1
|
Ruuskanen O, Dollner H, Luoto R, Valtonen M, Heinonen OJ, Waris M. Contraction of Respiratory Viral Infection During air Travel: An Under-Recognized Health Risk for Athletes. SPORTS MEDICINE - OPEN 2024; 10:60. [PMID: 38776030 PMCID: PMC11111432 DOI: 10.1186/s40798-024-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Air travel has an important role in the spread of viral acute respiratory infections (ARIs). Aircraft offer an ideal setting for the transmission of ARI because of a closed environment, crowded conditions, and close-contact setting. Numerous studies have shown that influenza and COVID-19 spread readily in an aircraft with one virus-positive symptomatic or asymptomatic index case. The numbers of secondary cases differ markedly in different studies most probably because of the wide variation of the infectiousness of the infector as well as the susceptibility of the infectees. The primary risk factor is sitting within two rows of an infectious passenger. Elite athletes travel frequently and are thus prone to contracting an ARI during travel. It is anecdotally known in the sport and exercise medicine community that athletes often contract ARI during air travel. The degree to which athletes are infected in an aircraft by respiratory viruses is unclear. Two recent studies suggest that 8% of Team Finland members traveling to major winter sports events contracted the common cold most probably during air travel. Further prospective clinical studies with viral diagnostics are needed to understand the transmission dynamics and to develop effective and socially acceptable preventive measures during air travel.
Collapse
Affiliation(s)
- Olli Ruuskanen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, PL 52, 20521, Turku, Finland
| | - Henrik Dollner
- Department of Clinical and Molecular Medicine, Children's Clinic, St. Olavs University Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Raakel Luoto
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, PL 52, 20521, Turku, Finland
| | | | - Olli J Heinonen
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Matti Waris
- Institute of Biomedicine, University of Turku and Department of Clinical Virology, Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
2
|
Rakover A, Galmiche S, Charmet T, Chény O, Omar F, David C, Martin S, Mailles A, Fontanet A. Source of SARS-CoV-2 infection: results from a series of 584,846 cases in France from October 2020 to August 2022. BMC Public Health 2024; 24:325. [PMID: 38287286 PMCID: PMC10826227 DOI: 10.1186/s12889-024-17772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND We aimed to study the source of infection for recently SARS-CoV-2-infected individuals from October 2020 to August 2022 in France. METHODS Participants from the nationwide ComCor case-control study who reported recent SARS-CoV-2 infection were asked to document the source and circumstances of their infection through an online questionnaire. Multivariable logistic regression was used to identify the factors associated with not identifying any source of infection. RESULTS Among 584,846 adults with a recent SARS-CoV-2 infection in France, 46.9% identified the source of infection and an additional 22.6% suspected an event during which they might have become infected. Known and suspected sources of infection were household members (30.8%), extended family (15.6%), work colleagues (15.0%), friends (11.0%), and possibly multiple/other sources (27.6%). When the source of infection was known, was not a household member, and involved a unique contact (n = 69,788), characteristics associated with transmission events were indoors settings (91.6%), prolonged (> 15 min) encounters (50.5%), symptomatic source case (64.9%), and neither the source of infection nor the participant wearing a mask (82.2%). Male gender, older age, lower education, living alone, using public transportation, attending places of public recreation (bars, restaurants, nightclubs), public gatherings, and cultural events, and practicing indoor sports were all independently associated with not knowing the source of infection. CONCLUSION Two-thirds of infections were attributed to interactions with close relatives, friends, or work colleagues. Extra-household indoor encounters without masks were commonly reported and represented avoidable circumstances of infection. TRIAL REGISTRATION ClinicalTrials.gov registration number: NCT04607941.
Collapse
Affiliation(s)
- Arthur Rakover
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France.
| | - Simon Galmiche
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France
- Sorbonne Université, Ecole Doctorale Pierre Louis de Santé Publique, Paris, France
| | - Tiffany Charmet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France
| | - Olivia Chény
- Institut Pasteur, Université Paris Cité, Centre for Translational Research, Paris, France
| | | | | | - Sophie Martin
- Caisse Nationale de L'Assurance Maladie, Paris, France
| | | | - Arnaud Fontanet
- Emerging Diseases Epidemiology Unit, Institut Pasteur, Université Paris Cité, 25 Rue du Docteur Roux, 75015, Paris, France
- Conservatoire National Des Arts Et Métiers, Unité PACRI, Paris, France
| |
Collapse
|
3
|
Rolfe RJ, Ryan ET, LaRocque RC. Travel Medicine. Ann Intern Med 2023; 176:ITC129-ITC144. [PMID: 37696033 DOI: 10.7326/aitc202309190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
International travel can cause new illness or exacerbate existing conditions. Because primary care providers are frequent sources of health advice to travelers, they should be familiar with destination-specific disease risks, be knowledgeable about travel and routine vaccines, be prepared to prescribe chemoprophylaxis and self-treatment regimens, and be aware of travel medicine resources. Primary care providers should recognize travelers who would benefit from referral to a specialized travel clinic for evaluation. Those requiring yellow fever vaccination, immunocompromised hosts, pregnant persons, persons with multiple comorbid conditions, or travelers with complex itineraries may warrant specialty referral.
Collapse
Affiliation(s)
- Robert J Rolfe
- Duke University School of Medicine, Durham, North Carolina (R.J.R.)
| | - Edward T Ryan
- Harvard Medical School, Boston, Massachusetts (E.T.R., R.C.L.)
| | | |
Collapse
|
4
|
Hui KPY, Chin AWH, Ehret J, Ng KC, Peiris M, Poon LLM, Wong KHM, Chan MCW, Hosegood I, Nicholls JM. Stability of SARS-CoV-2 on Commercial Aircraft Interior Surfaces with Implications for Effective Control Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6598. [PMID: 37623181 PMCID: PMC10454724 DOI: 10.3390/ijerph20166598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The COVID-19 pandemic from 2019 to 2022 devastated many aspects of life and the economy, with the commercial aviation industry being no exception. One of the major concerns during the pandemic was the degree to which the internal aircraft environment contributed to virus transmission between humans and, in particular, the stability of SARS-CoV-2 on contact surfaces in the aircraft cabin interior. METHOD In this study, the stability of various major strains of SARS-CoV-2 on interior aircraft surfaces was evaluated using the TCID50 assessment. RESULTS In contrast to terrestrial materials, SARS-CoV-2 was naturally less stable on common contact points in the aircraft interior, and, over a 4 h time period, there was a 90% reduction in culturable virus. Antiviral and surface coatings were extremely effective at mitigating the persistence of the virus on surfaces; however, their benefit was diminished by regular cleaning and were ineffective after 56 days of regular use and cleaning. Finally, successive strains of SARS-CoV-2 have not evolved to be more resilient to survival on aircraft surfaces. CONCLUSIONS We conclude that the mitigation strategies for SARS-CoV-2 on interior aircraft surfaces are more than sufficient, and epidemiological evidence over the past three years has not found that surface spread is a major route of transmission.
Collapse
Affiliation(s)
- Kenrie P. Y. Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - Alex W. H. Chin
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - John Ehret
- Qantas Airways Ltd., Qantas 10 Bourke Rd Mascot, Sydney, NSW 2020, Australia
| | - Ka-Chun Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - Leo L. M. Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - Karen H. M. Wong
- Electron Microscopy Unit, Queen Mary Hospital, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China
| | - Michael C. W. Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam HKG, Hong Kong SAR, China; (K.P.Y.H.)
- Centre for Immunology & Infection, Hong Kong Science Park HKG, Hong Kong SAR, China
| | - Ian Hosegood
- Qantas Airways Ltd., Qantas 10 Bourke Rd Mascot, Sydney, NSW 2020, Australia
| | - John M. Nicholls
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam HKG, Hong Kong SAR, China
| |
Collapse
|
5
|
Molecular Epidemiology and Diversity of SARS-CoV-2 in Ethiopia, 2020–2022. Genes (Basel) 2023; 14:genes14030705. [PMID: 36980977 PMCID: PMC10047986 DOI: 10.3390/genes14030705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Ethiopia is the second most populous country in Africa and the sixth most affected by COVID-19 on the continent. Despite having experienced five infection waves, >499,000 cases, and ~7500 COVID-19-related deaths as of January 2023, there is still no detailed genomic epidemiological report on the introduction and spread of SARS-CoV-2 in Ethiopia. In this study, we reconstructed and elucidated the COVID-19 epidemic dynamics. Specifically, we investigated the introduction, local transmission, ongoing evolution, and spread of SARS-CoV-2 during the first four infection waves using 353 high-quality near-whole genomes sampled in Ethiopia. Our results show that whereas viral introductions seeded the first wave, subsequent waves were seeded by local transmission. The B.1.480 lineage emerged in the first wave and notably remained in circulation even after the emergence of the Alpha variant. The B.1.480 was outcompeted by the Delta variant. Notably, Ethiopia’s lack of local sequencing capacity was further limited by sporadic, uneven, and insufficient sampling that limited the incorporation of genomic epidemiology in the epidemic public health response in Ethiopia. These results highlight Ethiopia’s role in SARS-CoV-2 dissemination and the urgent need for balanced, near-real-time genomic sequencing.
Collapse
|
6
|
Freedman DO. Air travel and SARS-CoV-2: many remaining knowledge gaps. J Travel Med 2022; 29:6775351. [PMID: 36300503 PMCID: PMC9620362 DOI: 10.1093/jtm/taac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/29/2022]
Abstract
50-word teaser: COVID-19 is with us indefinitely and air travel is a necessity. Needed research has lagged due to pandemic disruption but must not stall due to COVID indifference. A US government report proposes that national aviation authorities, not health agencies, take the lead. Research priorities and study designs are proposed.
Collapse
Affiliation(s)
- David O Freedman
- Professor Emeritus of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
7
|
Travel in the Time of COVID: A Review of International Travel Health in a Global Pandemic. Curr Infect Dis Rep 2022; 24:129-145. [PMID: 35965881 PMCID: PMC9361911 DOI: 10.1007/s11908-022-00784-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose of Review
This review critically considers the impact of the COVID-19 pandemic on global travel and the practice of travel medicine, highlights key innovations that have facilitated the resumption of travel, and anticipates how travel medicine providers should prepare for the future of international travel.
Recent Findings
Since asymptomatic transmission of the virus was first recognized in March 2020, extensive efforts have been made to characterize the pattern and dynamics of SARS-CoV-2 transmission aboard commercial aircraft, cruise ships, rail and bus transport, and in mass gatherings and quarantine facilities. Despite the negative impact of further waves of COVID-19 driven by the more transmissible Omicron variant, rapid increases of international tourist arrivals are occurring and modeling anticipates further growth. Mitigation of spread requires an integrated approach that combines masking, physical distancing, improving ventilation, testing, and quarantine. Vaccines and therapeutics have played a significant role in reopening society and accelerating the resumption of travel and further therapeutic innovation is likely.
Summary
COVID-19 is likely to persist as an endemic infection, and surveillance will assume an even more important role. The pandemic has provided an impetus to advance technology for telemedicine, to adopt mobile devices and GPS in contact tracing, and to apply digital applications in research. The future of travel medicine should continue to harness these novel platforms in the clinical, research, and educational arenas.
Collapse
|