1
|
Khan AU, Sengupta B, Das IJ. The role of volume averaging effects, beam hardening, and phantom scatter in dosimetry of grid therapy. Phys Med Biol 2024; 69:225008. [PMID: 39526354 DOI: 10.1088/1361-6560/ad8c91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Objective. Current reference dosimetry methods for spatially fractionated radiation therapy (SFRT) assume a negligible beam quality change, perturbation, or volume-averaging correction factor. Therefore, the aim of this work was to investigate the impact of the grid collimators on the dosimetric characteristics of a 6 MV photon beam. A detector-specific correction factor,kQgrid, Qmsr fgrid,fmsr, was proposed. Several dosimeters were evaluated for their ability to measure both reference dose and grid output factors (GOFs).Approach. A Monte Carlo model of a grid collimator was created to study the change in the depth dose characteristics with the grid collimator. The impact of the collimator on the percent depth dose (PDD), electron contamination, and average photon energy was investigated. ThekQgrid, Qmsr fgrid,fmsrcorrection factors were calculated for two reference-class micro ion chambers. The reference dose and GOFs were measured with a grid collimator using six ion chambers, two silicon diodes, and a diamond detector.Main results.The PDD in the presence of the grid was observed to be steeper compared to the open field. The average photon energy increased from 1.33 MeV to 1.74 MeV with the presence of the grid collimator. The dose contribution by scattered photons was significantly higher at deeper regions for the open field compared to the grid field. ThekQgrid, Qmsr fgrid,fmsrcorrection was calculated to be <0.5%. The reference dose for all detectors, except for the CC13 and CC04 chambers, was within 1% of each other. The CC13 under-responded up to 3.2% due to volume-averaging effects. The GOFs calculated for all detectors, except Razor and A16, were within 1% of each other.Significance. The phantom scatter dictates the change in the PDD with the presence of the grid. The micro ion chambers exhibit negligiblekQgrid, Qmsr fgrid,fmsrcorrection. All detectors, except the CC13 ion chamber, were found to be suitable for SFRT reference dosimetry.
Collapse
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Bishwambhar Sengupta
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| | - Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America
| |
Collapse
|
2
|
Saße K, Albers K, Klassen PD, Marianyagam NJ, Weidlich G, Schneider MB, Chang S, Adler J, Poppe B, Looe HK, Eulenstein D. Experimental and Monte Carlo based dosimetric investigation of a novel 3 mm radiosurgery 3 MV beam using the microSilicon detector. J Appl Clin Med Phys 2024; 25:e14388. [PMID: 38762906 PMCID: PMC11163500 DOI: 10.1002/acm2.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/15/2024] [Accepted: 04/15/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The ZAP-X system is a novel gyroscopic radiosurgical system based on a 3 MV linear accelerator and collimator cones with a diameter between 4 and 25 mm. Advances in imaging modalities to detect small and early-stage pathologies allow for an early and less invasive treatment, where a smaller collimator matching the anatomical target could provide better sparing of surrounding healthy tissue. PURPOSE A novel 3 mm collimator cone for the ZAP-X was developed. This study aims to investigate the usability of a commercial diode detector (microSilicon) for the dosimetric characterization of this small collimator cone; and to investigate the underlying small field perturbation effects. METHODS Profile measurements in five depths as well as PDD and output ratio measurements were performed with a microSilicon detector and radiochromic EBT3 films. In addition, comprehensive Monte Carlo simulations were performed to validate the measurement observations and to quantify the perturbation effects of the microSilicon detector in these extremely small field conditions. RESULTS It is shown that the microSilicon detector enables an accurate dosimetric characterization of the 3 mm beam. The profile parameters, such as the FWHM and 20%-80% penumbra width, agree within 0.1 to 0.2 mm between film and detector measurements. The output ratios agree within the measurement uncertainty between microSilicon detector and films, whereas the comparisons of the PDD results show good agreement with the Monte Carlo simulations. The analysis of the perturbation factors of the microSilicon detector reveals a small field correction factor of approximately 3% for the 3 mm circular beam and a correction factor smaller than 1.5% for field diameters above 3 mm. CONCLUSIONS It could be shown that the microSilicon detector is well-suitable for the characterization of the new 3 mm circular beam of the ZAP-X system.
Collapse
Affiliation(s)
- Katrin Saße
- University Clinic for Medical Radiation Physics, Medical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Karina Albers
- University Clinic for Medical Radiation Physics, Medical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | | - Neelan J. Marianyagam
- Department of NeurosurgeryStanford University School of MedicinePalo AltoCaliforniaUSA
| | | | | | - Steven Chang
- Department of NeurosurgeryStanford University School of MedicinePalo AltoCaliforniaUSA
| | - John Adler
- ZAP Surgical SystemsSan CarlosCaliforniaUSA
| | - Björn Poppe
- University Clinic for Medical Radiation Physics, Medical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | - Hui Khee Looe
- University Clinic for Medical Radiation Physics, Medical Campus Pius HospitalCarl von Ossietzky UniversityOldenburgGermany
| | | |
Collapse
|
3
|
Das IJ, Khan AU, Dogan SK, Longo M. Grid/lattice therapy: consideration of small field dosimetry. Br J Radiol 2024; 97:1088-1098. [PMID: 38552328 PMCID: PMC11135801 DOI: 10.1093/bjr/tqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/31/2024] Open
Abstract
Small-field dosimetry used in special procedures such as gamma knife, Cyberknife, Tomotherapy, IMRT, and VMAT has been in evolution after several radiation incidences with very significant (70%) errors due to poor understanding of the dosimetry. IAEA-TRS-483 and AAPM-TG-155 have provided comprehensive information on small-fields dosimetry in terms of code of practice and relative dosimetry. Data for various detectors and conditions have been elaborated. It turns out that with a suitable detectors dose measurement accuracy can be reasonably (±3%) achieved for 6 MV beams for fields >1×1 cm2. For grid therapy, even though the treatment is performed with small fields created by either customized blocks, multileaf collimator (MLC), or specialized devices, it is multiple small fields that creates combined treatment. Hence understanding the dosimetry in collection of holes of small field is a separate challenge that needs to be addressed. It is more critical to understand the scattering conditions from multiple holes that form the treatment grid fields. Scattering changes the beam energy (softer) and hence dosimetry protocol needs to be properly examined for having suitable dosimetric parameters. In lieu of beam parameter unavailability in physical grid devices, MLC-based forward and inverse planning is an alternative path for bulky tumours. Selection of detectors in small field measurement is critical and it is more critical in mixed beams created by scattering condition. Ramification of small field concept used in grid therapy along with major consideration of scattering condition is explored. Even though this review article is focussed mainly for dosimetry for low-energy megavoltage photon beam (6 MV) but similar procedures could be adopted for high energy beams. To eliminate small field issues, lattice therapy with the help of MLC is a preferrable choice.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Ahtesham Ullah Khan
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Mariaconcetta Longo
- San Bortolo Hospital, Medical Physics Department, Viale F. Rodolfi 37, 36100 Vicenza, Italy
| |
Collapse
|
4
|
Perrett B, Seshadri V, Huxley C, Kumar S, Wawrzak M, Ramachandran P. Evaluation of radiation detectors for the determination of field output factors in Leksell Gamma Knife dosimetry using 3D printed phantom inserts. Phys Med 2024; 121:103370. [PMID: 38677196 DOI: 10.1016/j.ejmp.2024.103370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/22/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
The Leksell Gamma Knife® Perfexion™ and Icon™ have a unique geometry, containing 192 60Co sources with collimation for field sizes of 4 mm, 8 mm, and 16 mm. 4 mm and 8 mm collimated fields lack lateral charged particle equilibrium, so accurate field output factors are essential. This study performs field output factor measurements for the microDiamond, microSilicon, and RAZOR™ Nano detectors. 3D printed inserts for the spherical Solid Water® Phantom were fabricated for microDiamond detector, the microSilicon unshielded diode and the RAZOR™ Nano micro-ionisation chamber. Detectors were moved iteratively to identify the peak detector signal for each collimator, representing the effective point of measurement of the chamber. In addition, field output correction factors were calculated for each detector relative to vendor supplied Monte Carlo simulated field output factors and field output factors measured with a W2 scintillator. All field output factors where within 1.1 % for the 4 mm collimator and within 2.3 % for the 8 mm collimator. The 3D printed phantom inserts were suitable for routine measurements if the user identifies the effective point of measurement, and ensures a reproducible setup by marking the rotational alignment of the cylindrical print. Measurements with the microDiamond and microSilicon can be performed faster compared to the RAZOR™ Nano due to differences in the signal to noise ratio. All detectors are suitable for field output factor measurements for the Leksell Gamma Knife® Perfexion™ and Icon™.
Collapse
Affiliation(s)
- Ben Perrett
- Radiation Oncology, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Queensland 4102, Australia.
| | - Venkatakrishnan Seshadri
- Radiation Oncology, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Queensland 4102, Australia
| | - Cosmo Huxley
- 3DOne Australia Pty Ltd, 30 Nashos Place, Wacol, Queensland 4102, Australia
| | - Sanjay Kumar
- Elekta Australia and New Zealand Pty Ltd, Suite 10.02, 146 Arthur Street, North Sydney, New South Wales 2060, Australia
| | - Michal Wawrzak
- Radiation Oncology, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Queensland 4102, Australia
| | - Prabhakar Ramachandran
- Radiation Oncology, Princess Alexandra Hospital, 199 Ipswich Road, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
5
|
Fleta C, Pellegrini G, Godignon P, Rodríguez FG, Paz-Martín J, Kranzer R, Schüller A. State-of-the-art silicon carbide diode dosimeters for ultra-high dose-per-pulse radiation at FLASH radiotherapy. Phys Med Biol 2024; 69:095013. [PMID: 38530300 DOI: 10.1088/1361-6560/ad37eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective.The successful implementation of FLASH radiotherapy in clinical settings, with typical dose rates >40 Gy s-1, requires accurate real-time dosimetry.Approach.Silicon carbide (SiC) p-n diode dosimeters designed for the stringent requirements of FLASH radiotherapy have been fabricated and characterized in an ultra-high pulse dose rate electron beam. The circular SiC PiN diodes were fabricated at IMB-CNM (CSIC) in 3μm epitaxial 4H-SiC. Their characterization was performed in PTB's ultra-high pulse dose rate reference electron beam. The SiC diode was operated without external bias voltage. The linearity of the diode response was investigated up to doses per pulse (DPP) of 11 Gy and pulse durations ranging from 3 to 0.5μs. Percentage depth dose measurements were performed in ultra-high dose per pulse conditions. The effect of the total accumulated dose of 20 MeV electrons in the SiC diode sensitivity was evaluated. The temperature dependence of the response of the SiC diode was measured in the range 19 °C-38 °C. The temporal response of the diode was compared to the time-resolved beam current during each electron beam pulse. A diamond prototype detector (flashDiamond) and Alanine measurements were used for reference dosimetry.Main results.The SiC diode response was independent both of DPP and of pulse dose rate up to at least 11 Gy per pulse and 4 MGy s-1, respectively, with tolerable deviation for relative dosimetry (<3%). When measuring the percentage depth dose under ultra-high dose rate conditions, the SiC diode performed comparably well to the reference flashDiamond. The sensitivity reduction after 100 kGy accumulated dose was <2%. The SiC diode was able to follow the temporal structure of the 20 MeV electron beam even for irregular pulse estructures. The measured temperature coefficient was (-0.079 ± 0.005)%/°C.Significance.The results of this study demonstrate for the first time the suitability of silicon carbide diodes for relative dosimetry in ultra-high dose rate pulsed electron beams up to a DPP of 11 Gy per pulse.
Collapse
Affiliation(s)
- Celeste Fleta
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona, Spain
| | - Giulio Pellegrini
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona, Spain
| | - Philippe Godignon
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona, Spain
| | - Faustino Gómez Rodríguez
- Departamento de Física de Partículas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Laboratorio de Radiofísica, RIAIDT, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Paz-Martín
- Departamento de Física de Partículas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rafael Kranzer
- PTW-Freiburg (R&D), Freiburg 79115, Germany
- University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University Oldenburg, 26121, Germany
| | - Andreas Schüller
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig, Germany
| |
Collapse
|
6
|
Casar B, Mendez I, Gershkevitsh E, Wegener S, Jaffray D, Heaton R, Pesznyak C, Stelczer G, Bulski W, Chełminski K, Smirnov G, Antipina N, Beavis AW, Harding N, Jurković S, Hwang MS, Saiful Huq M. On dosimetric characteristics of detectors for relative dosimetry in small fields: a multicenter experimental study. Phys Med Biol 2024; 69:035009. [PMID: 38091616 DOI: 10.1088/1361-6560/ad154c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Objective. In this multicentric collaborative study, we aimed to verify whether the selected radiation detectors satisfy the requirements of TRS-483 Code of Practice for relative small field dosimetry in megavoltage photon beams used in radiotherapy, by investigating four dosimetric characteristics. Furthermore, we intended to analyze and complement the recommendations given in TRS-483.Approach. Short-term stability, dose linearity, dose-rate dependence, and leakage were determined for 17 models of detectors considered suitable for small field dosimetry. Altogether, 47 detectors were used in this study across ten institutions. Photon beams with 6 and 10 MV, with and without flattening filters, generated by Elekta Versa HDTMor Varian TrueBeamTMlinear accelerators, were used.Main results. The tolerance level of 0.1% for stability was fulfilled by 70% of the data points. For the determination of dose linearity, two methods were considered. Results from the use of a stricter method show that the guideline of 0.1% for dose linearity is not attainable for most of the detectors used in the study. Following the second approach (squared Pearson's correlation coefficientr2), it was found that 100% of the data fulfill the criteriar2> 0.999 (0.1% guideline for tolerance). Less than 50% of all data points satisfied the published tolerance of 0.1% for dose-rate dependence. Almost all data points (98.2%) satisfied the 0.1% criterion for leakage.Significance. For short-term stability (repeatability), it was found that the 0.1% guideline could not be met. Therefore, a less rigorous criterion of 0.25% is proposed. For dose linearity, our recommendation is to adopt a simple and clear methodology and to define an achievable tolerance based on the experimental data. For dose-rate dependence, a realistic criterion of 1% is proposed instead of the present 0.1%. Agreement was found with published guidelines for background signal (leakage).
Collapse
Affiliation(s)
- Božidar Casar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Slovenia
| | - Ignasi Mendez
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | | | - Sonja Wegener
- University of Wuerzburg, Radiation Oncology, Wuerzburg, Germany
| | | | | | | | | | - Wojciech Bulski
- Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | | | | | - Andrew W Beavis
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Nicholas Harding
- Hull University Teaching Hospitals NHS Trust, Hull, United Kingdom
| | - Slaven Jurković
- Medical Physics Department, University Hospital Rijeka, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Croatia
| | - Min-Sig Hwang
- University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, United States of America
| | - M Saiful Huq
- Department of Radiation Oncology, Division of Medical Physics, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, United States of America
| |
Collapse
|
7
|
Das IJ, Sohn JJ, Lim SN, Sengupta B, Feijoo M, Yadav P. Characteristics of a plastic scintillation detector in photon beam dosimetry. J Appl Clin Med Phys 2024; 25:e14209. [PMID: 37983685 PMCID: PMC10795454 DOI: 10.1002/acm2.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Plastic scintillating detectors (PSD) have gained popularity due to small size and are ideally suited in small-field dosimetry due to no correction needed and hence detector reading can be compared to dose. Likewise, these detectors are active and water equivalent. A new PSD from Blue Physics is characterized in photon beam. PURPOSE Innovation in small-field dosimetry detector has led us to examine Blue Physics PSD (BP-PSD) for use in photon beams from linear accelerator. METHODS BP-PSD was acquired and its characteristics were evaluated in photon beams from a Varian TrueBeam. Data were collected in a 3D water tank. Standard parameters; dose, dose rate, energy, angular dependence and temperature dependence were studied. Depth dose, profiles and output in a reference condition as well as small fields were measured. RESULTS BP-PSD is versatile and provides data very similar to an ion chamber when Cerenkov radiation is properly accounted. This device measures data pulse by pulse which very few detectors can perform. The differences between ion chamber data and PSD are < 2% in most cases. The angular dependence is a bit pronounces to 1.5% which is due to PSD housing. Depth dose and profiles are comparable within < 1% to an ion chamber. For small fields this detector provides suitable field output factor compared to other detectors and Monte Carlo (MC) simulated data without any added correction factor. CONCLUSIONS The characteristics of Blue Physics PSD is uniquely suitable in photon beam and more so in small fields. The data are reproducible compared to ion chamber for most parameters and ideally suitable for small-field dosimetry without any correction factor.
Collapse
Affiliation(s)
- Indra J. Das
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Jooyoung J. Sohn
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Sara N. Lim
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bishwambhar Sengupta
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | | | - Poonam Yadav
- Department of Radiation OncologyNorthwest Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
8
|
Tahmasbi M, Capela M, Santos T, Mateus J, Ventura T, do Carmo Lopes M. Particular issues to be considered in small field dosimetry for TrueBeam STx commissioning. Appl Radiat Isot 2023; 202:111066. [PMID: 37865066 DOI: 10.1016/j.apradiso.2023.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
This study aims to report the relevant issues concerning small fields in the commissioning of a TrueBeam STx for photon energies of 6MV, 10MV, 6FFF, and 10FFF. Percent depth doses, profiles, and field output factors were measured according to the beam model configuration of the treatment planning system. Multiple detectors were used based on the IAEA TRS-483 protocol as well as EBT3 radiochromic film. Analytical Anisotropic and Acuros XB algorithms, were configured and validated through basic dosimetry comparisons and end-to-end clinical tests.
Collapse
Affiliation(s)
- Marziyeh Tahmasbi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal.
| | - Miguel Capela
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Tania Santos
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Josefina Mateus
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Tiago Ventura
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Maria do Carmo Lopes
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| |
Collapse
|
9
|
Rahman M, Kozelka J, Hildreth J, Schönfeld A, Sloop AM, Ashraf MR, Bruza P, Gladstone DJ, Pogue BW, Simon WE, Zhang R. Characterization of a diode dosimeter for UHDR FLASH radiotherapy. Med Phys 2023; 50:5875-5883. [PMID: 37249058 DOI: 10.1002/mp.16474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Ultra-high dose rate (UHDR) FLASH beams typically deliver dose at rates of >40 Gy/sec. Characterization of these beams with respect to dose, mean dose rate, and dose per pulse requires dosimeters which exhibit high temporal resolution and fast readout capabilities. PURPOSE A diode EDGE Detector with a newly designed electrometer has been characterized for use in an UHDR electron beam and demonstrated appropriateness for UHDR FLASH radiotherapy dosimetry. METHODS Dose linearity, mean dose rate, and dose per pulse dependencies of the EDGE Detector were quantified and compared with dosimeters including a W1 scintillator detector, radiochromic film, and ionization chamber that were irradiated with a 10 MeV UHDR beam. The dose, dose rate, and dose per pulse were controlled via an in-house developed scintillation-based feedback mechanism, repetition rate of the linear accelerator, and source-to-surface distance, respectively. Depth-dose profiles and temporal profiles at individual pulse resolution were compared to the film and scintillation measurements, respectively. The radiation-induced change in response sensitivity was quantified via irradiation of ∼5kGy. RESULTS The EDGE Detector agreed with film measurements in the measured range with varying dose (up to 70 Gy), dose rate (nearly 200 Gy/s), and dose per pulse (up to 0.63 Gy/pulse) on average to within 2%, 5%, and 1%, respectively. The detector also agreed with W1 scintillation detector on average to within 2% for dose per pulse (up to 0.78 Gy/pulse). The EDGE Detector signal was proportional to ion chamber (IC) measured dose, and mean dose rate in the bremsstrahlung tail to within 0.4% and 0.2% respectively. The EDGE Detector measured percent depth dose (PDD) agreed with film to within 3% and per pulse output agreed with W1 scintillator to within -6% to +5%. The radiation-induced response decrease was 0.4% per kGy. CONCLUSIONS The EDGE Detector demonstrated dose linearity, mean dose rate independence, and dose per pulse independence for UHDR electron beams. It can quantify the beam spatially, and temporally at sub millisecond resolution. It's robustness and individual pulse detectability of treatment deliveries can potentially lead to its implementation for in vivo FLASH dosimetry, and dose monitoring.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Austin M Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - M Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Stanford University, Stanford, California, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Medicine, Westchester Medical Center, New York Medical College,Valhalla, New York, USA
| |
Collapse
|
10
|
Kawata K, Ono T, Hirashima H, Tsuruta Y, Fujimoto T, Nakamura M, Nakata M. Effect of angular dependence for small-field dosimetry using seven different detectors. Med Phys 2023; 50:1274-1289. [PMID: 36583601 DOI: 10.1002/mp.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Small-field dosimetry is challenging for radiotherapy dosimetry because of the loss of lateral charged equilibrium, partial occlusion of the primary photon source by the collimating devices, perturbation effects caused by the detector materials and their design, and the detector size relative to the radiation field size, which leads to a volume averaging effect. Therefore, a suitable tool for small-field dosimetry requires high spatial resolution, tissue equivalence, angular independence, and energy and dose rate independence to achieve sufficient accuracy. Recently, with the increasing use of combinations of coplanar and non-coplanar beams for small-field dosimetry, there is a need to clarify angular dependence for dosimetry where the detector is oriented at various angles to the incident beam. However, the effect of angular dependence on small-field dosimetry with coplanar and non-coplanar beams has not been fully clarified. PURPOSE This study clarified the effect of angular dependence on small-field dosimetry with coplanar and non-coplanar beams using various detectors. METHODS Seven different detectors were used: CC01, RAZOR, RAZOR Nano, Pinpoint 3D, stereotactic field diode (SFD), microSilicon, and microDiamond. All measurements were taken using a TrueBeam STx with 6 MV and 10 MV flattening filter-free (FFF) energies using a water-equivalent spherical phantom with a source-to-axis distance of 100 cm. The detector was inserted in a perpendicular orientation, and the gantry was rotated at 15° increments from the incidence beam angle. A multi-leaf collimator (MLC) with four field sizes of 0.5 × 0.5, 1 × 1, 2 × 2, and 3 × 3 cm2 , and four couch angles from 0°, 30°, 60°, and 90° (coplanar and non-coplanar) were adopted. The angular dependence response (AR) was defined as the ratio of the detector response at a given irradiation gantry angle normalized to the detector response at 0°. The maximum AR differences were calculated between the maximum and minimum AR values for each detector, field size, energy, and couch angle. RESULTS The maximum AR difference for the coplanar beam was within 3.3% for all conditions, excluding the maximum AR differences in 0.5 × 0.5 cm2 field for CC01 and RAZOR. The maximum AR difference for non-coplanar beams was within 2.5% for fields larger than 1 × 1 cm2 , excluding the maximum AR differences for RAZOR Nano, SFD, and microSilicon. The Pinpoint 3D demonstrated stable AR tendencies compared to other detectors. The maximum difference was within 2.0%, except for the 0.5 × 0.5 cm2 field and couch angle at 90°. The tendencies of AR values for each detector were similar when using different energies. CONCLUSION This study clarified the inherent angular dependence of seven detectors that were suitable for small-field dosimetry. The Pinpoint 3D chamber had the smallest angular dependence of all detectors for the coplanar and non-coplanar beams. The findings of this study can contribute to the calculation of the AR correction factor, and it may be possible to adapt detectors with a large angular dependence on coplanar and non-coplanar beams. However, note that the gantry sag and detector-specific uncertainties increase as the field size decreases.
Collapse
Affiliation(s)
- Kohei Kawata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Tsuruta
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Fujimoto
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Manabu Nakata
- Division of Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
11
|
Ding GX, Das IJ. On the field size definition and field output factors in small field dosimetry. Med Phys 2023. [PMID: 36734482 DOI: 10.1002/mp.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND There is a major conceptual difference between small-field and large field dosimetry that is, different definition of the field size. The dosimetry protocol IAEA TRS-483 recommends the use of the field size defined by measured dose profiles (full-width half maximum, FWHM) that is significantly different from conventional field size definition by the geometric field opening of MLC/Jaw at the isocenter. The application of the effective field size concept, Sclin , was introduced by Cranmer-Sargison et al. (DOI:10.1016/j.radonc.2013.10.002) as a reporting mechanism for field output factors of rectangular fields. The study by Das et al. (DOI:10.1002/mp.15624) indicated the limitations of obtaining the field size by experimentally measuring FWHM, for example, the measured FWHM is smaller than beam geometric size, which is contradictory to what is expected as a result of partial occlusion of the primary photon source by the collimating devices. Cranmer-Sargison et al. and Das et al suggested that additional investigations are needed to evaluate its limitations. PURPOSE This study investigates the validity of the field size definition by FWHM and by MLC/Jaw opening and finds the pros and cons between these two methods to resolve the controversial issue. METHODS The FWHM can be obtained by measuring or calculating dose profiles. Using Monte Carlo simulations this study compares the field size obtained by FWHM and by field geometric field opening. The EGSnrc system is used to simulate 6 MV beam to generate square and rectangular fields from 5-30 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 to 30 mm). The calculated FWHM and output factors are compared with measurements obtained by a microSilicon detector. RESULTS The results show that field width (FWHM) derived from MC calculations generally agrees with machine geometric field width within 0.5 mm for square or rectangular fields with a minimum field width of ≥8 mm. For the extremely small fields with a minimum field width of 5 mm the discrepancies are up to 1.6 mm. The field width (FWHM) obtained by measuring dose profiles are unreliable for small fields due to the measurement uncertainties for an extremely small field. The effect of partial occlusion of the primary photon source by the jaws on the beam axis is clearly observed in the calculated dose profiles. For the extremely small field width of 5 mm, Monte Carlo predicted up to 10% exchange factor differences which are confirmed by the measurements. CONCLUSION The field size defined by the geometric opening of the beam-defining system, is still valid for small fields. The field size defined by geometric opening is independent of measurement uncertainties, independent of machine design, and highly reproducible. It is feasible to accurately tabulate the output factors as a function of geometric field opening thus eliminating user and detector choice for FWHM measurements. The field output factor of a small rectangular field cannot be related to an equivalent field size without considering the exchange factor due to partial occlusion of the photon source.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Yadav P, DesRosiers CM, Mitra RK, Srivastava SP, Das IJ. Variability of Low-Z Inhomogeneity Correction in IMRT/SBRT: A Multi-Institutional Collaborative Study. J Clin Med 2023; 12:jcm12030906. [PMID: 36769553 PMCID: PMC9918128 DOI: 10.3390/jcm12030906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Dose-calculation algorithms are critical for radiation treatment outcomes that vary among treatment planning systems (TPS). Modern algorithms use sophisticated radiation transport calculation with detailed three-dimensional beam modeling to provide accurate doses, especially in heterogeneous medium and small fields used in IMRT/SBRT. While the dosimetric accuracy in heterogeneous mediums (lung) is qualitatively known, the accuracy is unknown. The aim of this work is to analyze the calculated dose in lung patients and compare the validity of dose-calculation algorithms by measurements in a low-Z phantom for two main classes of algorithms: type A (pencil beam) and type B (collapse cone). The CT scans with volumes (target and organs at risk, OARs) of a lung patient and a phantom build to replicate the human lung data were sent to nine institutions for planning. Doses at different depths and field sizes were measured in the phantom with and without inhomogeneity correction across multiple institutions to understand the impact of clinically used dose algorithms. Wide dosimetric variations were observed in target and OAR coverage in patient plans. The correction factor for collapsed cone algorithms was less than pencil beam algorithms in the small fields used in SBRT. The pencil beam showed ≈70% variations between measured and calculated correction factors for various field sizes and depths. For large field sizes the trends of both types of algorithms were similar. The differences in measured versus calculated dose for type-B algorithms were within ±10%. Significant variations in the target and OARs were observed among various TPS. The results suggest that the pencil beam algorithm does not provide an accurate dose and should not be considered with small fields (IMRT/SBRT). Type-B collapsed-cone algorithms provide better agreement with measurements, but still vary among various systems.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Colleen M. DesRosiers
- Department of Radiation Oncology, Indiana University Health, Indianapolis, IN 46202, USA
| | - Raj K. Mitra
- Department of Radiation Oncology, Ochsner Health System, New Orleans, LA 70121, USA
| | - Shiv P. Srivastava
- Department of Radiation Oncology, Dignity Health System, Phoenix, AZ 85013, USA
| | - Indra J. Das
- Department of Radiation Oncology, Northwest Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-926-6448 or +1-215-385-4523
| |
Collapse
|
13
|
Evaluation of calibration methods of Exradin W2 plastic scintillation detector for CyberKnife small-field dosimetry. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
McGrath AN, Golmakani S, Williams TJ. Determination of correction factors in small MLC-defined fields for the Razor and microSilicon diode detectors and evaluation of the suitability of the IAEA TRS-483 protocol for multiple detectors. J Appl Clin Med Phys 2022; 23:e13657. [PMID: 35652320 PMCID: PMC9278669 DOI: 10.1002/acm2.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/31/2022] [Accepted: 05/03/2022] [Indexed: 11/11/2022] Open
Abstract
Small field output factors for Multileaf collimator (MLC)‐defined field sizes between 0.5 × 0.5 cm2 and 3 × 3 cm2 were measured with six different detectors for a Varian TrueBeam in 6‐MV, 6‐FFF, 10‐MV, and 10‐FFF photon beams. Correction factors kQclin,Qreffclin,fref from the IAEA publication TRS‐483 were used to correct the measured output factors. The corrected output factors from the six detectors were used to calculate correction factors for the PTW microSilicon T60023 (PTW, Freiburg, Germany) and IBA Razor (IBA Dosimetry, Schwarzenbruck, Germany) detectors. The uncertainty of the output and correction factors in this study was calculated and the calculations presented in detail. The application of the TRS‐483 correction factors significantly reduced the variation in output factors between the various detectors, with the exception of the PTW 60016 diode in 6‐MV and 6‐FFF beams, and the IBA PFD in 10‐MV and 10‐FFF beams. Correction factors calculated for the Razor agreed within 2.9% of existing literature for all energies, while the microSilicon correction factors agreed within 1.6% to the literature for 6‐MV beams. The uncertainty in the microSilicon and Razor correction factors was calculated to be less than 0.9% (k = 1). This study shows that TRS‐483 correction factors reduce the variation in output factors between the detectors used in this study and presents a suitable method for determining correction factors for detectors with unpublished values.
Collapse
Affiliation(s)
- Andrew N McGrath
- W.P. Holman Clinic, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Samane Golmakani
- W.P. Holman Clinic, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | | |
Collapse
|
15
|
Delbaere A, Younes T, Simon L, Khamphan C, Vieillevigne L. Field output correction factors and electron fluence perturbation of the microSilicon and microSilicon X detectors. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5e5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/16/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. The aim of this study was to determine field output correction factors
k
Q
clin
,
Q
ref
f
clin
,
f
ref
and electron fluence perturbation for new PTW unshielded microSilicon and shielded microSilicon X detectors. Approach.
k
Q
clin
,
Q
ref
f
clin
,
f
ref
factors were calculated for 6 and 10 MV with and without flattening filter beams delivered by a TrueBeam STx. Correction factors were determined for field sizes ranging from 0.5 × 0.5 cm2 to 3 × 3 cm2 using both experimental and numerical methods. To better understand the underlying physics of their response, total electron (+positron) fluence spectra were scored in the sensitive volume considering the various component-dependent perturbations. Main results. The microSilicon and microSilicon X detectors can be used down to the smallest studied field size by applying corrections factors fulfilling the tolerance of 5% recommended by the IAEA TRS483. Electron fluence perturbation in both microSilicon detectors was greater than that in water but to a lesser extent than their predecessors. The main contribution of the overall perturbation of the detectors comes from the materials surrounding their sensitive volume, especially the epoxy in the case of unshielded diodes and the shielding for shielded diodes. This work demonstrated that the decrease in the density of the epoxy for the microSilicon led to a decrease in the electron fluence perturbation. Significance. A real improvement was observed regarding the design of the microSilicon and microSilicon X detectors compared to their predecessors.
Collapse
|
16
|
Das IJ, Dogan SK, Gopalakrishnan M, Ding GX, Longo M, Franscescon P. Validity of equivalent square field concept in small field dosimetry. Med Phys 2022; 49:4043-4055. [PMID: 35344220 DOI: 10.1002/mp.15624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE The equivalent Square (ES) concept has been used for traditional radiation fields defined by the machine collimating system. For small fields, the concept Sclin was introduced based on measuring dosimetric field width (full-width half maximum, FWHM) of the cardinal axis of the beam profiles. The pros and cons of this concept are evaluated in small fields and compared with the traditional ES using area and perimeter (4A/P) method based on geometric field size settings e.g. light field settings. METHODS One hundred thirty-seven square and rectangular fields from 5-50 mm with every possible permutation (keeping one jaw fixed and varying other jaw from 5 mm to 50 mm) were utilized to measure FWHM for the validation of Sclin . Using a microSilicon detector and a scanning water tank, measurements were performed on an Elekta (Versa) machine with Agility head and a Varian TrueBeam with different MLC/Jaw design to evaluate the Sclin concept and to understand the effect of exchange factor in small fields. Field output factors were also measured for all 137 fields. RESULTS The data fitting for fields ranging from 5-50 mm between the traditional 4A/P method and Sclin shows differences and indicates a linear relationship with distinct separation of slope for Elekta and Varian machines. As Elekta does not have y jaws, the ES based on 4A/P < Sclin but for the Varian linac 4A/P > Sclin for square fields. Our measured data shows that both methods are equally valid but does vary by the machine design. The field output factor is dependent on the elongation factor as well as machine design. For fields with sides ≥10 mm, the exchange factor is nearly identical in both machines with magnitude up to 4% which is close to measurement uncertainty (±3%) but for small fields (<10 mm) the Elekta machine has higher exchange factors compared to the Varian machine. CONCLUSION The results demonstrate that the two concepts for defining equivalent field (Sclin and 4A/P) are equivalent and can be directly related through an empirical equation. This study confirms that 4A/P is still valid for small fields except for very small fields (≤10 mm) where source occlusion is a dominating factor. The Sclin method is potentially sensitive to measurement uncertainty due to measurement of FWHM which is machine, detector and user dependent, while the 4A/P method relies mainly on geometry of the machine and has less dependency on type of machine, detector and user. The exchange factors are comparable for both types of machines. The conclusion is based on data from an Elekta with Agility head and a Varian TrueBeam machine that may have potential for bias due to light field/collimator set up and alignment. Care should be taken in extrapolating these data to any other machine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Serpil K Dogan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mahesh Gopalakrishnan
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Mariaconcetta Longo
- Department of Radiation Oncology Ospedale Di Vicenza, Viale Rodolfi, Vicenza, 36100, Italy
| | - Paolo Franscescon
- Department of Radiation Oncology Ospedale Di Vicenza, Viale Rodolfi, Vicenza, 36100, Italy
| |
Collapse
|
17
|
Dosimetric Characterization of Small Radiotherapy Electron Beams Collimated by Circular Applicators with the New Microsilicon Detector. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
High-energy small electron beams, generated by linear accelerators, are used for radiotherapy of localized superficial tumours. The aim of the present study is to assess the dosimetric performance under small radiation therapy electron beams of the novel PTW microSilicon detector compared to other available dosimeters. Relative dose measurements of circular fields with 20, 30, 40, and 50 mm aperture diameters were performed for electron beams generated by an Elekta Synergy linac, with energy between 4 and 12 MeV. Percentage depth dose, transverse profiles, and output factors, normalized to the 10 × 10 cm2 reference field, were measured. All dosimetric data were collected in a PTW MP3 motorized water phantom, at SSD of 100 cm, by using the novel PTW microSilicon detector. The PTW diode E and the PTW microDiamond were also used in all beam apertures for benchmarking. Data for the biggest field size were also measured by the PTW Advanced Markus ionization chamber. Measurements performed by the microSilicon are in good agreement with the reference values for all the tubular applicators and beam energies within the stated uncertainties. This confirms the reliability of the microSilicon detector for relative dosimetry of small radiation therapy electron beams collimated by circular applicators.
Collapse
|
18
|
Lee YC, Kim Y. Field output correction factors of stereotactic cones for a diode detector: Dependence on cone size, measurement setup, reference field size and photon energy. JOURNAL OF RADIOSURGERY AND SBRT 2022; 8:127-136. [PMID: 36275130 PMCID: PMC9489070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/18/2021] [Indexed: 01/03/2023]
Abstract
This study investigated if field output correction factors (FOCFs) of Varian stereotactic cones for Edge detectorTM had dependence on cone size, measurement setup, reference field size and/or photon energy. Field output factors (FOFs) of stereotactic cones were measured at three depths (1.5 cm, 5 cm and 10 cm) in two different setups (source-to-surface distance (SSD) and source-to-axis distance (SAD)) with two photon energies (6 MV and 6 MV flattening filter free) using the Edge detector and Exradin® W2 scintillator. Two reference fields (10 × 10 cm2 and 4 × 4 cm2) were chosen. FOCFs for the Edge detector were determined by calculating FOFW2/FOFEdge and compared among cones and between depths, setups, reference fields and energies. It is concluded that FOCFs for the Edge detector have dependence on cone size, SSD/SAD setup and energy for small cones, but do not have dependence on depth and reference field size.
Collapse
Affiliation(s)
- Yongsook C. Lee
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Yongbok Kim
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
19
|
Georgiou G, Kumar S, Würfel JU, Gilmore M, Underwood TSA, Rowbottom CG, Fenwick JD. The PTW microSilicon diode: Performance in small 6 and 15 MV photon fields and utility of density compensation. Med Phys 2021; 48:8062-8074. [PMID: 34725831 DOI: 10.1002/mp.15329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022] Open
Abstract
PURPOSE We have experimentally and computationally characterized the PTW microSilicon 60023-type diode's performance in 6 and 15 MV photon fields ≥5 × 5 mm2 projected to isocenter. We tested the detector on- and off-axis at 5 and 15 cm depths in water, and investigated whether its response could be improved by including within it a thin airgap. METHODS Experimentally, detector readings were taken in fields generated by a Varian TrueBeam linac and compared with doses-to-water measured using Gafchromic film and ionization chambers. An unmodified 60023-type diode was tested along with detectors modified to include 0.6, 0.8, and 1.0 mm thick airgaps. Computationally, doses absorbed by water and detectors' sensitive volumes were calculated using the EGSnrc/BEAMnrc Monte Carlo radiation transport code. Detector response was characterized using k Q c l i n , 4 cm f c l i n , 4 cm , a factor that corrects for differences in the ratio of dose-to-water to detector reading between small fields and the reference condition, in this study 5 cm deep on-axis in a 4 × 4 cm2 field. RESULTS The greatest errors in measurements of small field doses made using uncorrected readings from the unmodified 60023-type detector were over-responses of 2.6% ± 0.5% and 5.3% ± 2.0% determined computationally and experimentally, relative to the reading-per-dose in the reference field. Corresponding largest errors for the earlier 60017-type detector were 11.9% ± 0.6% and 11.7% ± 1.4% over-responses. Adding even the thinnest, 0.6 mm, airgap to the 60023-type detector over-corrected it, leading to under-responses of up to 4.8% ± 0.6% and 5.0% ± 1.8% determined computationally and experimentally. Further, Monte Carlo calculations indicate that a detector with a 0.3 mm airgap would read correctly to within 1.3% on-axis. The ratio of doses at 15 and 5 cm depths in water in a 6 MV 4 × 4 cm2 field was measured more accurately using the unmodified 60023-type detector than using the 60017-type detector, and was within 0.3% of the ratio measured using an ion chamber. The 60023-type diode's sensitivity also varied negligibly as dose-rate was reduced from 13 to 4 Gy min-1 by decreasing the linac pulse repetition frequency, whereas the sensitivity of the 60017-type detector fell by 1.5%. CONCLUSIONS The 60023-type detector performed well in small fields across a wide range of beam energies, field sizes, depths, and off-axis positions. Its response can potentially be further improved by adding a thin, 0.3 mm, airgap.
Collapse
Affiliation(s)
- Georgios Georgiou
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Physics, Clatterbridge Cancer Centre, Wirral, UK.,Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
| | - Sudhir Kumar
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Martyn Gilmore
- Department of Physics, Clatterbridge Cancer Centre, Wirral, UK
| | - Tracy S A Underwood
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carl G Rowbottom
- Department of Physics, Clatterbridge Cancer Centre, Wirral, UK.,Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
| | - John D Fenwick
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.,Department of Physics, Clatterbridge Cancer Centre, Wirral, UK
| |
Collapse
|
20
|
Akino Y, Das IJ, Fujiwara M, Kaneko A, Masutani T, Mizuno H, Isohashi F, Suzuki O, Seo Y, Tamari K, Ogawa K. Characteristics of microSilicon diode detector for electron beam dosimetry. JOURNAL OF RADIATION RESEARCH 2021:rrab085. [PMID: 34559877 DOI: 10.1093/jrr/rrab085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/31/2021] [Indexed: 06/13/2023]
Abstract
A microSilicon™ (PTW type 60023), a new unshielded diode detector succeeding Diode E (model 60017, PTW), was characterized for electron beam dosimetry and compared with other detectors. Electron beams generated from a TrueBeam linear accelerator were measured using the microSilicon, Diode E, and microDiamond synthetic single-crystal diamond detector. Positional accuracy of microSilicon was measured by data collected in air and water. The percent depth dose (PDD), off-center ratio (OCR), dose-response linearity, dose rate dependence, and cone factors were evaluated. The PDDs were compared with data measured using a PPC40 plane-parallel ionization chamber. The maximum variations of depth of 50% and 90% of the maximum dose, and practical depth among all detectors and energies were 0.9 mm. The maximum variations of the bremsstrahlung dose among all detectors and energies were within 0.3%. OCR showed good agreement within 1% for the flat and tail regions. The microSilicon detector showed a penumbra width similar to microDiamond, whereas Diode E showed the steepest penumbra shape. All detectors showed good dose-response linearity and stability against the dose rate; only Diode E demonstrated logarithmic dose rate dependency. The cone factor measured with microSilicon was within ±1% for all energies and cone sizes. We demonstrated that the characteristics of microSilicon is suitable for electron beam dosimetry. The microSilicon detector can be a good alternative for electron beam dosimetry in terms of providing an appropriate PDD curve without corrections, high spatial resolution for OCR measurements and cone factors.
Collapse
Affiliation(s)
- Yuichi Akino
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka, 565-0814, Japan
| | - Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Masateru Fujiwara
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka, 565-0814, Japan
| | - Akari Kaneko
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka, 565-0814, Japan
| | - Takashi Masutani
- Department of Radiation Oncology, Suita Tokushukai Hospital, Suita, Osaka, 565-0814, Japan
| | - Hirokazu Mizuno
- Department of Central Radiology, Osaka Rosai Hospital, Sakai, Osaka, 591-8025, Japan
| | - Fumiaki Isohashi
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Osamu Suzuki
- Osaka Heavy Ion Therapy Center, Osaka, 540-0008, Japan
| | - Yuji Seo
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Keisuke Tamari
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
21
|
Das IJ, Francescon P, Moran JM, Ahnesjö A, Aspradakis MM, Cheng CW, Ding GX, Fenwick JD, Saiful Huq M, Oldham M, Reft CS, Sauer OA. Report of AAPM Task Group 155: Megavoltage photon beam dosimetry in small fields and non-equilibrium conditions. Med Phys 2021; 48:e886-e921. [PMID: 34101836 DOI: 10.1002/mp.15030] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/06/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Small-field dosimetry used in advance treatment technologies poses challenges due to loss of lateral charged particle equilibrium (LCPE), occlusion of the primary photon source, and the limited choice of suitable radiation detectors. These challenges greatly influence dosimetric accuracy. Many high-profile radiation incidents have demonstrated a poor understanding of appropriate methodology for small-field dosimetry. These incidents are a cause for concern because the use of small fields in various specialized radiation treatment techniques continues to grow rapidly. Reference and relative dosimetry in small and composite fields are the subject of the International Atomic Energy Agency (IAEA) dosimetry code of practice that has been published as TRS-483 and an AAPM summary publication (IAEA TRS 483; Dosimetry of small static fields used in external beam radiotherapy: An IAEA/AAPM International Code of Practice for reference and relative dose determination, Technical Report Series No. 483; Palmans et al., Med Phys 45(11):e1123, 2018). The charge of AAPM task group 155 (TG-155) is to summarize current knowledge on small-field dosimetry and to provide recommendations of best practices for relative dose determination in small megavoltage photon beams. An overview of the issue of LCPE and the changes in photon beam perturbations with decreasing field size is provided. Recommendations are included on appropriate detector systems and measurement methodologies. Existing published data on dosimetric parameters in small photon fields (e.g., percentage depth dose, tissue phantom ratio/tissue maximum ratio, off-axis ratios, and field output factors) together with the necessary perturbation corrections for various detectors are reviewed. A discussion on errors and an uncertainty analysis in measurements is provided. The design of beam models in treatment planning systems to simulate small fields necessitates special attention on the influence of the primary beam source and collimating devices in the computation of energy fluence and dose. The general requirements for fluence and dose calculation engines suitable for modeling dose in small fields are reviewed. Implementations in commercial treatment planning systems vary widely, and the aims of this report are to provide insight for the medical physicist and guidance to developers of beams models for radiotherapy treatment planning systems.
Collapse
Affiliation(s)
- Indra J Das
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paolo Francescon
- Department of Radiation Oncology, Ospedale Di Vicenza, Vicenza, Italy
| | - Jean M Moran
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maria M Aspradakis
- Institute of Radiation Oncology, Cantonal Hospital of Graubünden, Chur, Switzerland
| | - Chee-Wai Cheng
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John D Fenwick
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh, School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mark Oldham
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Chester S Reft
- Department of Radiation Oncology, University of Chicago, Chicago, IL, USA
| | - Otto A Sauer
- Department of Radiation Oncology, Klinik fur Strahlentherapie, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Akino Y, Okamura K, Das IJ, Isohashi F, Seo Y, Tamari K, Hirata T, Hayashi K, Inoue S, Ogawa K. Technical Note: Characteristics of a microSilicon X shielded diode detector for photon beam dosimetry. Med Phys 2021; 48:2004-2009. [DOI: 10.1002/mp.14639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yuichi Akino
- Oncology Center Osaka University Hospital 2‐2 (D10) Yamadaoka, Suita Osaka565‐0871Japan
| | - Keita Okamura
- Department of Medical Technology Osaka University Hospital 2‐15 Yamadaoka, Suita Osaka565‐0871Japan
| | - Indra J. Das
- Department of Radiation Oncology Northwestern Memorial HospitalNorthwestern University Feinberg School of Medicine 251 East Huron Street, Galter Pavilion Chicago ILLC‐17860611USA
| | - Fumiaki Isohashi
- Department of Radiation Oncology Osaka University Graduate School of Medicine 2‐2 (D10) Yamadaoka, Suita Osaka565‐0871Japan
| | - Yuji Seo
- Department of Radiation Oncology Osaka University Graduate School of Medicine 2‐2 (D10) Yamadaoka, Suita Osaka565‐0871Japan
| | - Keisuke Tamari
- Department of Radiation Oncology Osaka University Graduate School of Medicine 2‐2 (D10) Yamadaoka, Suita Osaka565‐0871Japan
| | - Takero Hirata
- Department of Radiation Oncology Osaka University Graduate School of Medicine 2‐2 (D10) Yamadaoka, Suita Osaka565‐0871Japan
| | - Kazuhiko Hayashi
- Department of Radiation Oncology Osaka University Graduate School of Medicine 2‐2 (D10) Yamadaoka, Suita Osaka565‐0871Japan
| | - Shinichi Inoue
- Department of Medical Technology Osaka University Hospital 2‐15 Yamadaoka, Suita Osaka565‐0871Japan
| | - Kazuhiko Ogawa
- Department of Radiation Oncology Osaka University Graduate School of Medicine 2‐2 (D10) Yamadaoka, Suita Osaka565‐0871Japan
| |
Collapse
|