1
|
Bi F, Bao Q, Liu H, Sun J, Dai W, Li A, Zhang J, He P. Molecular mechanisms underlying the effects of antibiotics on the growth and development of green tide algae Ulva prolifera. MARINE POLLUTION BULLETIN 2024; 209:117128. [PMID: 39432985 DOI: 10.1016/j.marpolbul.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024]
Abstract
Different types of algae exhibit varied sensitivities to antibiotics, influencing their growth by eradicating epiphytic bacteria. This study explored the impact of co-culturing neomycin sulfate, polymyxin B, and penicillin G on the growth and development of Ulva prolifera gametophytes. The findings revealed a significant influence of antibiotics on the morphology, growth, chlorophyll fluorescence parameters, and CAT activity of U. prolifera. The 16S rDNA sequencing revealed a significant decrease in the abundance of Maribacter spp. after antibiotic treatment of U. prolifera. Antibiotic treatment caused up-regulation of genes related to cellulose synthase, tubulin, and ribosomal protein. Conversely, key genes in the DNA replication pathway, such as mcm and Polε, were down-regulated, influencing cell division and resulting in irregular algal shapes. The up-regulation of enzyme genes in the C3 and C4 pathways, CAT, and drug metabolism genes enhanced the antioxidant and photosynthetic capacities of U. prolifera, providing a certain resilience to stress.
Collapse
Affiliation(s)
- Fangling Bi
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qunjing Bao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Hongtao Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jingyi Sun
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Dai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Aiqin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center for Water Environment Ecology in Shanghai, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Saha M, Dittami SM, Chan CX, Raina JB, Stock W, Ghaderiardakani F, Valathuparambil Baby John AM, Corr S, Schleyer G, Todd J, Cardini U, Bengtsson MM, Prado S, Skillings D, Sonnenschein EC, Engelen AH, Wang G, Wichard T, Brodie J, Leblanc C, Egan S. Progress and future directions for seaweed holobiont research. THE NEW PHYTOLOGIST 2024; 244:364-376. [PMID: 39137959 DOI: 10.1111/nph.20018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
In the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed-microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.
Collapse
Affiliation(s)
- Mahasweta Saha
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Simon M Dittami
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Jean-Baptiste Raina
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Willem Stock
- Phycology Research Group, Ghent University, Krijgslaan 281 Sterre S8, Ghent, 9000, Belgium
| | - Fatemeh Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | | | - Shauna Corr
- Plymouth Marine Laboratory, Marine Ecology and Biodiversity, Prospect Place, Plymouth, PL1 3DH, UK
| | - Guy Schleyer
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, Jena, 07745, Germany
| | - Jonathan Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Ulisse Cardini
- Department of Integrative Marine Ecology (EMI), Genoa Marine Centre, Stazione Zoologica Anton Dohrn - National Institute of Marine Biology, Ecology and Biotechnology, Genoa, 16126, Italy
| | - Mia M Bengtsson
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Str. 8, Greifswald, 17489, Germany
| | - Soizic Prado
- National Museum of Natural History, Unit Molecules of Communication and Adaptation of Microorganisms (UMR 7245), Paris, France
| | - Derek Skillings
- Department of Philosophy, University of North Carolina Greensboro, Greensboro, NC, 27402, USA
| | - Eva C Sonnenschein
- Department of Biosciences, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
- MoE Key Laboratory of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| | - Juliet Brodie
- Natural History Museum, Research, Cromwell Road, London, SW7 5BD, UK
| | - Catherine Leblanc
- CNRS, Integrative Biology of Marine Models Laboratory (LBI2M, UMR 8227), Station Biologique de Roscoff, Place Georges Teissier, Sorbonne Université, Roscoff, 29680, France
| | - Suhelen Egan
- Centre for Marine Science and Innovation (CMSI), School of Biological, Earth and Environmental Sciences (BEES), UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Schultz C, Zopf D, Holzinger A, Silge A, Meyer-Zedler T, Schmitt M, Wichard T, Popp J. Raman Spectral Analysis in the CH x-Stretching Region as a Guiding Beacon for Non-Targeted, Disruption-Free Monitoring of Germination and Biofilm Formation in the Green Seaweed Ulva. Chemphyschem 2024; 25:e202400173. [PMID: 38845571 DOI: 10.1002/cphc.202400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Indexed: 07/25/2024]
Abstract
Raman spectroscopy was used to study the complex interactions and morphogenesis of the green seaweed Ulva (Chlorophyta) and its associated bacteria under controlled conditions in a reductionist model system. Integrating multiple imaging techniques contributes to a more comprehensive understanding of these biological processes. Therefore, Raman spectroscopy was introduced as a non-invasive, label-free tool for examining chemical information of the tripartite community Ulva mutabilis-Roseovarius sp.-Maribacter sp. The study explored cell differentiation, cell wall protrusion, and bacterial-macroalgae interactions of intact algal thalli. Using Raman spectroscopy, the analysis of the CHx-stretching wavenumber region distinguished spatial regions in Ulva germination and cellular malformations under axenic conditions and upon inoculation with a specific bacterium in bipartite communities. The spectral information was used to guide in-depth analyses within the fingerprint region and to identify substance classes such as proteins, lipids, and polysaccharides, including evidence for ulvan found in cell wall protrusions.
Collapse
Affiliation(s)
- Constanze Schultz
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Jena, Germany, Albert-Einstein-Str. 9, 07745, Jena, Germany
| | - David Zopf
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Jena, Germany, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Andreas Holzinger
- University of Innsbruck, Department of Botany, Sternwartestrasse 15, A, 6020, Innsbruck, Austria
| | - Anja Silge
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Jena, Germany, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Jena, Germany, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Jena, Germany, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - Juergen Popp
- Leibniz-Institute of Photonic Technology (Leibniz-IPHT), Member of Leibniz-Health-Technologies, Member of the Leibniz-Center for Photonics in Infection Research (LPI), Jena, Germany, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
4
|
Kalenborn S, Zühlke D, Reintjes G, Riedel K, Amann RI, Harder J. Genes for laminarin degradation are dispersed in the genomes of particle-associated Maribacter species. Front Microbiol 2024; 15:1393588. [PMID: 39188312 PMCID: PMC11345257 DOI: 10.3389/fmicb.2024.1393588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Laminarin is a cytosolic storage polysaccharide of phytoplankton and macroalgae and accounts for over 10% of the world's annually fixed carbon dioxide. Algal disruption, for example, by viral lysis releases laminarin. The soluble sugar is rapidly utilized by free-living planktonic bacteria, in which sugar transporters and the degrading enzymes are frequently encoded in polysaccharide utilization loci. The annotation of flavobacterial genomes failed to identify canonical laminarin utilization loci in several particle-associated bacteria, in particular in strains of Maribacter. In this study, we report in vivo utilization of laminarin by Maribacter forsetii accompanied by additional cell growth and proliferation. Laminarin utilization coincided with the induction of an extracellular endo-laminarinase, SusC/D outer membrane oligosaccharide transporters, and a periplasmic glycosyl hydrolase family 3 protein. An ABC transport system and sugar kinases were expressed. Endo-laminarinase activity was also observed in Maribacter sp. MAR_2009_72, Maribacter sp. Hel_I_7, and Maribacter dokdonensis MAR_2009_60. Maribacter dokdonensis MAR_2009_71 lacked the large endo-laminarinase gene in the genome and had no endo-laminarinase activity. In all genomes, genes of induced proteins were scattered across the genome rather than clustered in a laminarin utilization locus. These observations revealed that the Maribacter strains investigated in this study participate in laminarin utilization, but in contrast to many free-living bacteria, there is no co-localization of genes encoding the enzymatic machinery for laminarin utilization.
Collapse
Affiliation(s)
- Saskia Kalenborn
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Daniela Zühlke
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Greta Reintjes
- Microbial Carbohydrate Interaction Group, Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Katharina Riedel
- Department for Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Rudolf I. Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jens Harder
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
5
|
Nahor O, Israel Á, Barger N, Rubin-Blum M, Luzzatto-Knaan T. Epiphytic microbiome associated with intertidal seaweeds in the Mediterranean Sea: comparative analysis of bacterial communities across seaweed phyla. Sci Rep 2024; 14:18631. [PMID: 39128929 PMCID: PMC11317491 DOI: 10.1038/s41598-024-69362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
The complex interactions between epiphytic bacteria and marine macroalgae are still poorly understood, with limited knowledge about their community structure, interactions, and functions. This study focuses on comparing epiphytic prokaryotes community structure between three seaweed phyla; Chlorophyta, Rhodophyta, and Heterokontophyta in an easternmost rocky intertidal site of the Mediterranean Sea. By taking a snapshot approach and simultaneously collecting seaweed samples from the same habitat, we minimize environmental variations that could affect epiphytic bacterial assembly, thereby emphasizing host specificity. Through 16S rRNA gene amplicon sequencing, we identified that the microbial community composition was more similar within the same seaweed phylum host compared to seaweed host from other phyla. Furthermore, exclusive Amplicon Sequence Variants (ASVs) were identified for each algal phyla despite sharing higher taxonomic classifications across the other phyla. Analysis of niche breadth indices uncovers distinctive affinities and potential specialization among seaweed host phyla, with 39% of all ASVs identified as phylum specialists and 13% as generalists. Using taxonomy function prediction, we observed that the taxonomic variability does not significantly impact functional redundancy, suggesting resilience to disturbance. The study concludes that epiphytic bacteria composition is connected to host taxonomy, possibly influenced by shared morphological and chemical traits among genetically related hosts, implying a potential coevolutionary relationship between specific bacteria and their host seaweeds.
Collapse
Affiliation(s)
- Omri Nahor
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Álvaro Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Nataly Barger
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Maxim Rubin-Blum
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Israel Oceanographic and Limnological Research, Tel Shikmona, Haifa, Israel
| | - Tal Luzzatto-Knaan
- Department of Marine Biology, The Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
6
|
Vigil BE, Ascue F, Ayala RY, Murúa P, Calderon MS, Bustamante DE. Functional prediction based on 16S rRNA metagenome data from bacterial microbiota associated with macroalgae from the Peruvian coast. Sci Rep 2024; 14:18577. [PMID: 39127849 PMCID: PMC11316746 DOI: 10.1038/s41598-024-69538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Macroalgae are vital reservoirs for essential epibiotic microorganisms. Among these are growth-promoting bacteria that support the growth and healthy development of their host macroalgae, and these macroalgae can be utilized in agriculture as biostimulants, offering an alternative to traditional agrochemicals. However, to date, no comparative studies have been conducted on the functional profile and bacterial diversity associated with coastal macroalgae of Peru. In this study, we employed amplicon sequencing of the V3-V4 region of 16S rRNA gene in twelve host macroalgae collected from two rocky shores in central Peru to compare their bacterial communities. The results revealed high bacterial diversity across both sites, but differences in microbial composition were noted. The phyla Bacteroidota and Pseudomonadota were predominant. The functional prediction highlighted 44 significant metabolic pathways associated with the bacterial microbiota when comparing host macroalgae. These active pathways are related to metabolism and genetic and cellular information processing. No direct association was detected between the macroalgal genera and the associated microbiota, suggesting that the bacterial community is largely influenced by their genetic functions than the taxonomic composition of their hosts. Furthermore, some species of Chlorophyta and Rhodophyta were observed to host growth-promoting bacteria, such as Maribacter sp. and Sulfitobacter sp.
Collapse
Affiliation(s)
- Bianca E Vigil
- Programa de Maestría en Mejoramiento Genético de Plantas, Universidad Nacional Agraria La Molina, Lima, Peru
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Francisco Ascue
- Escuela de Posgrado de la Universidad de Ciencia y Tecnología (UTEC), Barranco, Lima, Peru
| | - Rosmery Y Ayala
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Pedro Murúa
- Laboratorio de Macroalgas y Ficopatología (FICOPAT), Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - Martha S Calderon
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
- Instituto de Investigación en Ingeniería Ambiental (INAM), Facultad de Ingeniería Civil y Ambiental (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru
| | - Danilo E Bustamante
- Instituto de Investigación para el Desarrollo Sustentable de Ceja de Selva (INDES-CES), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
- Instituto de Investigación en Ingeniería Ambiental (INAM), Facultad de Ingeniería Civil y Ambiental (FICIAM), Universidad Nacional Toribio Rodríguez de Mendoza, Chachapoyas, Amazonas, Peru.
| |
Collapse
|
7
|
Marzinelli EM, Thomas T, Vadillo Gonzalez S, Egan S, Steinberg PD. Seaweeds as holobionts: Current state, challenges, and potential applications. JOURNAL OF PHYCOLOGY 2024; 60:785-796. [PMID: 39047050 DOI: 10.1111/jpy.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Seaweeds play a strong ecological and economical role along the world's coastlines, where they support industries (e.g., aquaculture, bioproducts) and essential ecosystem services (e.g., biodiversity, fisheries, carbon capture). Evidence from wild and cultured seaweeds suggests that microorganisms play crucial roles in their health and functioning, prompting the need for considering seaweeds and their microbiome as a coherent entity or "holobiont." Here we show that the number of studies investigating seaweed hosts and their microbiome have increased in the last two decades. This likely reflects the increase in the appreciation of the importance of microbiomes for eukaryotic hosts, improved molecular approaches used to characterize their interactions, and increasing interest in commercial use of seaweeds. However, although increasing, most studies of seaweed holobionts have focused on (i) a few seaweed species of ecological or commercial significance, (ii) interactions involving only bacteria, and (iii) descriptive rather than experimental approaches. The relatively few experimental studies have mostly focused on manipulating abiotic factors to examine responses of seaweeds and their microbiome. Of the few studies that directly manipulated microorganisms to investigate their effects on seaweeds, most were done in laboratory or aquaria. We emphasize the need to move beyond the descriptions of patterns to experimental approaches for understanding causation and mechanisms. We argue that such experimental approaches are necessary for a better understanding of seaweed holobionts, for management actions for wild and cultivated seaweeds, and to better integrate studies of seaweed holobionts with the broader fields of seaweed ecology and biology, which are strongly experimental.
Collapse
Affiliation(s)
- Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sebastian Vadillo Gonzalez
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Christi K, Hudson J, Egan S. Current approaches to genetic modification of marine bacteria and considerations for improved transformation efficiency. Microbiol Res 2024; 284:127729. [PMID: 38663232 DOI: 10.1016/j.micres.2024.127729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Abstract
Marine bacteria play vital roles in symbiosis, biogeochemical cycles and produce novel bioactive compounds and enzymes of interest for the pharmaceutical, biofuel and biotechnology industries. At present, investigations into marine bacterial functions and their products are primarily based on phenotypic observations, -omic type approaches and heterologous gene expression. To advance our understanding of marine bacteria and harness their full potential for industry application, it is critical that we have the appropriate tools and resources to genetically manipulate them in situ. However, current genetic tools that are largely designed for model organisms such as E. coli, produce low transformation efficiencies or have no transfer ability in marine bacteria. To improve genetic manipulation applications for marine bacteria, we need to improve transformation methods such as conjugation and electroporation in addition to identifying more marine broad host range plasmids. In this review, we aim to outline the reported methods of transformation for marine bacteria and discuss the considerations for each approach in the context of improving efficiency. In addition, we further discuss marine plasmids and future research areas including CRISPR tools and their potential applications for marine bacteria.
Collapse
Affiliation(s)
- Katrina Christi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Jennifer Hudson
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
10
|
Saravanan P, Chatterjee A, Kiran KJ, Bhowmick GD, Sappati PK, Nagarajan V. Exploring Seaweed-Associated Marine Microbes: Growth Impacts and Enzymatic Potential for Sustainable Resource Utilization. Indian J Microbiol 2024; 64:593-602. [PMID: 39011007 PMCID: PMC11246340 DOI: 10.1007/s12088-024-01205-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Seaweed, a valuable marine resource widely cultivated worldwide, can be vulnerable to stress and microbiome alterations, resulting in the decay of seaweeds and substantial economic losses. To investigate the seaweed-microbiome interaction, our study aimed to isolate marine bacteria and fungi that can cause Ice-Ice disease and evaluate their enzymatic characteristics for potential application in bioethanol production from seaweed biomass. Three red seaweed species (Gracilaria edulis, Kappaphycus alvarezii, and Eucheuma cottonii) were obtained for our study and placed in separate culture tanks. Among the 18 isolated marine microbial species, 12 tested positive for agar and carrageenan activity: six exhibited both activities, three displayed only agar activity, and three only carrageenan activity. DNA sequencing of the positive microbes identified ten bacteria and two yeast species. The 3,5-Dinitrosalicylic acid (DNSA) assay results revealed that the identified bacterial Caldibacillus kokeshiiformis strain FJAT-47861 exhibited the highest carrageenase activity (0.76 units/ml), while the yeast Pichia fermentans strain PM79 demonstrated the highest agarase activity (0.52 units/ml). Notably, Pichia fermentans strain PM79 exhibited the highest overall agarase and carrageenase activity, averaging 0.63 units/ml. The average carrageenase activity of all six positive microbes was 1.5 times higher than their agarase activity. These findings suggest that the 12 isolated microbes hold potential for bioethanol production from macroalgae, as their agarase and carrageenase activity indicates their ability to break down seaweed cell wall carbohydrates, causing ice-ice disease. Moreover, these results provide exciting prospects for harnessing the bioconversion capabilities of these microbes, paving the way for sustainable and efficient bioethanol production from seaweed resources. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01205-w.
Collapse
Affiliation(s)
- Prakash Saravanan
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Antara Chatterjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - K J Kiran
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Gourav Dhar Bhowmick
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Praveen Kumar Sappati
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Vishwanath Nagarajan
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
11
|
He C, Li G, Zou S, Zheng P, Song Q, Li G, Yu Q, Yu Y, Zhang Q, Zhang X, Shen Z, Gong J. Spatial and diel variations of bacterioplankton and pico-nanoeukaryote communities and potential biotic interactions during macroalgal blooms. MARINE POLLUTION BULLETIN 2024; 202:116409. [PMID: 38663343 DOI: 10.1016/j.marpolbul.2024.116409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
We investigated spatial heterogeneity and diel variations in bacterioplankton and pico-nanoeukaryote communities, and potential biotic interactions at the extinction stage of the Ulva prolifera bloom in the Jiaozhou Bay, Yellow Sea. It was found that the presence of Ulva canopies significantly promoted the cell abundance of heterotrophic bacteria, raised evenness, and altered the community structure of bacterioplankton. A diel pattern was solely significant for pico-nanoeukaryote community structure. >50 % of variation in the heterotrophic bacterial abundance was accounted for by the ratio of Bacteroidota to Firmicutes, and dissolved organic nitrogen effectively explained the variations in cell abundances of phytoplankton populations. The factors representing biotic interactions frequently contributed substantially more than environmental factors in explaining the variations in diversity and community structure of both bacterioplankton and pico-nanoeukaryotes. There were higher proportions of eukaryotic pathogens compared to other marine systems, suggesting a higher ecological risk associated with the Ulva blooms.
Collapse
Affiliation(s)
- Cui He
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Guihao Li
- Zhuhai Doumen Agricultural Technology Extension, Zhuhai, Guangdong, China
| | - Songbao Zou
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang, China
| | - Pengfei Zheng
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536007, China
| | - Qinqin Song
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536007, China
| | - Guanzhe Li
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| | - Qin Yu
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Yunjun Yu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Qianqian Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoli Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhuo Shen
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jun Gong
- School of Marine Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China.
| |
Collapse
|
12
|
Burgunter-Delamare B, Shetty P, Vuong T, Mittag M. Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships. PLANTS (BASEL, SWITZERLAND) 2024; 13:829. [PMID: 38592793 PMCID: PMC10974524 DOI: 10.3390/plants13060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known.
Collapse
Affiliation(s)
- Bertille Burgunter-Delamare
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany; (P.S.); (T.V.)
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
13
|
Khan T, Song W, Nappi J, Marzinelli EM, Egan S, Thomas T. Functional guilds and drivers of diversity in seaweed-associated bacteria. FEMS MICROBES 2023; 5:xtad023. [PMID: 38213395 PMCID: PMC10781435 DOI: 10.1093/femsmc/xtad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Comparisons of functional and taxonomic profiles from bacterial communities in different habitats have suggested the existence of functional guilds composed of taxonomically or phylogenetically distinct members. Such guild membership is, however, rarely defined and the factors that drive functional diversity in bacteria remain poorly understood. We used seaweed-associated bacteria as a model to shed light on these important aspects of community ecology. Using a large dataset of over 1300 metagenome-assembled genomes from 13 seaweed species we found substantial overlap in the functionality of bacteria coming from distinct taxa, thus supporting the existence of functional guilds. This functional equivalence between different taxa was particularly pronounced when only functions involved in carbohydrate degradation were considered. We further found that bacterial taxonomy is the dominant driver of functional differences between bacteria and that seaweed species or seaweed type (i.e. brown, red and green) had relatively stronger impacts on genome functionality for carbohydrate-degradation functions when compared to all other cellular functions. This study provides new insight into the factors underpinning the functional diversity of bacteria and contributes to our understanding how community function is generated from individual members.
Collapse
Affiliation(s)
- Tahsin Khan
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Weizhi Song
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ezequiel M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
van der Loos LM, D'hondt S, Engelen AH, Pavia H, Toth GB, Willems A, Weinberger F, De Clerck O, Steinhagen S. Salinity and host drive Ulva-associated bacterial communities across the Atlantic-Baltic Sea gradient. Mol Ecol 2023; 32:6260-6277. [PMID: 35395701 DOI: 10.1111/mec.16462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
The green seaweed Ulva is a model system to study seaweed-bacteria interactions, but the impact of environmental drivers on the dynamics of these interactions is little understood. In this study, we investigated the stability and variability of the seaweed-associated bacteria across the Atlantic-Baltic Sea salinity gradient. We characterized the bacterial communities of 15 Ulva sensu lato species along 2,000 km of coastline in a total of 481 samples. Our results demonstrate that the Ulva-associated bacterial composition was strongly structured by both salinity and host species (together explaining between 34% and 91% of the variation in the abundance of the different bacterial genera). The largest shift in the bacterial consortia coincided with the horohalinicum (5-8 PSU, known as the transition zone from freshwater to marine conditions). Low-salinity communities especially contained high relative abundances of Luteolibacter, Cyanobium, Pirellula, Lacihabitans and an uncultured Spirosomaceae, whereas high-salinity communities were predominantly enriched in Litorimonas, Leucothrix, Sulfurovum, Algibacter and Dokdonia. We identified a small taxonomic core community (consisting of Paracoccus, Sulfitobacter and an uncultured Rhodobacteraceae), which together contributed to 14% of the reads per sample, on average. Additional core taxa followed a gradient model, as more core taxa were shared between neighbouring salinity ranges than between ranges at opposite ends of the Atlantic-Baltic Sea gradient. Our results contradict earlier statements that Ulva-associated bacterial communities are taxonomically highly variable across individuals and largely stochastically defined. Characteristic bacterial communities associated with distinct salinity regions may therefore facilitate the host's adaptation across the environmental gradient.
Collapse
Affiliation(s)
- Luna M van der Loos
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
- Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Sofie D'hondt
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Aschwin H Engelen
- Marine Microbial Ecology & Biotechnology, CCMAR, University of Algarve, Faro, Portugal
| | - Henrik Pavia
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Gunilla B Toth
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Anne Willems
- Laboratory of Microbiology, Department Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | | | - Olivier De Clerck
- Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Sophie Steinhagen
- Department of Marine Sciences-Tjärnö, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
15
|
Fukui Y, Abe M, Kobayashi M. Effects of Hyphomonas Strains on the Growth of Red Algae Pyropia Species by Attaching Specifically to Their Rhizoids. MICROBIAL ECOLOGY 2023; 86:2502-2514. [PMID: 37369788 DOI: 10.1007/s00248-023-02257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Bacteria and marine macroalgae form close associations, while various bacteria affect the morphogenesis and growth of macroalgae. Hyphomonas strains exhibit normal morphogenetic activity in protoplasts of the red alga Pyropia yezoensis (nori). However, the effects of the bacteria on the growth of Pyropia from protoplast cells to regenerated thalli remain unknown. Here, we assessed the growth of P. yezoensis and Pyropia tenera using combined cultures of three Hyphomonas strains (LNM10-16, SCM-2, and LNM-9) and three algal media (artificial seawater with vitamins, artificial seawater, and natural seawater) over 7 weeks. Third week after culture, the three Hyphomonas strains showed almost similar levels of normal growth activity for both Pyropia species. However, at 7 weeks, significant differences were observed among the three Hyphomonas strains in terms of length, length-to-width ratio, and normal morphology of Pyropia thalli. LNM10-16 significantly promoted the thalli length and length-to-width ratios of both Pyropia species in artificial seawater without vitamins and natural seawater, compared with the other two Hyphomonas strains. P. yezoensis cultured in artificial seawater with vitamins showed a much higher demand for LNM10-16 in development of the thalli length than P. tenera. These results may be explained by differences in the growth activities of Hyphomonas strains and the nutrient requirements of Pyropia species. Furthermore, the bacteria were more specifically attached to the rhizoid surfaces of both species. This study is the first to reveal that Hyphomonas strains affect the growth of Pyropia species by attaching to their rhizoids.
Collapse
Affiliation(s)
- Youhei Fukui
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Minamiise, Japan.
| | - Mahiko Abe
- National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Japan
| | - Masahiro Kobayashi
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama, Japan
| |
Collapse
|
16
|
Ochoa-Sánchez M, Acuña Gomez EP, Ramírez-Fenández L, Eguiarte LE, Souza V. Current knowledge of the Southern Hemisphere marine microbiome in eukaryotic hosts and the Strait of Magellan surface microbiome project. PeerJ 2023; 11:e15978. [PMID: 37810788 PMCID: PMC10557944 DOI: 10.7717/peerj.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lia Ramírez-Fenández
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
- Centro de Desarrollo de Biotecnología Industrial y Bioproductos, Antofagasta, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
17
|
Blomme J, Wichard T, Jacobs TB, De Clerck O. Ulva: An emerging green seaweed model for systems biology. JOURNAL OF PHYCOLOGY 2023. [PMID: 37256696 DOI: 10.1111/jpy.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species ("sea lettuce") are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during "green tide" blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
18
|
Li J, Weinberger F, de Nys R, Thomas T, Egan S. A pathway to improve seaweed aquaculture through microbiota manipulation. Trends Biotechnol 2023; 41:545-556. [PMID: 36089422 DOI: 10.1016/j.tibtech.2022.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Eukaryotic hosts are associated with microbial communities that are critical to their function. Microbiota manipulation using beneficial microorganisms, for example, in the form of animal probiotics or plant growth-promoting microorganisms (PGPMs), can enhance host performance and health. Recently, seaweed beneficial microorganisms (SBMs) have been identified that promote the growth and development and/or improve disease resistance of seaweeds. This knowledge coincides with global initiatives seeking to expand and intensify seaweed aquaculture. Here, we provide a pathway with the potential to improve commercial cultivation of seaweeds through microbiota manipulation, highlighting that seaweed restoration practices can also benefit from further understanding SBMs and their modes of action. The challenges and opportunities of different approaches to identify and apply SBMs to seaweed aquaculture are discussed.
Collapse
Affiliation(s)
- Jiasui Li
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Rocky de Nys
- Sea Forest Limited, 488 Freestone Point Road, Triabunna, Tasmania 7190, Australia and College of Science and Engineering, James Cook University, Townsville 4810, Australia
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, Faculty of Science, The University of New South Wales, Kensington, NSW, 2052, Australia.
| |
Collapse
|
19
|
Wang Y, Zhou P, Zhou W, Huang S, Peng C, Li D, Li G. Network Analysis Indicates Microbial Assemblage Differences in Life Stages of Cladophora. Appl Environ Microbiol 2023; 89:e0211222. [PMID: 36880773 PMCID: PMC10057885 DOI: 10.1128/aem.02112-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/09/2023] [Indexed: 03/08/2023] Open
Abstract
Cladophora represents a microscopic forest that provides many ecological niches and fosters a diverse microbiota. However, the microbial community on Cladophora in brackish lakes is still poorly understood. In this study, the epiphytic bacterial communities of Cladophora in Qinghai Lake were investigated at three life stages (attached, floating, and decomposing). We found that in the attached stage, Cladophora was enriched with chemoheterotrophic and aerobic microorganisms, including Yoonia-Loktanella and Granulosicoccus. The proportion of phototrophic bacteria was higher in the floating stage, especially Cyanobacteria. The decomposing stage fostered an abundance of bacteria that showed vertical heterogeneity from the surface to the bottom. The surface layer of Cladophora contained mainly stress-tolerant chemoheterotrophic and photoheterotrophic bacteria, including Porphyrobacter and Nonlabens. The microbial community in the middle layer was similar to that of floating-stage Cladophora. Purple oxidizing bacteria were enriched in the bottom layer, with Candidatus Chloroploca, Allochromatium, and Thiocapsa as the dominant genera. The Shannon and Chao1 indices of epibiotic bacterial communities increased monotonically from the attached stage to the decomposing stage. Microbial community composition and functional predictions indicate that a large number of sulfur cycle-associated bacteria play an important role in the development of Cladophora. These results suggest that the microbial assemblage on Cladophora in a brackish lake is complex and contributes to the cycling of materials. IMPORTANCE Cladophora represents a microscopic forest that provides many ecological niches fostering a diverse microbiota, with a complex and intimate relationship between Cladophora and bacteria. Many studies have focused on the microbiology of freshwater Cladophora, but the composition and succession of microorganisms in different life stages of Cladophora, especially in brackish water, have not been explored. In this study, we investigated the microbial assemblages in the life stages of Cladophora in the brackish Qinghai Lake. We show that heterotrophic and photosynthetic autotrophic bacteria are enriched in attached and floating Cladophora, respectively, whereas the epiphytic bacterial community shows vertical heterogeneity in decomposing mats.
Collapse
Affiliation(s)
- Yuming Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Panpan Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Weicheng Zhou
- College of Chemistry, Biology and Environmental Engineering, Xiangnan University, Chenzhou, People’s Republic of China
| | - Shun Huang
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Chengrong Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Genbao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
20
|
Takagi T, Aoyama K, Motone K, Aburaya S, Yamashiro H, Miura N, Inoue K. Mutualistic Interactions between Dinoflagellates and Pigmented Bacteria Mitigate Environmental Stress. Microbiol Spectr 2023; 11:e0246422. [PMID: 36651852 PMCID: PMC9927270 DOI: 10.1128/spectrum.02464-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Scleractinian corals form symbiotic relationships with a variety of microorganisms, including endosymbiotic dinoflagellates of the family Symbiodiniaceae, and with bacteria, which are collectively termed coral holobionts. Interactions between hosts and their symbionts are critical to the physiological status of corals. Coral-microorganism interactions have been studied extensively, but dinoflagellate-bacterial interactions remain largely unexplored. Here, we developed a microbiome manipulation method employing KAS-antibiotic treatment (kanamycin, ampicillin, and streptomycin) to favor pigmented bacteria residing on cultured Cladocopium and Durusdinium, major endosymbionts of corals, and isolated several carotenoid-producing bacteria from cell surfaces of the microalgae. Following KAS-antibiotic treatment of Cladocopium sp. strain NIES-4077, pigmented bacteria increased 8-fold based on colony-forming assays from the parental strain, and 100% of bacterial sequences retrieved through 16S rRNA amplicon sequencing were affiliated with the genus Maribacter. Microbiome manipulation enabled host microalgae to maintain higher maximum quantum yield of photosystem II (variable fluorescence divided by maximum fluorescence [Fv/Fm]) under light-stress conditions, compared to the parental strain. Furthermore, by combining culture-dependent and -independent techniques, we demonstrated that species of the family Symbiodiniaceae and pigmented bacteria form strong interactions. Dinoflagellates protected bacteria from antibiotics, while pigmented bacteria protected microalgal cells from light stress via carotenoid production. Here, we describe for the first time a symbiotic relationship in which dinoflagellates and bacteria mutually reduce environmental stress. Investigations of microalgal-bacterial interactions further document bacterial contributions to coral holobionts and may facilitate development of novel techniques for microbiome-mediated coral reef conservation. IMPORTANCE Coral reefs cover less than 0.1% of the ocean floor, but about 25% of all marine species depend on coral reefs at some point in their life cycles. However, rising ocean temperatures associated with global climate change are a serious threat to coral reefs, causing dysfunction of the photosynthetic apparatus of endosymbiotic microalgae of corals, and overproducing reactive oxygen species harmful to corals. We manipulated the microbiome using an antibiotic treatment to favor pigmented bacteria, enabling their symbiotic microalgal partners to maintain higher photosynthetic function under insolation stress. Furthermore, we investigated mechanisms underlying microalgal-bacterial interactions, describing for the first time a symbiotic relationship in which the two symbionts mutually reduce environmental stress. Our findings extend current insights about microalgal-bacterial interactions, enabling better understanding of bacterial contributions to coral holobionts under stressful conditions and offering hope of reducing the adverse impacts of global warming on coral reefs.
Collapse
Affiliation(s)
- Toshiyuki Takagi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Kako Aoyama
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Keisuke Motone
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington, USA
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Shunsuke Aburaya
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hideyuki Yamashiro
- Tropical Biosphere Research Center, Sesoko Station, University of the Ryukyus, Motobu, Japan
| | - Natsuko Miura
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Koji Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
21
|
From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture. Semin Cell Dev Biol 2023; 134:69-78. [PMID: 35459546 DOI: 10.1016/j.semcdb.2022.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
Abstract
The marine green macroalga Ulva (Chlorophyta, Ulvales), also known as sea lettuce, coexists with a diverse microbiome. Many Ulva species proliferate in nature and form green algal blooms ("green tides"), which can occur when nutrient-rich wastewater from agricultural or densely populated areas is flushed into the sea. Bacteria are necessary for the adhesion of Ulva to its substrate, its growth, and the development of its blade morphology. In the absence of certain bacteria, Ulva mutabilis develops into a callus-like morphotype. However, with the addition of the necessary marine bacteria, the entire morphogenesis can be restored. Surprisingly, just two bacteria isolated from U. mutabilis are sufficient for inducing morphogenesis and establishing the reductionist system of a tripartite community. While one bacterial strain causes algal blade cell division, another causes the differentiation of basal cells into a rhizoid and supports cell wall formation because of a low concentration of the morphogen thallusin (below 10-10 mol/L). This review focuses on the research conducted on this topic since 2015, discusses how U. mutabilis has developed into a model organism in chemical ecology, and explores the questions that have already been addressed and the perspectives that a reductionist model system allows. In particular, the field of systems biology will achieve a comprehensive, quantitative understanding of the dynamic interactions between Ulva and its associated bacteria to better predict the behavior of the system as a whole. The reductionist approach has enabled the study of the bacteria-induced morphogenesis of Ulva. Specific questions regarding the optimization of cultivation conditions as well as the yield of raw materials for the food and animal feed industries can be answered in the laboratory and through applied science. Genome sequencing, the improvement of genetic engineering tools, and the first promising attempts to leverage macroalgae-microbe interactions in aquaculture make this model organism, which has a comparatively short parthenogenetic life cycle, attractive for both fundamental and applied research. The reviewed research paves the way for the synthetic biology of macroalgae-associated microbiomes in sustainable aquacultures.
Collapse
|
22
|
Thallusin Quantification in Marine Bacteria and Algae Cultures. Mar Drugs 2022; 20:md20110690. [PMID: 36355014 PMCID: PMC9696546 DOI: 10.3390/md20110690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Thallusin, a highly biologically active, phytohormone-like and bacterial compound-inducing morphogenesis of the green tide-forming macroalga Ulva (Chlorophyta), was determined in bacteria and algae cultures. A sensitive and selective method was developed for quantification based on ultra-high-performance liquid chromatography coupled with electrospray ionization and a high-resolution mass spectrometer. Upon C18 solid phase extraction of the water samples, thallusin was derivatized with iodomethane to inhibit the formation of Fe−thallusin complexes interfering with the chromatographic separation. The concentration of thallusin was quantified during the relevant phases of the bacterial growth of Maribacter spp., ranging from 0.16 ± 0.01 amol cell−1 (at the peak of the exponential growth phase) to 0.86 ± 0.13 amol cell−1 (late stationary phase), indicating its accumulation in the growth medium. Finally, we directly determined the concentration of thallusin in algal culture to validate our approach for monitoring applications. Detection and quantification limits of 2.5 and 7.4 pmol L−1, respectively, were reached, which allow for quantifying ecologically relevant thallusin concentrations. Our approach will enable the surveying of thallusin in culture and in nature and will thus contribute to the chemical monitoring of aquaculture.
Collapse
|
23
|
Simon C, McHale M, Sulpice R. Applications of Ulva Biomass and Strategies to Improve Its Yield and Composition: A Perspective for Ulva Aquaculture. BIOLOGY 2022; 11:1593. [PMID: 36358294 PMCID: PMC9687441 DOI: 10.3390/biology11111593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 09/08/2024]
Abstract
Sea lettuce (Ulva spp.), with its worldwide distribution and remarkable ability to grow rapidly under various conditions, represents an important natural resource that is still under-exploited. Its biomass can be used for a wide range of applications in the food/feed, pharmaceutical, nutraceutical, biofuel, and bioremediation industries. However, knowledge of the factors affecting Ulva biomass yield and composition is far from complete. Indeed, the respective contributions of the microbiome, natural genetic variation in Ulva species, environmental conditions and importantly, the interactions between these three factors on the Ulva biomass, have been only partially elucidated. Further investigation is important for the implementation of large-scale Ulva aquaculture, which requires stable and controlled biomass composition and yields. In this review, we document Ulva biomass composition, describe the uses of Ulva biomass and we propose different strategies for developing a sustainable and profitable Ulva aquaculture industry.
Collapse
Affiliation(s)
- Clara Simon
- Plant Systems Biology Laboratory, Ryan Institute & Marei Centre for Marine, Climate and Energy, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | | | | |
Collapse
|
24
|
Dhiman S, Ulrich JF, Wienecke P, Wichard T, Arndt H. Stereoselective Total Synthesis of (-)-Thallusin for Bioactivity Profiling. Angew Chem Int Ed Engl 2022; 61:e202206746. [PMID: 35900916 PMCID: PMC9804709 DOI: 10.1002/anie.202206746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 01/09/2023]
Abstract
Chemical mediators are key compounds for controlling symbiotic interactions in the environment. Here, we disclose a fully stereoselective total synthesis of the algae differentiation factor (-)-thallusin that utilizes sophisticated 6-endo-cyclization chemistry and effective late-stage sp2 -sp2 -couplings using non-toxic reagents. An EC50 of 4.8 pM was determined by quantitative phenotype profiling in the green seaweed Ulva mutabilis (Chlorophyte), underscoring this potent mediator's enormous, pan-species bioactivity produced by symbiotic bacteria. SAR investigations indicate that (-)-thallusin triggers at least two different pathways in Ulva that may be separated by chemical editing of the mediator compound structure.
Collapse
Affiliation(s)
- Seema Dhiman
- Friedrich-Schiller-Universität JenaInstitut für Organische Chemie und Makromolekulare ChemieHumboldtstr. 1007743JenaGermany
| | - Johann F. Ulrich
- Friedrich-Schiller-Universität JenaInstitut für Anorganische und Analytische ChemieLessingstr. 807743JenaGermany
| | - Paul Wienecke
- Friedrich-Schiller-Universität JenaInstitut für Organische Chemie und Makromolekulare ChemieHumboldtstr. 1007743JenaGermany
| | - Thomas Wichard
- Friedrich-Schiller-Universität JenaInstitut für Anorganische und Analytische ChemieLessingstr. 807743JenaGermany
| | - Hans‐Dieter Arndt
- Friedrich-Schiller-Universität JenaInstitut für Organische Chemie und Makromolekulare ChemieHumboldtstr. 1007743JenaGermany
| |
Collapse
|
25
|
Dhiman S, Ulrich JF, Wienecke P, Wichard T, Arndt HD. Stereoselective total synthesis of (‒)‐thallusin for bioactivity profiling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Seema Dhiman
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Organic Chemistry and Macromolecular Chemistry Humboldtstr. 10 07743 Jena GERMANY
| | - Johann F. Ulrich
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena INstitute of Inorganic and Analytical Chemistry Lessingstr. 8 07743 Jena GERMANY
| | - Paul Wienecke
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Organic Chemistry and Macromolecular Chemistry Humboldtstr. 10 07743 Jena GERMANY
| | - Thomas Wichard
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Inorganic and Analytical Chemistry Lessingstr. 8 07743 Jena GERMANY
| | - Hans-Dieter Arndt
- Friedrich-Schiller-Universität Jena: Friedrich-Schiller-Universitat Jena Institute of Organic and Macromolecular Chemistry Humboldtstr. 10 07743 Jena GERMANY
| |
Collapse
|
26
|
Rischer M, Guo H, Beemelmanns C. Signalling molecules inducing metamorphosis in marine organisms. Nat Prod Rep 2022; 39:1833-1855. [PMID: 35822257 DOI: 10.1039/d1np00073j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: findings from early 1980s until early 2022Microbial-derived cues of marine biofilms induce settlement and metamorphosis of marine organisms, a process responsible for the emergence of diverse flora and fauna in marine habitats. Although this phenomenon is known for more than 80 years, the research field has only recently gained much momentum. Here, we summarize the currently existing biochemical and microbial knowledge about microbial signalling molecules, con-specific signals, and synthetic compounds that induce or prevent recruitment, settlement, and metamorphosis in invertebrate larvae. We discuss the possible modes of action and conclude with perspectives for future research directions in the field of marine chemical ecology.
Collapse
Affiliation(s)
- Maja Rischer
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany.
| | - Huijuan Guo
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany.
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutenbergstraße 11a, Jena, 07745, Germany. .,Biochemistry of Microbial Metabolism, Institute of Biochemistry, Leipzig University, Johannisallee 21-23, Leipzig 04103, Germany
| |
Collapse
|
27
|
Amiri Moghaddam J, Guo H, Willing K, Wichard T, Beemelmanns C. Identification of the new prenyltransferase Ubi-297 from marine bacteria and elucidation of its substrate specificity. Beilstein J Org Chem 2022; 18:722-731. [PMID: 35821696 PMCID: PMC9235831 DOI: 10.3762/bjoc.18.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Aromatic prenylated metabolites have important biological roles and activities in all living organisms. Compared to their importance in all domains of life, we know relatively little about their substrate scopes and metabolic functions. Here, we describe a new UbiA-like prenyltransferase (Ptase) Ubi-297 encoded in a conserved operon of several bacterial taxa, including marine Flavobacteria and the genus Sacchromonospora. In silico analysis of Ubi-297 homologs indicated that members of this Ptase group are composed of several transmembrane α-helices and carry a conserved and distinct aspartic-rich Mg2+-binding domain. We heterologously produced UbiA-like Ptases from the bacterial genera Maribacter, Zobellia, and Algoriphagus in Escherichia coli. Investigation of their substrate scope uncovered the preferential farnesylation of quinoline derivatives, such as 8-hydroxyquinoline-2-carboxylic acid (8-HQA) and quinaldic acid. The results of this study provide new insights into the abundance and diversity of Ptases in marine Flavobacteria and beyond.
Collapse
Affiliation(s)
- Jamshid Amiri Moghaddam
- Chemical Biology Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Huijuan Guo
- Chemical Biology Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Karsten Willing
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr 8, 07743 Jena, Germany
| | - Christine Beemelmanns
- Chemical Biology Leibniz Institute for Natural Product Research and Infection Biology e.V., Hans-Knöll-Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Biochemistry of Microbial Metabolism, Institute of Biochemistry, Leipzig University, Johannisallee 21–23, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Yang Z, Chen J, Shang S, Wang J, Xue S, Tang X, Xiao H. Diversity of epiphytic bacterial communities on male and female Porphyra haitanensis. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01675-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
To study the structure of the epiphytic bacterial community of the male and female Porphyra haitanensis, in order to explore the similarities and differences of epiphytic bacterial community structure between dioecious macroalgae.
Methods
Collection of male and female Porphyra haitanensis from the intertidal zone of Niushan Island, Fujian, China. Epiphytic bacteria were collected and studied, and the community composition and diversity of epiphytic bacteria were explored using high-throughput sequencing technology.
Results
There was no significant difference between male and female Porphyra haitanensis on α-diversity and β-diversity. Proteobacteria and Bacteroidetes were the core microbiota in male and female Porphyra haitanensis. Bacteria from the Maribacter (male 14.87%, female 1.66%) and the Tenacibaculum (male 1.44%, female 25.78%) were the most indicative epiphytic bacterial taxa on male and female Porphyra haitanensis.
Conclusions
Sex differences have some influence on the construction of epiphytic bacterial communities in Porphyra haitanensis, but they are not the decisive factors affecting the construction of epiphytic bacterial communities in Porphyra haitanensis.
Collapse
|
29
|
Wang L, Linares-Otoya V, Liu Y, Mettal U, Marner M, Armas-Mantilla L, Willbold S, Kurtán T, Linares-Otoya L, Schäberle TF. Discovery and Biosynthesis of Antimicrobial Phenethylamine Alkaloids from the Marine Flavobacterium Tenacibaculum discolor sv11. JOURNAL OF NATURAL PRODUCTS 2022; 85:1039-1051. [PMID: 35416664 DOI: 10.1021/acs.jnatprod.1c01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bacterial genus Tenacibaculum has been associated with various ecological roles in marine environments. Members of this genus can act, for example, as pathogens, predators, or episymbionts. However, natural products produced by these bacteria are still unknown. In the present work, we investigated a Tenacibaculum strain for the production of antimicrobial metabolites. Six new phenethylamine (PEA)-containing alkaloids, discolins A and B (1 and 2), dispyridine (3), dispyrrolopyridine A and B (4 and 5), and dispyrrole (6), were isolated from media produced by the predatory bacterium Tenacibaculum discolor sv11. Chemical structures were elucidated by analysis of spectroscopic data. Alkaloids 4 and 5 exhibited strong activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600, and Staphylococcus aureus ATCC25923, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 4 μg/mL, and moderate activity against Candida albicans FH2173 and Aspergillus flavus ATCC9170. Compound 6 displayed moderate antibacterial activities against Gram-positive bacteria. Dispyrrolopyridine A (4) was active against efflux pump deficient Escherichia coli ATCC25922 ΔtolC, with an MIC value of 8 μg/mL, as well as against Caenorhabditis elegans N2 with an MIC value of 32 μg/mL. Other compounds were inactive against these microorganisms. The biosynthetic route toward discolins A and B (1 and 2) was investigated using in vivo and in vitro experiments. It comprises an enzymatic decarboxylation of phenylalanine to PEA catalyzed by DisA, followed by a nonenzymatic condensation to form the central imidazolium ring. This spontaneous formation of the imidazolium core was verified by means of a synthetic one-pot reaction using the respective building blocks. Six additional strains belonging to three Tenacibaculum species were able to produce discolins, and several DisA analogues were identified in various marine flavobacterial genera, suggesting the widespread presence of PEA-derived compounds in marine ecosystems.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Virginia Linares-Otoya
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
- Research Centre for Sustainable Development Uku Pacha, 13011 Trujillo, Peru
| | - Yang Liu
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Michael Marner
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
| | - Lizbeth Armas-Mantilla
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
- Research Centre for Sustainable Development Uku Pacha, 13011 Trujillo, Peru
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Analytics, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, H-4002 Debrecen, Hungary
| | - Luis Linares-Otoya
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
- Department of Pharmacology, Faculty of Pharmacy and Biochemistry, National University of Trujillo, 13011 Trujillo, Peru
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch for Bioresources, 35392 Giessen, Germany
- German Center for Infection Research, Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| |
Collapse
|
30
|
Kinoshita Y, Sato Y, Sakurai T, Yamasaki T, Yamamoto H, Hiraoka M. Development of Blade Cells and Rhizoid Cells Aseptically Isolated from the Multicellular Leafy Seaweed <i>Gayralia oxysperma</i>. CYTOLOGIA 2022. [DOI: 10.1508/cytologia.87.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Yoichi Sato
- Bio-resources Business Development Division, Riken Food Co., Ltd
| | - Tetsuya Sakurai
- Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University
| | - Tomohito Yamasaki
- Science and Technology Department, Natural Science Cluster, Kochi University
| | | | | |
Collapse
|
31
|
Kwantes M, Wichard T. The APAF1_C/WD40 repeat domain-encoding gene from the sea lettuce Ulva mutabilis sheds light on the evolution of NB-ARC domain-containing proteins in green plants. PLANTA 2022; 255:76. [PMID: 35235070 PMCID: PMC8891106 DOI: 10.1007/s00425-022-03851-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/07/2022] [Indexed: 06/02/2023]
Abstract
We advance Ulva's genetic tractability and highlight its value as a model organism by characterizing its APAF1_C/WD40 domain-encoding gene, which belongs to a family that bears homology to R genes. The multicellular chlorophyte alga Ulva mutabilis (Ulvophyceae, Ulvales) is native to coastal ecosystems worldwide and attracts both high socio-economic and scientific interest. To further understand the genetic mechanisms that guide its biology, we present a protocol, based on adapter ligation-mediated PCR, for retrieving flanking sequences in U. mutabilis vector-insertion mutants. In the created insertional library, we identified a null mutant with an insertion in an apoptotic protease activating factor 1 helical domain (APAF1_C)/WD40 repeat domain-encoding gene. Protein domain architecture analysis combined with phylogenetic analysis revealed that this gene is a member of a subfamily that arose early in the evolution of green plants (Viridiplantae) through the acquisition of a gene that also encoded N-terminal nucleotide-binding adaptor shared by APAF-1, certain R-gene products and CED-4 (NB-ARC) and winged helix-like (WH-like) DNA-binding domains. Although phenotypic analysis revealed no mutant phenotype, gene expression levels in control plants correlated to the presence of bacterial symbionts, which U. mutabilis requires for proper morphogenesis. In addition, our analysis led to the discovery of a putative Ulva nucleotide-binding site and leucine-rich repeat (NBS-LRR) Resistance protein (R-protein), and we discuss how the emergence of these R proteins in green plants may be linked to the evolution of the APAF1_C/WD40 protein subfamily.
Collapse
Affiliation(s)
- Michiel Kwantes
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany.
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany.
- Jena School for Microbial Communication, 07743, Jena, Germany.
| |
Collapse
|
32
|
Obando JMC, dos Santos TC, Bernardes M, Nascimento N, Villaça RC, Teixeira VL, Barbarino E, Cavalcanti DN. Chemical variation and analysis of diterpenes from seaweed Dictyota menstrualis under controlled conditions. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Easy Removal of Epiphytic Bacteria on Ulva (Ulvophyceae, Chlorophyta) by Vortex with Silica Sands. Microorganisms 2022; 10:microorganisms10020476. [PMID: 35208930 PMCID: PMC8878427 DOI: 10.3390/microorganisms10020476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
Macroalgae-associated bacteria play an important role in their algal hosts’ biological processes. They are localized on surfaces of the host thalli, as well as between and even within algal cells. To examine the differences in community structures and functions between epi- and endo- bacteria, an effective approach for maximizing epiphyte removal from delicate seaweeds while retaining endophyte fidelity must be developed. In this study, a variety of surface sterilization methods for Ulva prolifera were compared, including mechanical, chemical, and enzymatical treatments. According to the results of scanning electron microscope (SEM) and denaturing gradient gel electrophoresis (DGGE) analysis, almost complete removal of epiphytic bacteria on Ulva was obtained simply by co-vortex of seaweeds with silica sands, causing minimal disturbance to endosymbionts when compared to previous published methods. In addition, the adaptability was also confirmed in additional U. prolifera strains and Ulva species with blade-like or narrow tubular thallus shapes. This easy mechanical method would enable the analysis of community composition and host specificity for Ulva-associated epi- and endo-bacteria separately.
Collapse
|
34
|
A Comparative Study of the Fatty Acids and Monosaccharides of Wild and Cultivated Ulva sp. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a need to find new possible raw food sources with interesting nutritional values. One of the most unexploited sources are seaweeds. Thus, Ulva sp. is a green edible seaweed that shows a high growth rate in nature and can support drastic abiotic changes, such as temperature and salinity. This work aims to determine the main nutritional compounds, fatty acids (FAs) and monosaccharides profiles of Ulva sp. (collected from Mondego estuary, Portugal), to identify the potential of this seaweed as a food source. The present study also highlights the potential of controlled and semi-controlled cultivation systems in Ulva sp. profiles. The results showed that the controlled cultivation systems had higher essential FA and monosaccharide content than the semi-controlled cultivation systems. However, they are in some cases identical to wild individuals of Ulva sp., supporting that cultivation of Ulva sp. can be a key for food safety. It is crucial to control the associated risks of contamination that can occur in wild specimens.
Collapse
|
35
|
Wang H, Elyamine AM, Liu Y, Liu W, Chen Q, Xu Y, Peng T, Hu Z. Hyunsoonleella sp. HU1-3 Increased the Biomass of Ulva fasciata. Front Microbiol 2022; 12:788709. [PMID: 35173690 PMCID: PMC8841488 DOI: 10.3389/fmicb.2021.788709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Green algae are photosynthetic organisms and play an important role in coastal environment. The microbial community on the surface of green algae has an effect on the health and nutrition of the host. However, few species of epiphytic microbiota have been reported to play a role in promoting the growth of algae. In this study, 16S rDNA sequencing was used to study the changes of microbial composition on the surface of Ulva fasciata at different growth stages. Some growth promoting bacteria were identified. The possible growth-promoting behavior of the strains were verified by co-culture of pure bacteria obtained from the surface of U. fasciata with its sterile host. Among the identified species, a new bacterial species, Hyunsoonleella sp. HU1-3 (belonging to the family Flavobacteriaceae) significantly promoted the growth of U. fasciata. The results also showed that there were many genes involved in the synthesis of growth hormone and cytokinin in the genome of Hyunsoonleella sp. HU1-3. This study identified the bacterium Hyunsoonleella sp. HU1-3 for the first time, in which this bacterium has strong growth-promoting effects on U. fasciata. Our findings not only provide insights on the establishment of the surface microbiota of U. fasciata, but also indicate that Hyunsoonleella sp. HU1-3 is one of the important species to promote the growth of U. fasciata.
Collapse
Affiliation(s)
- Han Wang
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Yuchun Liu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Wei Liu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Qixuan Chen
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Yan Xu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
- Heyuan Polytechnic, Heyuan, China
| | - Tao Peng
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
| | - Zhong Hu
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
36
|
Dartois M, Pante E, Viricel A, Becquet V, Sauriau PG. Molecular genetic diversity of seaweeds morphologically related to Ulva rigida at three sites along the French Atlantic coast. PeerJ 2022; 9:e11966. [PMID: 35036110 PMCID: PMC8711279 DOI: 10.7717/peerj.11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/04/2021] [Indexed: 11/21/2022] Open
Abstract
Foliose species of the genus Ulva are notoriously difficult to identify due to their variable morphological characteristics and high phenotypic plasticity. We reassessed the taxonomic status of several distromatic foliose Ulva spp., morphologically related to Ulva rigida, using DNA barcoding with the chloroplastic tufA and rbcL (for a subset of taxa) genes for 339 selected attached Ulva specimens collected from three intertidal rocky sites. Two of the collection sites were in Brittany and one site was in Vendée, along the Atlantic coast of France. Molecular analyses included several museum specimens and the holotype of Ulva armoricana Dion, Reviers & Coat. We identified five different tufA haplotypes using a combination of phylogenetic analysis, with the support of several recently sequenced holotypes and lectotypes, and a species delimitation method based on hierarchical clustering. Four haplotypes were supported by validly named species: Ulva australis Areschoug, Ulva fenestrata Postels & Ruprecht, Ulva lacinulata (Kützing) Wittrock and U. rigida C. Agardh. The later was additionally investigated using rbcL. The fifth haplotype represented exact sequence matches to an unnamed species from European Atlantic coasts. Our results support: (1) the synonymy of both U. rigida sensu Bliding non C. Agardh and U. armoricana with U. lacinulata. This finding is based on current genetic analysis of tufA from the U. armoricana holotype and recent molecular characterization of the lectotype of U. laetevirens, which is synonymous to U. australis, (2) the presence of U. australis as a misidentified introduced species in Brittany, and (3) the presence of U. fenestrata and U. rigida in southern Brittany. The taxonomic history of each species is discussed, highlighting issues within distromatic foliose taxa of the genus Ulva and the need to genetically characterize all its available type specimens.
Collapse
Affiliation(s)
- Manon Dartois
- Littoral, Environnement et Sociétés, UMR 7266, CNRS - La Rochelle Université, La Rochelle, France
| | - Eric Pante
- Littoral, Environnement et Sociétés, UMR 7266, CNRS - La Rochelle Université, La Rochelle, France.,Institut Systématique Evolution Biodiversité (ISYEB), CNRS, Sorbonne Université, EPHE, Université des Antilles, Museum national d'Histoire naturelle, Paris, France
| | - Amélia Viricel
- Littoral, Environnement et Sociétés, UMR 7266, CNRS - La Rochelle Université, La Rochelle, France
| | - Vanessa Becquet
- Littoral, Environnement et Sociétés, UMR 7266, CNRS - La Rochelle Université, La Rochelle, France
| | - Pierre-Guy Sauriau
- Littoral, Environnement et Sociétés, UMR 7266, CNRS - La Rochelle Université, La Rochelle, France
| |
Collapse
|
37
|
Capistrant-Fossa KA, Morrison HG, Engelen AH, Quigley CTC, Morozov A, Serrão EA, Brodie J, Gachon CMM, Badis Y, Johnson LE, Hoarau G, Abreu MH, Tester PA, Stearns LA, Brawley SH. The microbiome of the habitat-forming brown alga Fucus vesiculosus (Phaeophyceae) has similar cross-Atlantic structure that reflects past and present drivers 1. JOURNAL OF PHYCOLOGY 2021; 57:1681-1698. [PMID: 34176151 DOI: 10.1111/jpy.13194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 05/25/2023]
Abstract
Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.
Collapse
Affiliation(s)
| | - Hilary G Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, 02543, USA
| | - Aschwin H Engelen
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-139, Portugal
| | | | - Aleksey Morozov
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods Hole, Massachusetts, 02543, USA
| | - Ester A Serrão
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, Faro, 8005-139, Portugal
| | - Juliet Brodie
- Natural History Museum, Department of Life Sciences, London, SW7 5BD, UK
| | | | - Yacine Badis
- Scottish Association for Marine Science, Oban, PA37 1QA, UK
| | - Ladd E Johnson
- Département de Biologie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, 8049, Norway
| | | | | | - Leigh A Stearns
- Department of Geology, University of Kansas, Lawrence, Kansas, 66045, USA
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, Maine, 04469, USA
| |
Collapse
|
38
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
39
|
Abstract
The repeated evolution of multicellularity across the tree of life has profoundly affected the ecology and evolution of nearly all life on Earth. Many of these origins were in different groups of photosynthetic eukaryotes, or algae. Here, we review the evolution and genetics of multicellularity in several groups of green algae, which include the closest relatives of land plants. These include millimeter-scale, motile spheroids of up to 50,000 cells in the volvocine algae; decimeter-scale seaweeds in the genus Ulva (sea lettuce); and very plantlike, meter-scale freshwater algae in the genus Chara (stoneworts). We also describe algae in the genus Caulerpa, which are giant, multinucleate, morphologically complex single cells. In each case, we review the life cycle, phylogeny, and genetics of traits relevant to the evolution of multicellularity, and genetic and genomic resources available for the group in question. Finally, we suggest routes toward developing these groups as model organisms for the evolution of multicellularity. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA;
| | - Matthew D Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
40
|
Qu T, Hou C, Zhao X, Zhong Y, Guan C, Lin Z, Tang X, Wang Y. Bacteria associated with Ulva prolifera: a vital role in green tide formation and migration. HARMFUL ALGAE 2021; 108:102104. [PMID: 34588120 DOI: 10.1016/j.hal.2021.102104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Ulva prolifera green tide in the Yellow Sea of China is a typical cross-regional marine ecological disaster. We hypothesized that the complex interactions between U. prolifera and its associated bacterial communities possibly impact the formation and outbreak of green tide. To test this hypothesis, the U. prolifera-associated bacterial community changes in the entire migration area were investigated through field sampling and high-throughput sequencing. The results showed that (1) with the green tide migration, the richness and diversity increased for U. prolifera epiphytic bacterial communities, while they decreased for seawater bacterial communities in the phycosphere. (2) The richness, diversity, and community composition of U. prolifera-associated bacteria changed more dramatically in the 35.00°N sea area. (3) Potential interactions between bacteria and U. prolifera existed during the entire long-distance migration of green tide, and six bacterial functional groups (BFGs) were defined. Growth-regulating BFG I and antibacterial and stress-resistance BFG II were the dominant communities in the early stage of the green tide migration, which have the role of regulating algal growth and synergistic protection. Heterotrophic BFG III and algicidal BFG IV were the dominant communities in the late stage of the green tide migration, and they were able to compete with algae for nutrients and inhibit algal growth. Nutritive BFG V and algae-derived nutritional type BFG VI symbiotically lived with algal host. Our study highlights the spatial and temporal complexity of U. prolifera-associated bacterial communities and provides valuable insights into the potential contribution of U. prolifera-associated bacterial communities to green tide outbreaks.
Collapse
Affiliation(s)
- Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xinyu Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Zhihao Lin
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
41
|
Phelps CM, McMahon K, Bissett A, Bernasconi R, Steinberg PD, Thomas T, Marzinelli EM, Huggett MJ. The surface bacterial community of an Australian kelp shows cross-continental variation and relative stability within regions. FEMS Microbiol Ecol 2021; 97:fiab089. [PMID: 34156064 DOI: 10.1093/femsec/fiab089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/18/2021] [Indexed: 11/12/2022] Open
Abstract
Epiphytic microbial communities often have a close relationship with their eukaryotic host, assisting with defence, health, disease prevention and nutrient transfer. Shifts in the structure of microbial communities could therefore have negative effects on the individual host and indirectly impact the surrounding ecosystem, particularly for major habitat-forming hosts, such as kelps in temperate rocky shores. Thus, an understanding of the structure and dynamics of host-associated microbial communities is essential for monitoring and assessing ecosystem changes. Here, samples were taken from the ecologically important kelp, Ecklonia radiata, over a 17-month period, from six different sites in two distinct geographic regions (East and West coasts of Australia), separated by ∼3,300 kms, to understand variation in the kelp bacterial community and its potential environmental drivers. Differences were observed between kelp bacterial communities between the largely disconnected geographical regions. In contrast, within each region and over time the bacterial communities were considerably more stable, despite substantial seasonal changes in environmental conditions.
Collapse
Affiliation(s)
- Charlie M Phelps
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kathryn McMahon
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Andrew Bissett
- CSIRO Oceans and Atmosphere, Castray Esp, Battery Point, Tas, 7004, Australia
| | - Rachele Bernasconi
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Peter D Steinberg
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW, 2088, Australia
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, High St, Kensington, NSW, 2052, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, High St, Kensington, NSW, 2052, Australia
| | - Ezequiel M Marzinelli
- Sydney Institute of Marine Science, 19 Chowder Bay Rd, Mosman, NSW, 2088, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, Singapore 637551
- The University of Sydney, School of Life and Environmental Sciences, Coastal and Marine Ecosystems, City Rd, Camperdown, NSW, 2006, Australia
| | - Megan J Huggett
- Centre for Marine Ecosystems Research, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
- School of Environmental and Life Sciences, University of Newcastle, 10 Chittaway Rd, Ourimbah, NSW, 2258, Australia
| |
Collapse
|
42
|
Vallet M, Kaftan F, Grabe V, Ghaderiardakani F, Fenizia S, Svatoš A, Pohnert G, Wichard T. A new glance at the chemosphere of macroalgal-bacterial interactions: In situ profiling of metabolites in symbiosis by mass spectrometry. Beilstein J Org Chem 2021; 17:1313-1322. [PMID: 34136011 PMCID: PMC8182680 DOI: 10.3762/bjoc.17.91] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Symbiosis is a dominant form of life that has been observed numerous times in marine ecosystems. For example, macroalgae coexist with bacteria that produce factors that promote algal growth and morphogenesis. The green macroalga Ulva mutabilis (Chlorophyta) develops into a callus-like phenotype in the absence of its essential bacterial symbionts Roseovarius sp. MS2 and Maribacter sp. MS6. Spatially resolved studies are required to understand symbiont interactions at the microscale level. Therefore, we used mass spectrometry profiling and imaging techniques with high spatial resolution and sensitivity to gain a new perspective on the mutualistic interactions between bacteria and macroalgae. Using atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionisation high-resolution mass spectrometry (AP-SMALDI-HRMS), low-molecular-weight polar compounds were identified by comparative metabolomics in the chemosphere of Ulva. Choline (2-hydroxy-N,N,N-trimethylethan-1-aminium) was only determined in the alga grown under axenic conditions, whereas ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was found in bacterial presence. Ectoine was used as a metabolic marker for localisation studies of Roseovarius sp. within the tripartite community because it was produced exclusively by these bacteria. By combining confocal laser scanning microscopy (cLSM) and AP-SMALDI-HRMS, we proved that Roseovarius sp. MS2 settled mainly in the rhizoidal zone (holdfast) of U. mutabilis. Our findings provide the fundament to decipher bacterial symbioses with multicellular hosts in aquatic ecosystems in an ecologically relevant context. As a versatile tool for microbiome research, the combined AP-SMALDI and cLSM imaging analysis with a resolution to level of a single bacterial cell can be easily applied to other microbial consortia and their hosts. The novelty of this contribution is the use of an in situ setup designed to avoid all types of external contamination and interferences while resolving spatial distributions of metabolites and identifying specific symbiotic bacteria.
Collapse
Affiliation(s)
- Marine Vallet
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Filip Kaftan
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Veit Grabe
- Research Group Olfactory Coding, Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Fatemeh Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Germany
| | - Simona Fenizia
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Germany.,Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Georg Pohnert
- Research Group Phytoplankton Community Interactions, Max Planck Institute for Chemical Ecology, Jena, Germany.,Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Germany.,Microverse Cluster, Friedrich Schiller University Jena, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Germany
| |
Collapse
|
43
|
Moreira ASP, da Costa E, Melo T, Lopes D, Pais ACS, Santos SAO, Pitarma B, Mendes M, Abreu MH, Collén PN, Domingues P, Domingues MR. Polar Lipids of Commercial Ulva spp. of Different Origins: Profiling and Relevance for Seaweed Valorization. Foods 2021; 10:foods10050914. [PMID: 33919394 PMCID: PMC8143280 DOI: 10.3390/foods10050914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Macroalgae of the genus Ulva have long been used as human food. Local environmental conditions, among other factors, can have an impact on their nutrient and phytochemical composition, as well as on the value of the seaweed for food and non-food applications. This study is the first to initiate a comparison between commercial Ulva spp. from different European origins, France (FR, wild-harvested Ulva spp.), and Portugal (PT, farm-raised Ulva rigida), in terms of proximate composition, esterified fatty acids (FA), and polar lipids. The ash content was higher in PT samples, while FR samples had higher levels of proteins, lipids, and carbohydrates and other compounds. The profile of esterified FA, as well as FA-containing polar lipids at the class and species levels were also significantly different. The FR samples showed about three-fold higher amount of n-3 polyunsaturated FA, while PT samples showed two-fold higher content of monounsaturated FA. Quantification of glycolipids and phospholipids revealed, respectively, two-fold and three-fold higher levels in PT samples. Despite the differences found, the polar lipids identified in both batches included some lipid species with recognized bioactivity, valuing Ulva biomass with functional properties, increasing their added value, and promoting new applications, namely in nutraceutical and food markets.
Collapse
Affiliation(s)
- Ana S. P. Moreira
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- Correspondence:
| | - Elisabete da Costa
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Lopes
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adriana C. S. Pais
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
| | - Sónia A. O. Santos
- Department of Chemistry, Santiago University Campus, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (S.A.O.S.)
| | - Bárbara Pitarma
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
| | - Madalena Mendes
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
- Green Colab—Associação Oceano Verde, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Maria H. Abreu
- ALGAplus-Produção e Comercialização de Algas e seus Derivados, 3830-196 Ílhavo, Portugal; (B.P.); (M.M.); (M.H.A.)
| | - Pi Nyvall Collén
- Amadeite SAS, Pôle Biotechnologique du Haut du Bois, 56580 Bréhan, France;
| | - Pedro Domingues
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
| | - M. Rosário Domingues
- Department of Chemistry, LAQV-REQUIMTE, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (E.d.C.); (T.M.); (D.L.); (P.D.); (M.R.D.)
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
44
|
Přerovská T, Henke S, Bleha R, Spiwok V, Gillarová S, Yvin JC, Ferrières V, Nguema-Ona E, Lipovová P. Arabinogalactan-like Glycoproteins from Ulva lactuca (Chlorophyta) Show Unique Features Compared to Land Plants AGPs. JOURNAL OF PHYCOLOGY 2021; 57:619-635. [PMID: 33338254 DOI: 10.1111/jpy.13121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) encompass a diverse group of plant cell wall proteoglycans, which play an essential role in plant development, signaling, plant-microbe interactions, and many others. Although they are widely distributed throughout the plant kingdom and extensively studied, they remain largely unexplored in the lower plants, especially in seaweeds. Ulva species have high economic potential since various applications were previously described including bioremediation, biofuel production, and as a source of bioactive compounds. This article presents the first experimental confirmation of AGP-like glycoproteins in Ulva species and provides a simple extraction protocol of Ulva lactuca AGP-like glycoproteins, their partial characterization and unique comparison to scarcely described Solanum lycopersicum AGPs. The reactivity with primary anti-AGP antibodies as well as Yariv reagent showed a great variety between Ulva lactuca and Solanum lycopersicum AGP-like glycoproteins. While the amino acid analysis of the AGP-like glycoproteins purified by the β-d-glucosyl Yariv reagent showed a similarity between algal and land plant AGP-like glycoproteins, neutral saccharide analysis revealed unique glycosylation of the Ulva lactuca AGP-like glycoproteins. Surprisingly, arabinose and galactose were not the most prevalent monosaccharides and the most outstanding was the presence of 3-O-methyl-hexose, which has never been described in the AGPs. The exceptional structure of the Ulva lactuca AGP-like glycoproteins implies a specialized adaptation to the marine environment and might bring new insight into the evolution of the plant cell wall.
Collapse
Affiliation(s)
- Tereza Přerovská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Svatopluk Henke
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Roman Bleha
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Simona Gillarová
- Department of Carbohydrates and Cerials, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| | - Jean-Claude Yvin
- Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétal, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000, Rennes, France
| | - Eric Nguema-Ona
- Centre Mondial de l'Innovation Roullier, Laboratoire de Nutrition Végétal, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague, 16625, Czech Republic
| |
Collapse
|
45
|
González-Hourcade M, Del Campo EM, Casano LM. The Under-explored Extracellular Proteome of Aero-Terrestrial Microalgae Provides Clues on Different Mechanisms of Desiccation Tolerance in Non-Model Organisms. MICROBIAL ECOLOGY 2021; 81:437-453. [PMID: 32989484 DOI: 10.1007/s00248-020-01604-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Trebouxia sp. (TR9) and Coccomyxa simplex (Csol) are desiccation-tolerant lichen microalgae with different adaptive strategies in accordance with the prevailing conditions of their habitats. The remodelling of cell wall and extracellular polysaccharides depending on water availability are key elements in the tolerance to desiccation of both microalgae. Currently, there is no information about the extracellular proteins of these algae and other aero-terrestrial microalgae in response to limited water availability. To our knowledge, this is the first report on the proteins associated with the extracellular polymeric substances (EPS) of aero-terrestrial microalgae subjected to cyclic desiccation/rehydration. LC-MS/MS and bioinformatic analyses of the EPS-associated proteins in the two lichen microalgae submitted to four desiccation/rehydration cycles allowed the compilation of 111 and 121 identified proteins for TR9 and Csol, respectively. Both sets of EPS-associated proteins shared a variety of predicted biological functions but showed a constitutive expression in Csol and partially inducible in TR9. In both algae, the EPS-associated proteins included a number of proteins of unknown functions, some of which could be considered as small intrinsically disordered proteins related with desiccation-tolerant organisms. Differences in the composition and the expression pattern between the studied EPS-associated proteins would be oriented to preserve the biochemical and biophysical properties of the extracellular structures under the different conditions of water availability in which each alga thrives.
Collapse
Affiliation(s)
| | - Eva M Del Campo
- Department of Life Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain.
| | - Leonardo M Casano
- Department of Life Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
46
|
Fort A, McHale M, Cascella K, Potin P, Usadel B, Guiry MD, Sulpice R. Foliose Ulva Species Show Considerable Inter-Specific Genetic Diversity, Low Intra-Specific Genetic Variation, and the Rare Occurrence of Inter-Specific Hybrids in the Wild. JOURNAL OF PHYCOLOGY 2021; 57:219-233. [PMID: 32996142 PMCID: PMC7894351 DOI: 10.1111/jpy.13079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/19/2020] [Indexed: 05/22/2023]
Abstract
Foliose Ulva spp. have become increasingly important worldwide for their environmental and financial impacts. A large number of such Ulva species have rapid reproduction and proliferation habits, which explains why they are responsible for Ulva blooms, known as "green tides", having dramatic negative effects on coastal ecosystems, but also making them attractive for aquaculture applications. Despite the increasing interest in the genus Ulva, particularly on the larger foliose species for aquaculture, their inter- and intra-specific genetic diversity is still poorly described. We compared the cytoplasmic genome (chloroplast and mitochondrion) of 110 strains of large distromatic foliose Ulva from Ireland, Brittany (France), the Netherlands and Portugal. We found six different species, with high levels of inter-specific genetic diversity, despite highly similar or overlapping morphologies. Genetic variation was as high as 82 SNPs/kb between Ulva pseudorotundata and U. laetevirens, indicating considerable genetic diversity. On the other hand, intra-specific genetic diversity was relatively low, with only 36 variant sites (0.03 SNPs/kb) in the mitochondrial genome of the 29 Ulva rigida individuals found in this study, despite different geographical origins. The use of next-generation sequencing allowed for the detection of a single inter-species hybrid between two genetically closely related species, U. laetevirens, and U. rigida, among the 110 strains analyzed in this study. Altogether, this study represents an important advance in our understanding of Ulva biology and provides genetic information for genomic selection of large foliose strains in aquaculture.
Collapse
Affiliation(s)
- Antoine Fort
- Plant Systems Biology LabRyan Institute & MaREI Centre for MarineClimate and EnergySchool of Natural SciencesNational University of Ireland ‐ GalwayGalwayH91 TK33Ireland
| | - Marcus McHale
- Plant Systems Biology LabRyan Institute & MaREI Centre for MarineClimate and EnergySchool of Natural SciencesNational University of Ireland ‐ GalwayGalwayH91 TK33Ireland
| | - Kevin Cascella
- UMR 8227Integrative Biology of Marine ModelsCNRSSorbonne Université SciencesStation Biologique de Roscoff, CS 90074F‐29688RoscoffFrance
| | - Philippe Potin
- UMR 8227Integrative Biology of Marine ModelsCNRSSorbonne Université SciencesStation Biologique de Roscoff, CS 90074F‐29688RoscoffFrance
| | - Björn Usadel
- Institute for Biology IRWTH Aachen UniversityWorringer Weg 3Aachen52074Germany
| | - Michael D. Guiry
- AlgaeBaseRyan InstituteNational University of IrelandGalwayH91 TK33Ireland
| | - Ronan Sulpice
- Plant Systems Biology LabRyan Institute & MaREI Centre for MarineClimate and EnergySchool of Natural SciencesNational University of Ireland ‐ GalwayGalwayH91 TK33Ireland
| |
Collapse
|
47
|
The role of host promiscuity in the invasion process of a seaweed holobiont. ISME JOURNAL 2021; 15:1668-1679. [PMID: 33479490 PMCID: PMC8163768 DOI: 10.1038/s41396-020-00878-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Invasive species are co-introduced with microbiota from their native range and also interact with microbiota found in the novel environment to which they are introduced. Host flexibility toward microbiota, or host promiscuity, is an important trait underlying terrestrial plant invasions. To test whether host promiscuity may be important in macroalgal invasions, we experimentally simulated an invasion in a common garden setting, using the widespread invasive macroalga Agarophyton vermiculophyllum as a model invasive seaweed holobiont. After disturbing the microbiota of individuals from native and non-native populations with antibiotics, we monitored the microbial succession trajectories in the presence of a new source of microbes. Microbial communities were strongly impacted by the treatment and changed compositionally and in terms of diversity but recovered functionally by the end of the experiment in most respects. Beta-diversity in disturbed holobionts strongly decreased, indicating that different populations configure more similar -or more common- microbial communities when exposed to the same conditions. This decline in beta-diversity occurred not only more rapidly, but was also more pronounced in non-native populations, while individuals from native populations retained communities more similar to those observed in the field. This study demonstrates that microbial communities of non-native A. vermiculophyllum are more flexibly adjusted to the environment and suggests that an intraspecific increase in host promiscuity has promoted the invasion process of A. vermiculophyllum. This phenomenon may be important among invasive macroalgal holobionts in general.
Collapse
|
48
|
Vockenberg T, Wichard T, Ueberschaar N, Franke M, Stelter M, Braeutigam P. The sorption behaviour of amine micropollutants on polyethylene microplastics - impact of aging and interactions with green seaweed. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1678-1687. [PMID: 32638776 DOI: 10.1039/d0em00119h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microplastics are ubiquitous in the environment. Due to still rising global production, the emission of polymers into the environment and the abundance of microplastics have increased accordingly. Due to the long mineralization processes of microplastics, distribution in all compartments can be found. The hydrophobic surfaces of the particles can sorb chemical pollutants, therefore providing a potential pathway to accumulation by organisms within the food web. However, little is known about how long-term aging and degradation processes of microplastics can affect the sorption behaviours of organic pollutants on the particles. In this study, important industrial additives of emerging environmental concern, such as hydrophobic aromatic amines, were studied in relation to their sorption behaviour on high-density polyethylene and low-density polyethylene microplastics. Diphenylamine (log POW (logarithmic octanol-water partition coefficient) = 3.5) showed strong sorption, carbamazepine (log POW = 2.5) showed moderate sorption, and aniline (log POW = 0.9) showed no detectable sorption behaviour. Artificially aged particles exposed to photochemical aging and long-term mechanical treatment in water were compared to pristine microplastics. While mechanically aged microplastics promoted the sorption of aromatic amines, photochemically aged particles showed a decrease in sorption capacity due to changed surface chemistry. Importantly, the sorption capacity increased with increasing salinity, leading to strong implications for ocean systems, as an elevated uptake of pollutants could occur under marine conditions. Moreover, our study demonstrates that the ecotoxicological effects of diphenylamine on the growth of the seaweed Ulva (sea lettuce, Chlorophyta) were reduced in the presence of microplastics. As the plastic particles withdrew enough contaminants from solution, even toxic levels of diphenylamine (c = 10-4 M) became tolerable for the algae. However, the pollutants initially sorbed on the microplastics can be released again at a later point in the ageing process, thus having delayed pollution potential.
Collapse
Affiliation(s)
- Thorben Vockenberg
- Institute of Technical Chemistry and Environmental Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany. and Center for Energy and Environmental Chemistry (CEEC Jena), Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Marcus Franke
- Institute of Technical Chemistry and Environmental Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany. and Center for Energy and Environmental Chemistry (CEEC Jena), Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Stelter
- Institute of Technical Chemistry and Environmental Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany. and Center for Energy and Environmental Chemistry (CEEC Jena), Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany and Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Hermsdorf, Germany
| | - Patrick Braeutigam
- Institute of Technical Chemistry and Environmental Chemistry, Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany. and Center for Energy and Environmental Chemistry (CEEC Jena), Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
49
|
Buschmann H, Holzinger A. Understanding the algae to land plant transition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3241-3246. [PMID: 32529251 DOI: 10.1093/jxb/eraa196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|