolic profiles. Furthermore, a metabolomic analysis demonstrated that the therapeutic effect of DSS was attributed to the modulation of arachidonic acid metabolism, pentose and glucuronate interconversions, and phenylalanine metabolism. Meanwhile, 23 blood ingredients were identified after the oral administration of DSS. By analyzing the correlation coefficient of the identified biomarkers and blood components, active compounds closely associated with core metabolic pathways were extracted. Taking these active compounds as a basis, network pharmacology prediction was executed. It was found that active components of DSS including alisol B,23-acetate, chlorogenic acid, levistilide A, cianidanol, senkyunolide A, atractylenolide II, and sedanolide, were germane to steroid hormone biosynthesis, arachidonic acid metabolism, sphingolipid signaling pathway, etc. Interestingly, PTGS2 and PTGS1 related to the arachidonic acid metabolism may be pivotal targets of DSS. The current study proved that the integration of serum pharmacochemistry, metabolomics, and network pharmacology, was a powerful approach to investigate the material basis and the molecular mechanisms of DSS, and provided a solid basis for DSS application.
Collapse
Affiliation(s)
- Hui Xiong
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
- *Correspondence: Hui Xiong, ; Chunying Zhao,
| | - Na Li
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, China
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Lanqingqing Zhao
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Zhe Li
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
| | - Yongzhou Yu
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, China
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Xiaoyan Cui
- Hebei Institute for Drug and Medical Device Control, Shijiazhuang, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Chunying Zhao
- Hebei Province Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical University, Chengde, China
- *Correspondence: Hui Xiong, ; Chunying Zhao,
| |
Collapse
|
11
|
Wang Y, Li L, Li F, Yu K, Liu X, Wang Z, Xie T, Chen J, Wang X, Feng Q, Huang Y. Action Mechanism of Zhuang Medicine Jin-mu Granules Against Chronic Pelvic Inflammatory Disease Explored Using Comprehensive Network Pharmacology and Metabolomics. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zhuang Medicine Jin-mu Granules (ZMJG) are prescriptions derived from the Zhuang nationality, which is the largest minority among 56 ethnic groups in China. They have been widely used in the treatment of chronic pelvic inflammatory disease (CPID) in Guangxi Zhuang Autonomous Region for clearing away heat and toxins, removing dampness and poisoning. CPID is a common gynecological disease of female reproductive organs and surrounding tissues and is characterized by persistent and recurrent symptoms, causing serious physical and psychological damage to the patient. Preliminary research found that ZMJG have beneficial effects on CPID model rats, but the metabolic mechanism underlying their protective effects is unclear. In this study, we used the strategy of combining network pharmacology, pharmacodynamic, and metabolomic approaches to investigate the molecular mechanisms and potential targets of ZMJG for the treatment of CPID. First, a network diagram of “medicinal materials-components-targets-pathways” based on network pharmacology was constructed to obtain a preliminary understanding of the biologically active compounds and related targets of ZMJG and clarify their molecular mechanism in CPID. Subsequently, the in vivo efficacy of ZMJG was verified in a rat model. Furthermore, we analyzed the corresponding metabolomics profile to explore the differentially induced metabolic markers and elucidate the metabolic mechanism by which ZMJG treat CPID. The results show that the therapeutic effect of ZMJG on CPID is mediated through multiple pathways, metabolic pathways, and multi-component multi-target modes, providing a detailed theoretical basis for the development and clinical application of ZMJG and a new research idea for the treatment of CPID in Chinese medicine.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Linjie Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiao Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhiping Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tanfang Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jun Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaoxun Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiao Feng
- Guangxi International Hospital, Nanning, Guangxi, China
| | - Yan Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
12
|
Tu C, Huang G, Li C, Cheng L, Min Y, Li H, Mao D, Xiong F. Exploring Mechanisms by Which Danggui Buxue Decoction Regulates Inflammation and Improves Renal Anemia Based on Network Pharmacology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221093905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Renal anemia occurs frequently in patients with chronic kidney disease (CKD) and is related to chronic inflammation. Danggui Buxue Decoction (DBD) can treat anemia and improve the chronic inflammation. However, whether DBD treatment attenuates anemia by regulating inflammation in CKD patients with renal anemia is unknown. Therefore, this study explored inflammation-related network targets of DBD in renal anemia therapy and verified the interaction between DBD active ingredients and inflammatory proteins by molecular docking. Methods: The main effective components and targets of DBD were screened using the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. Renal anemia-related biomolecules were searched in the GeneCards, OMIM, TTD, Pharmgkb, and DrugBank databases. Protein-protein interaction (PPI) data were downloaded from the STRING database and core targets were obtained. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses for core targets were performed. Finally, active ingredients and core biomolecules were determined using molecular docking. Results: Twenty-two active components and 158 targets for DBD treatment of renal anemia were screened, and an “ingredient-target” network was constructed. Twenty core target genes were screened from the PPI data. Vascular endothelial growth factor A, Signal Transducer and Activator of transcription 1, C-X-C motif chemokine ligand 8, post-transcriptional gene silencing 2, and interleukin (IL)-1β were identified as inflammatory proteins. GO items related to inflammation and DBD included lipopolysaccharide, cellular response to chemical stress, and oxidative stress-related reactions. KEGG enrichment analyses showed that core inflammatory pathways mainly involved the IL-17 signaling pathway, tumor necrosis factor signaling pathway, and phosphoinositide 3-kinase-protein kinase B signaling pathway. Molecular docking results indicated that the binding energy of quercetin, an active ingredient of DBD, to the 5 core proteins was less than −6 kcal·mol−1. Conclusion: DBD might have protective effects against renal anemia by improving inflammation. Quercetin might modulate multiple inflammatory proteins and pathways.
Collapse
Affiliation(s)
- Can Tu
- Department of Nephrology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guirui Huang
- Department of Respiratory, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chuang Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li Cheng
- Department of Nephrology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Yonglong Min
- Department of Nephrology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Hongbo Li
- Department of Nephrology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Dongdong Mao
- Department of Nephrology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Fei Xiong
- Department of Nephrology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| |
Collapse
|
13
|
Dong Y, Tao B, Xue X, Feng C, Ren Y, Ma H, Zhang J, Si Y, Zhang S, Liu S, Li H, Zhou J, Li G, Wang Z, Xie J, Zhu Z. Molecular mechanism of Epicedium treatment for depression based on network pharmacology and molecular docking technology. BMC Complement Med Ther 2021; 21:222. [PMID: 34479552 PMCID: PMC8417989 DOI: 10.1186/s12906-021-03389-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/10/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Increasing attention has been paid to the effect of Epimedium on the nervous system, particularly anti-depression function. In the present study, we applied network pharmacology to introduce a testable hypothesis on the multi-target mechanisms of Epicedium against depression. METHODS By reconstructing the network of protein-protein interaction and drug-component-target, we predicted the key protein targets of Epicedium for the treatment of depression. Then, through molecular docking, the interaction of the main active components of Epicedium and predicted candidate targets were verified. RESULTS Nineteen active compounds were selected from Epicedium. There were 200 targets associated with Epicedium and 537 targets related to depression. The key targets of Epicedium for treating depression were IL6, VEGFA, AKT1, and EGF. According to gene ontology functional enrichment analysis, 22 items of biological process (BP), 13 items of cell composition (CC) and 9 items of molecular function (MF) were obtained. A total of 56 signaling pathways (P < 0.05) were identified by Kyoto Encyclopedia of Genes and Genomes analysis, mainly involving depression-related pathways such as dopaminergic synapse, TNF signaling pathway, and prolactin signaling pathway. The results of molecular docking showed that the most important activity components, including luteoklin, quercetin and kaempferol, were well combined with the key targets. CONCLUSIONS Luteoklin, quercetin, kaempferol and other active compounds in Epicedium can regulate multiple signaling pathways and targets such as IL6, AKT1, and EGF, therefore playing therapeutic roles in depression.
Collapse
Affiliation(s)
- Yankai Dong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Bo Tao
- Department of Orthopaedic, Tianjin Medical University General Hospital, Anshan Road No.154, Tianjin, 300052, Heping District, China
| | - Xing Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Caixia Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Yating Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Hengyu Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Junli Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Yufang Si
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Sisi Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Si Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Medical College,Xi'an Jiaotong University, Xi'an, 710069, Shanxi Province, China
| | - Jiahao Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Ge Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Zhifei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China
| | - Juanping Xie
- Qinba Chinese Medicine Resources R&D Center, School of Medicine, Ankang University, Ankang, 710069, Shanxi Province, China.
| | - Zhongliang Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Institute of Maternal and Infant health, Northwest University, Xi'an, 710069, Shanxi Province, China.
| |
Collapse
|