1
|
Xu P, Yu Y, Wu P. Role of microglia in brain development after viral infection. Front Cell Dev Biol 2024; 12:1340308. [PMID: 38298216 PMCID: PMC10825034 DOI: 10.3389/fcell.2024.1340308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Microglia are immune cells in the brain that originate from the yolk sac and enter the developing brain before birth. They play critical roles in brain development by supporting neural precursor proliferation, synaptic pruning, and circuit formation. However, microglia are also vulnerable to environmental factors, such as infection and stress that may alter their phenotype and function. Viral infection activates microglia to produce inflammatory cytokines and anti-viral responses that protect the brain from damage. However, excessive or prolonged microglial activation impairs brain development and leads to long-term consequences such as autism spectrum disorder and schizophrenia spectrum disorder. Moreover, certain viruses may attack microglia and deploy them as "Trojan horses" to infiltrate the brain. In this brief review, we describe the function of microglia during brain development and examine their roles after infection through microglia-neural crosstalk. We also identify limitations for current studies and highlight future investigated questions.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| | - Yongjia Yu
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ping Wu
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
2
|
Bai R, Song C, Lv S, Chang L, Hua W, Weng W, Wu H, Dai L. Role of microglia in HIV-1 infection. AIDS Res Ther 2023; 20:16. [PMID: 36927791 PMCID: PMC10018946 DOI: 10.1186/s12981-023-00511-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The usage of antiretroviral treatment (ART) has considerably decreased the morbidity and mortality related to HIV-1 (human immunodeficiency virus type 1) infection. However, ART is ineffective in eradicating the virus from the persistent cell reservoirs (e.g., microglia), noticeably hindering the cure for HIV-1. Microglia participate in the progression of neuroinflammation, brain aging, and HIV-1-associated neurocognitive disorder (HAND). Some methods have currently been studied as fundamental strategies targeting microglia. The purpose of this study was to comprehend microglia biology and its functions in HIV-1 infection, as well as to look into potential therapeutic approaches targeting microglia.
Collapse
Affiliation(s)
- Ruojing Bai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Chengcheng Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyun Lv
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Linlin Chang
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wei Hua
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wenjia Weng
- Department of Dermatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Lili Dai
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
3
|
Whitelaw BS, Tanny S, Johnston CJ, Majewska AK, O'Banion MK, Marples B. In Vivo Imaging of the Microglial Landscape After Whole Brain Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:1066-1071. [PMID: 34314813 DOI: 10.1016/j.ijrobp.2021.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Whole brain radiation therapy (WBRT) is an important treatment for patients with multiple brain metastases, but can also cause cognitive deterioration. Microglia, the resident immune cells of the brain, promote a proinflammatory environment and likely contribute to cognitive decline after WBRT. To investigate the temporal dynamics of the microglial reaction in individual mice to WBRT, we developed a novel in vivo experimental model using cranial window implants and longitudinal imaging. METHODS AND MATERIALS Chronic cranial windows were surgically implanted over the somatosensory cortex of transgenic Cx3cr1-enhanced green fluorescent protein (EGFP)/+ C57BL/6 mice, where microglia were fluorescently tagged with EGFP. Cx3cr1-EGFP/+ mice were also crossed with Thy1-YFP mice to fluorescently dual label microglia and subsets of neurons throughout the brain. Three weeks after window implantation and recovery, computed tomography image guided WBRT was delivered (single dose 10 Gy using two 5 Gy parallel-opposed lateral beams). Radiation dosing was confirmed using radiochromic film. Then, in vivo 2-photon microscopy was used to longitudinally image the microglial landscape and microglial motility at 7 days and 16 days after irradiation in the same mice. RESULTS Film dosimetry confirmed the average delivered dose per beam at midpoint was accurate within 2%, with no attenuation from the window frame. By 7 days after WBRT, significant changes in the microglial landscape were seen, characterized by apparent loss of microglial cells (20%) and significant rearrangements of microglial location with time after irradiation (36% of cells not found in original location). CONCLUSIONS Using longitudinal in vivo 2-photon imaging, this study demonstrated the feasibility of imaging microglia-neuron interactions and defining how microglia react to WBRT in the same mouse. Having demonstrated utility of the model, this experimental paradigm can be used to investigate the dynamic changes of many different brain cell types and their interactions after WBRT and uncover the underlying cellular mechanisms of WBRT-induced cognitive decline.
Collapse
Affiliation(s)
| | | | | | - Ania K Majewska
- Department of Neuroscience; Center for Visual Science; Del Monte Neuroscience Institute, University of Rochester, Rochester, New York
| | - M Kerry O'Banion
- Department of Neuroscience; Department of Neurology; Del Monte Neuroscience Institute, University of Rochester, Rochester, New York
| | | |
Collapse
|
4
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
5
|
Okonogi N, Suzuki Y, Sato H, Oike T, Yoshimoto Y, Mimura K, Noda SE, Okamoto M, Tamaki T, Morokoshi Y, Hasegawa S, Ohgaki H, Yokoo H, Nakano T. In Reply to Minhas and Tran. Int J Radiat Oncol Biol Phys 2019; 104:223-224. [PMID: 30967232 DOI: 10.1016/j.ijrobp.2019.01.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/16/2019] [Accepted: 01/18/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Noriyuki Okonogi
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan; Department of Advanced Cancer Immunotherapy, Fukushima Medical University School of Medicine, Fukushima, Japan; Department of Progressive DOHaD Research, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukie Morokoshi
- Radiation and Cancer Biology Team, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sumitaka Hasegawa
- Radiation and Cancer Biology Team, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroko Ohgaki
- Institute of Neuropathology, Charité Medical University, Berlin, Germany
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
6
|
Duan J, Gao Y, Zhang X, Wang X, Wang B, Meng X, Yoshikai Y, Wang Y, Sun X. CD30 ligand deficiency accelerates glioma progression by promoting the formation of tumor immune microenvironment. Int Immunopharmacol 2019; 71:350-360. [PMID: 30952099 DOI: 10.1016/j.intimp.2019.03.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/01/2023]
Abstract
CD30 ligand (CD30L, CD153), belonging to the tumor necrosis factor superfamily, has been reported to act as an immune regulator mainly in several autoimmune diseases and Hodgkin's lymphoma. However, little is known about its regulation in the glioma microenvironment. In this study, using a GL261 mouse glioma model, we showed that CD30L deficiency in the host accelerated glioma growth and reduced mouse survival, which might be associated with the accumulation of tumor-infiltrating immune cells, especially tumor-associated macrophages, myeloid-derived suppressor cells and CD8+ PD-1+ T cells. Moreover, CD30L deficiency resulted in distinct subsets of tumor-associated macrophages compared with those of wild-type mice. Furthermore, compared with those of wild-type mice, tumor-associated macrophages and microglia in CD30L-deficient mice adopted a more pro-tumorigenic phenotype within tumors. CD8+ T cells in CD30L-deficient mice decreased the expression of ki-67. Therefore, these results suggest that CD30L deficiency promotes the exhaustion of CD8+ T cells and the infiltration of tumor-associated macrophages and microglia. Our findings provide evidence for a new potential immunotherapy for glioma targeting CD30/CD30L signaling.
Collapse
Affiliation(s)
- Jin Duan
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Yaxian Gao
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China; Department of Immunology, Chengde Medical College, Chengde 067000, Hebei Province, PR China
| | - Xiaoqing Zhang
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Xiao Wang
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning Province, PR China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, Liaoning Province, PR China
| | - Yasunobu Yoshikai
- Division of Host Defense, Center for Prevention of Infectious Disease, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xun Sun
- Department of Immunology, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
7
|
Okonogi N, Suzuki Y, Sato H, Oike T, Yoshimoto Y, Mimura K, Noda SE, Okamoto M, Tamaki T, Morokoshi Y, Hasegawa S, Ohgaki H, Yokoo H, Nakano T. Combination Therapy of Intravenously Injected Microglia and Radiation Therapy Prolongs Survival in a Rat Model of Spontaneous Malignant Glioma. Int J Radiat Oncol Biol Phys 2018; 102:601-608. [PMID: 29928947 DOI: 10.1016/j.ijrobp.2018.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/26/2018] [Accepted: 06/09/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study was to investigate the efficacy of combination therapy with intravenously injected microglia (MI) and radiation therapy (RT) for malignant glioma in rats. METHODS AND MATERIALS Transgenic rats expressing v-erbB and spontaneously developing malignant glioma were used. The rats were divided into 4 groups: control (n = 19), RT alone (n = 10), MI alone (n = 9), and combination MI and RT (MI + RT) (n = 10). Cranial x-ray irradiation (8 Gy per fraction; once per week) was performed at 50 and 51 weeks of age. Cultured rat microglial cells (5 × 106 cells/rat) were intravenously injected via the tail vein within 30 minutes after RT. RESULTS No evidence of side effects, including thrombosis or graft-versus-host disease, was noted. Rats treated with RT alone, MI alone, MI + RT, and control survived 60.9, 56.3, 66.0, and 56.1 weeks, respectively. The survival period of MI + RT was significantly longer than that of control (P = .014), MI alone (P = .027), and RT alone (P = .049). Immunohistochemical analysis showed a significantly higher number of tumor-infiltrated MI in the RT alone (P = .041) and MI + RT groups (P = .014) compared with the control. Significantly more CD8-positive lymphocytes were observed in the MI + RT group (P = .049) compared with the control. A positive correlation was found between the number of MI and CD8-positive lymphocytes (R2 = 0.556). A positive correlation was also found between CD8-positive lymphocytes and survival periods (R2 = 0.460). CONCLUSIONS MI + RT increased infiltrated MI and CD8-positive T cells and prolonged survival in transgenic rats that spontaneously developed malignant glioma. Combined immunocellular therapy and RT may provide a novel treatment strategy for malignant glioma.
Collapse
Affiliation(s)
- Noriyuki Okonogi
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan; Department of Advanced Cancer Immunotherapy, Fukushima Medical University School of Medicine, Fukushima, Japan; Department of Progressive DOHaD Research, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukie Morokoshi
- Radiation and Cancer Biology Team, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sumitaka Hasegawa
- Radiation and Cancer Biology Team, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroko Ohgaki
- Institute of Neuropathology, Charité Medical University Berlin, Germany
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
8
|
Migration-based selections of antibodies that convert bone marrow into trafficking microglia-like cells that reduce brain amyloid β. Proc Natl Acad Sci U S A 2018; 115:E372-E381. [PMID: 29295920 PMCID: PMC5777004 DOI: 10.1073/pnas.1719259115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A migration-based selection system is used to identify antibodies from combinatorial libraries that induce stem cells to both differentiate and selectively traffic to different tissues in adult animals. Significantly, a single agonist antibody induces microglia-like cells, which have the capacity to migrate to the brain and decrease amyloid beta deposition in the brain. One goal of regenerative medicine is to repair damaged tissue. This requires not only generating new cells of the proper phenotype, but also selecting for those that properly integrate into sites of injury. In our laboratory we are using a cell-migration–based in vivo selection system to generate antibodies that induce cells to both differentiate and selectively localize to different tissues. Here we describe an antibody that induces bone marrow stem cells to differentiate into microglia-like cells that traffic to the brain where they organize into typical networks. Interestingly, in the APP/PS1 Alzheimer’s disease mouse model, these induced microglia-like cells are found at sites of plaque formation and significantly reduce their number. These results raise the intriguing question as to whether one can use such antibody-induced differentiation of stem cells to essentially recapitulate embryogenesis in adults to discover cells that can regenerate damaged organ systems.
Collapse
|
9
|
Miyauchi JT, Caponegro MD, Chen D, Choi MK, Li M, Tsirka SE. Deletion of Neuropilin 1 from Microglia or Bone Marrow-Derived Macrophages Slows Glioma Progression. Cancer Res 2017; 78:685-694. [PMID: 29097606 DOI: 10.1158/0008-5472.can-17-1435] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Glioma-associated microglia and macrophages (GAM), which infiltrate high-grade gilomas, constitute a major cellular component of these lesions. GAM behavior is influenced by tumor-derived cytokines that suppress initial antitumorigenic properties, causing them to support tumor growth and to convert and suppress adaptive immune responses to the tumor. Mice that lack the transmembrane receptor neuropilin-1 (Nrp1), which modulates GAM immune polarization, exhibit a decrease in glioma volumes and neoangiogenesis and an increase in antitumorigenic GAM infiltrate. Here we show that replacing the peripheral macrophage populations of wild-type mice with Nrp1-depleted bone marrow-derived macrophages (BMDM) confers resistance to the development of glioma. This resistance occurred in a similar fashion seen in mice in which all macrophages lacked Nrp1 expression. Tumors had decreased volumes, decreased vascularity, increased CTL infiltrate, and Nrp1-depleted BMDM adopted a more antitumorigenic phenotype relative to wild-type GAMs within the tumors. Mice with Nrp1-deficient microglia and wild-type peripheral macrophages showed resistance to glioma development and had higher microglial infiltrate than mice with wild-type GAMs. Our findings show how manipulating Nrp1 in either peripheral macrophages or microglia reprograms their phenotype and their pathogenic roles in tumor neovascularization and immunosuppression.Significance: This study highlights the proangiogenic receptor neuropilin 1 in macrophages and microglial cells in gliomas as a pivotal modifier of tumor neovascularization and immunosuppression, strengthening emerging evidence of the functional coordination of these two fundamental traits of cancer. Cancer Res; 78(3); 685-94. ©2017 AACR.
Collapse
Affiliation(s)
| | - Michael D Caponegro
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Danling Chen
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Matthew K Choi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Melvin Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
10
|
Menzel F, Kaiser N, Haehnel S, Rapp F, Patties I, Schöneberg N, Haimon Z, Immig K, Bechmann I. Impact of X-irradiation on microglia. Glia 2017; 66:15-33. [DOI: 10.1002/glia.23239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nicole Kaiser
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Susann Haehnel
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Felicitas Rapp
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ina Patties
- Department of Radiation Therapy; Leipzig University; Leipzig Germany
| | | | - Zhana Haimon
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Kerstin Immig
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University; Leipzig Germany
| |
Collapse
|
11
|
Meller J, Chen Z, Dudiki T, Cull RM, Murtazina R, Bal SK, Pluskota E, Stefl S, Plow EF, Trapp BD, Byzova TV. Integrin-Kindlin3 requirements for microglial motility in vivo are distinct from those for macrophages. JCI Insight 2017; 2:93002. [PMID: 28570266 PMCID: PMC5453700 DOI: 10.1172/jci.insight.93002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022] Open
Abstract
Microglia play a critical role in the development and homeostasis of the CNS. While mobilization of microglia is critical for a number of pathologies, understanding of the mechanisms of their migration in vivo is limited and often based on similarities to macrophages. Kindlin3 deficiency as well as Kindlin3 mutations of integrin-binding sites abolish both integrin inside-out and outside-in signaling in microglia, thereby resulting in severe deficiencies in cell adhesion, polarization, and migration in vitro, which are similar to the defects observed in macrophages. In contrast, while Kindlin3 mutations impaired macrophage mobilization in vivo, they had no effect either on the population of microglia in the CNS during development or on mobilization of microglia and subsequent microgliosis in a model of multiple sclerosis. At the same time, acute microglial response to laser-induced injury was impaired by the lack of Kindlin3-integrin interactions. Based on 2-photon imaging of microglia in the brain, Kindlin3 is required for elongation of microglial processes toward the injury site and formation of phagosomes in response to brain injury. Thus, while Kindlin3 deficiency in human subjects is not expected to diminish the presence of microglia within CNS, it might delay the recovery process after injury, thereby exacerbating its complications.
Collapse
Affiliation(s)
| | - Zhihong Chen
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | - Bruce D Trapp
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
12
|
Qi X, Pay SL, Yan Y, Thomas J, Lewin AS, Chang LJ, Grant MB, Boulton ME. Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration. Mol Ther 2017; 25:917-927. [PMID: 28202390 PMCID: PMC5383551 DOI: 10.1016/j.ymthe.2017.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/18/2023] Open
Abstract
Bone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis. Importantly, electroretinography and optokinetic response tests confirmed that visual function was significantly improved. Mice treated with non-modified BMDCs or BMDCs pre-programmed with LacZ did not exhibit significant improvement in visual deficit. RPE65-BMDC administration was most effective in early disease, when visual function and retinal morphology returned to near normal, and less effective in late-stage disease. This experimental paradigm offers a minimally invasive cellular therapy that can be given systemically overcoming the need for invasive ocular surgery and offering the potential to arrest progression in early AMD and other RPE-based diseases.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - S Louise Pay
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yuanqing Yan
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - James Thomas
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Lung-Ji Chang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | - Maria B Grant
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael E Boulton
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
13
|
Lowery FJ, Yu D. Brain metastasis: Unique challenges and open opportunities. Biochim Biophys Acta Rev Cancer 2016; 1867:49-57. [PMID: 27939792 DOI: 10.1016/j.bbcan.2016.12.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/29/2022]
Abstract
The metastasis of cancer to the central nervous system (CNS) remains a devastating clinical reality, carrying an estimated survival time of less than one year in spite of recent therapeutic breakthroughs for other disease contexts. Advances in brain metastasis research are hindered by a number of factors, including its complicated nature and the difficulty of modeling metastatic cancer growth in the unique brain microenvironment. In this review, we will discuss the clinical challenge, and compare the merits and limitations of the available models for brain metastasis research. Additionally, we will specifically address current knowledge on how brain metastases take advantage of the unique brain environment to benefit their own growth. Finally, we will explore the distinctive metabolic and chemical characteristics of the brain and how these paradoxically represent barriers to establishment of brain metastasis, but also provide ample supplies for metastatic cells' growth in the brain. We envision that multi-disciplinary innovative approaches will open opportunities for the field to make breakthroughs in tackling unique challenges of brain metastasis.
Collapse
Affiliation(s)
- Frank J Lowery
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Friend or Foe? Resident Microglia vs Bone Marrow-Derived Microglia and Their Roles in the Retinal Degeneration. Mol Neurobiol 2016; 54:4094-4112. [PMID: 27318678 DOI: 10.1007/s12035-016-9960-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/06/2016] [Indexed: 01/10/2023]
Abstract
Microglia are immune cells in the central nervous system (CNS) that originate from the yolk sac in an embryo. The renewal of the microglia pool in the adult eye consists of two components. In addition to the self-proliferation of resident cells, microglia in the CNS also derive from the bone marrow (BM). BM-derived cells pass through the blood-brain barrier (BBB) or blood-retina barrier (BRB) and differentiate into microglia under specific conditions which involves a complex mechanism. Recent studies have widely investigated the role of resident microglia and BM-derived microglia in the retinal degenerative disease. Both two cell types play dual roles and share many similar functions. However, resident microglia tend to polarize to the M1 phenotype which is pro-inflammatory and neurotoxic, whereas BM-derived microglia mainly polarize to the neuroprotective M2 phenotype in retinal degeneration. The molecular mechanism that underlines the invasion of peripheral cells has led to extensive discussions. In addition to the BBB and BRB disruption, many signaling pathways are involved in this process. Based on these studies, we discuss the roles of these two types of microglia in retinal degeneration disease and the potential clinical application of BM-derived microglia, which may benefit future therapies.
Collapse
|
15
|
Leovsky C, Fabian C, Naaldijk Y, Jäger C, Jang HJ, Böhme J, Rudolph L, Stolzing A. Biodistribution of in vitro-derived microglia applied intranasally and intravenously to mice: effects of aging. Cytotherapy 2016; 17:1617-26. [PMID: 26432561 DOI: 10.1016/j.jcyt.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/13/2015] [Accepted: 07/30/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS The age of both the donor and the recipient has a potential influence on the efficacy of various cell therapies, but the underlying mechanisms are still being charted. We studied the effect of donor and recipient age in the context of microglia migration. METHODS Microglia were in vitro--differentiated from bone marrow of young (3 months) and aged (12 months) mice and transplanted into young (∼ 3 months) and aged (∼ 17 months) C57BL/6 mice (n = 25) through intravenous and intranasal application routes. Recipients were not immune-suppressed or irradiated. Transplanted microglia were tracked through the use of a sex-mismatched setup or histologically with the use of cells from enhanced green fluorescent protein enhanced green fluorescent protein transgenic mice. RESULTS No acute rejections or transplant-associated toxicity was observed. After 10 days, both intravenously and intranasally transplanted cells were detected in the brain. Transplanted cells were also found in the blood and the lymph system. The applied cells were also tracked in lungs and kidney but only after intravenous injection subjected to a "pulmonary first-pass effect." After 28 days, intravenously delivered cells were also found in the bone marrow and other organs, especially in aged recipients. Whereas in young recipients the transplanted microglia did not appear to persist, in aged brains the transplanted cells could still be identified up to 28 days after transplantation. However, when cells from aged donors were used, no signals of transplanted cells could be detected in the recipients. CONCLUSIONS This study establishes proof of principle that in vitro--derived microglia from young but not from aged donors, intravenously or intranasally transplanted, migrate to the brain in young and aged recipients.
Collapse
Affiliation(s)
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Yahaira Naaldijk
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Carsten Jäger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Hwa Jin Jang
- Korea Ministry of Food and Drug Safety (MFDS), Hangul, Korea
| | - Josephine Böhme
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Lukas Rudolph
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Alexandra Stolzing
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany; University of Loughborough, Centre for Biological Engineering, Wolfson School of Material and Manufacturing Engineering, Loughborough, United Kingdom.
| |
Collapse
|
16
|
Moravan MJ, Olschowka JA, Williams JP, O'Banion MK. Brain radiation injury leads to a dose- and time-dependent recruitment of peripheral myeloid cells that depends on CCR2 signaling. J Neuroinflammation 2016; 13:30. [PMID: 26842770 PMCID: PMC4738790 DOI: 10.1186/s12974-016-0496-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cranial radiotherapy is used to treat tumors of the central nervous system (CNS), as well as non-neoplastic conditions such as arterio-venous malformations; however, its use is limited by the tolerance of adjacent normal CNS tissue, which can lead to devastating long-term sequelae for patients. Despite decades of research, the underlying mechanisms by which radiation induces CNS tissue injury remain unclear. Neuroinflammation and immune cell infiltration are a recognized component of the CNS radiation response; however, the extent and mechanisms by which bone marrow-derived (BMD) immune cells participate in late radiation injury is unknown. Thus, we set out to better characterize the response and tested the hypothesis that C-C chemokine receptor type 2 (CCR2) signaling was required for myeloid cell recruitment following brain irradiation. METHODS We used young adult C57BL/6 male bone marrow chimeric mice created with donor mice that constitutively express enhanced green fluorescent protein (eGFP). The head was shielded to avoid brain radiation exposure during chimera construction. Radiation dose and time response studies were conducted in wild-type chimeras, and additional experiments were performed with chimeras created using donor marrow from CCR2 deficient, eGFP-expressing mice. Infiltrating eGFP+ cells were identified and quantified using immunofluorescent microscopy. RESULTS Brain irradiation resulted in a dose- and time-dependent infiltration of BMD immune cells (predominately myeloid) that began at 1 month and persisted until 6 months following ≥15 Gy brain irradiation. Infiltration was limited to areas that were directly exposed to radiation. CCR2 signaling loss resulted in decreased numbers of infiltrating cells at 6 months that appeared to be restricted to cells also expressing major histocompatibility complex class II molecules. CONCLUSIONS The potential roles played by infiltrating immune cells are of current importance due to increasing interest in immunotherapeutic approaches for cancer treatment and a growing clinical interest in survivorship and quality of life issues. Our findings demonstrate that injury from brain radiation facilitates a dose- and time-dependent recruitment of BMD cells that persists for at least 6 months and, in the case of myeloid cells, is dependent on CCR2 signaling.
Collapse
Affiliation(s)
- Michael J Moravan
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - John A Olschowka
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Jacqueline P Williams
- Department of Radiation Oncology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
17
|
Nilsonne G, Tamm S, Månsson KNT, Åkerstedt T, Lekander M. Leukocyte telomere length and hippocampus volume: a meta-analysis. F1000Res 2015; 4:1073. [PMID: 26674112 PMCID: PMC4670011 DOI: 10.12688/f1000research.7198.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 12/28/2022] Open
Abstract
Leukocyte telomere length has been shown to correlate to hippocampus volume, but effect estimates differ in magnitude and are not uniformly positive. This study aimed primarily to investigate the relationship between leukocyte telomere length and hippocampus gray matter volume by meta-analysis and secondarily to investigate possible effect moderators. Five studies were included with a total of 2107 participants, of which 1960 were contributed by one single influential study. A random-effects meta-analysis estimated the effect to r = 0.12 [95% CI -0.13, 0.37] in the presence of heterogeneity and a subjectively estimated moderate to high risk of bias. There was no evidence that apolipoprotein E (APOE) genotype was an effect moderator, nor that the ratio of leukocyte telomerase activity to telomere length was a better predictor than leukocyte telomere length for hippocampus volume. This meta-analysis, while not proving a positive relationship, also is not able to disprove the earlier finding of a positive correlation in the one large study included in analyses. We propose that a relationship between leukocyte telomere length and hippocamus volume may be mediated by transmigrating monocytes which differentiate into microglia in the brain parenchyma.
Collapse
Affiliation(s)
- Gustav Nilsonne
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Tamm
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer N. T. Månsson
- Department of Behavioural Sciences and Learning, Linköping University, Linköping, Sweden
- PRIMA Psychiatry, Stockholm, Sweden
| | - Torbjörn Åkerstedt
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Larochelle A, Bellavance MA, Michaud JP, Rivest S. Bone marrow-derived macrophages and the CNS: An update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochim Biophys Acta Mol Basis Dis 2015; 1862:310-22. [PMID: 26432480 DOI: 10.1016/j.bbadis.2015.09.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is a very unique system with multiple features that differentiate it from systemic tissues. One of the most captivating aspects of its distinctive nature is the presence of the blood brain barrier (BBB), which seals it from the periphery. Therefore, to preserve tissue homeostasis, the CNS has to rely heavily on resident cells such as microglia. These pivotal cells of the mononuclear lineage have important and dichotomous roles according to various neurological disorders. However, certain insults can overwhelm microglia as well as compromising the integrity of the BBB, thus allowing the infiltration of bone marrow-derived macrophages (BMDMs). The use of myeloablation and bone marrow transplantation allowed the generation of chimeric mice to study resident microglia and infiltrated BMDM separately. This breakthrough completely revolutionized the way we captured these 2 types of mononuclear phagocytic cells. We now realize that microglia and BMDM exhibit distinct features and appear to perform different tasks. Since these cells are central in several pathologies, it is crucial to use chimeric mice to analyze their functions and mechanisms to possibly harness them for therapeutic purpose. This review will shed light on the advent of this methodology and how it allowed deciphering the ontology of microglia and its maintenance during adulthood. We will also compare the different strategies used to perform myeloablation. Finally, we will discuss the landmark studies that used chimeric mice to characterize the roles of microglia and BMDM in several neurological disorders. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Antoine Larochelle
- Neuroscience Laboratory, CHU de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Marc-André Bellavance
- Neuroscience Laboratory, CHU de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Jean-Philippe Michaud
- Neuroscience Laboratory, CHU de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Québec G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center, Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Blvd., Québec G1V 4G2, Canada.
| |
Collapse
|
19
|
Ashpole NM, Warrington JP, Mitschelen MC, Yan H, Sosnowska D, Gautam T, Farley JA, Csiszar A, Ungvari Z, Sonntag WE. Systemic influences contribute to prolonged microvascular rarefaction after brain irradiation: a role for endothelial progenitor cells. Am J Physiol Heart Circ Physiol 2014; 307:H858-68. [PMID: 25038144 DOI: 10.1152/ajpheart.00308.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whole brain radiation therapy (WBRT) induces profound cerebral microvascular rarefaction throughout the hippocampus. Despite the vascular loss and localized cerebral hypoxia, angiogenesis fails to occur, which subsequently induces long-term deficits in learning and memory. The mechanisms underlying the absence of vessel recovery after WBRT are unknown. We tested the hypotheses that vascular recovery fails to occur under control conditions as a result of loss of angiogenic drive in the circulation, chronic tissue inflammation, and/or impaired endothelial cell production/recruitment. We also tested whether systemic hypoxia, which is known to promote vascular recovery, reverses these chronic changes in inflammation and endothelial cell production/recruitment. Ten-week-old C57BL/6 mice were subjected to a clinical series of fractionated WBRT: 4.5-Gy fractions 2 times/wk for 4 wk. Plasma from radiated mice increased in vitro endothelial cell proliferation and adhesion compared with plasma from control mice, indicating that WBRT did not suppress the proangiogenic drive. Analysis of cytokine levels within the hippocampus revealed that IL-10 and IL-12(p40) were significantly increased 1 mo after WBRT; however, systemic hypoxia did not reduce these inflammatory markers. Enumeration of endothelial progenitor cells (EPCs) in the bone marrow and circulation indicated that WBRT reduced EPC production, which was restored with systemic hypoxia. Furthermore, using a bone marrow transplantation model, we determined that bone marrow-derived endothelial-like cells home to the hippocampus after systemic hypoxia. Thus, the loss of production and homing of EPCs have an important role in the prolonged vascular rarefaction after WBRT.
Collapse
Affiliation(s)
- Nicole M Ashpole
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Junie P Warrington
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Matthew C Mitschelen
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Han Yan
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Danuta Sosnowska
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tripti Gautam
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Julie A Farley
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Donald W. Reynolds Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and
| |
Collapse
|