1
|
Li M, Duan Z, Zhang S, Zhang J, Chen J, Song H. The physiological and molecular mechanisms of WRKY transcription factors regulating drought tolerance: A review. Gene 2025; 938:149176. [PMID: 39694344 DOI: 10.1016/j.gene.2024.149176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/13/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
WRKY transcription factors (TFs) play crucial roles in responses to abiotic and biotic stresses that significantly impact plant growth and development. Advancements in molecular biology and sequencing technologies have elevated WRKY TF studies from merely determining expression patterns and functional characterization to uncovering molecular regulatory networks. Numerous WRKY TFs regulate drought tolerance in plants through various regulatory networks. This review details the physiological and molecular mechanisms of WRKY TFs regulating drought tolerance. The review focuses on the WRKY TFs involved in the phytohormone and metabolic pathways associated with the drought stress response and the multiple functions of these WRKY TFs, including biotic and abiotic stress responses and their participation in plant growth and development.
Collapse
Affiliation(s)
- Meiran Li
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao 266000, China; Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenquan Duan
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Shengzhong Zhang
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao 266000, China
| | - Jiancheng Zhang
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao 266000, China.
| | - Jing Chen
- Key Laboratory of Biology and Genetic Improvement of Peanut, Ministry of Agriculture and Rural Affairs, Shandong Peanut Research Institute, Qingdao 266000, China.
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Chen Y, Zhang J. Multiple functions and regulatory networks of WRKY33 and its orthologs. Gene 2024; 931:148899. [PMID: 39209179 DOI: 10.1016/j.gene.2024.148899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis thaliana WRKY33 is currently one of the most studied members of the Group I WRKY transcription factor family. Research has confirmed that WRKY33 is involved in the regulation of various biological and abiotic stresses and occupies a central position in the regulatory network. The functional studies of orthologous genes of WRKY33 from other species are also receiving increasing attention. In this article, we summarized thirty-eight orthologous genes of AtWKRY33 from twenty-five different species. Their phylogenetic relationship and conserved WRKY domain were analyzed and compared. Similar to AtWKRY33, the well-studied orthologous gene members from rice and tomato also have multiple functions. In addition to playing important regulatory roles in responding to their specific pathogens, they are also involved in regulating various abiotic stresses and development. AtWKRY33 exerts its multiple functions through a complex regulatory network. Upstream transcription factors or other regulatory factors activate or inhibit the expression of AtWKRY33 at the chromatin and transcriptional levels. Interacting proteins affect the transcriptional activity of AtWKRY33 through phosphorylation, ubiquitination, SUMOylation, competition, or cooperation. The downstream genes are diverse and include three major categories: transcription factors, synthesis, metabolism, and signal transduction of various hormones, and disease resistance genes. In the regulatory network of AtWRKY33 orthologs, many conserved regulatory characteristics have been discovered, such as self-activation and phosphorylation by MAP kinases. This can provide a comparative reference for further studying the functions of other orthologous genes of AtWKRY33.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
3
|
Dong Y, Krishnamoorthi S, Tan GZH, Poh ZY, Urano D. Co-option of plant gene regulatory network in nutrient responses during terrestrialization. NATURE PLANTS 2024; 10:1955-1968. [PMID: 39592744 DOI: 10.1038/s41477-024-01851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
Plant responses to nitrate, phosphate and sucrose form a complex molecular network crucial for terrestrial adaptation. However, the origins, functional diversity and evolvability of this network during plant terrestrialization remain scarcely understood. Here we compare the transcriptomic response to these nutrients in the bryophyte Marchantia polymorpha and the streptophyte alga Klebsormidium nitens. We show that the largely species-specific nutrient response pattern is driven by gene regulatory network (GRN) alterations. Intriguingly, while pathways governing the GRNs exhibit modest conservation, M. polymorpha GRNs exhibit more regulatory connections through the redeployment of ancient transcription factor CSD. In M. polymorpha, functional analyses reveal the involvement of pre-existing cytokinin machineries in downstream targets, orchestrating plastic morpho-physiological responses to nutrient status. Our findings implicate the genetic co-option events facilitating successful land plant establishment.
Collapse
Affiliation(s)
- Yating Dong
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | | | | | | | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Thirulogachandar V, Govind G, Hensel G, Kale SM, Kuhlmann M, Eschen-Lippold L, Rutten T, Koppolu R, Rajaraman J, Palakolanu SR, Seiler C, Sakuma S, Jayakodi M, Lee J, Kumlehn J, Komatsuda T, Schnurbusch T, Sreenivasulu N. HOMEOBOX2, the paralog of SIX-ROWED SPIKE1/HOMEOBOX1, is dispensable for barley spikelet development. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2900-2916. [PMID: 38366171 PMCID: PMC11358255 DOI: 10.1093/jxb/erae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
The HD-ZIP class I transcription factor Homeobox 1 (HvHOX1), also known as Vulgare Row-type Spike 1 (VRS1) or Six-rowed Spike 1, regulates lateral spikelet fertility in barley (Hordeum vulgare L.). It was shown that HvHOX1 has a high expression only in lateral spikelets, while its paralog HvHOX2 was found to be expressed in different plant organs. Yet, the mechanistic functions of HvHOX1 and HvHOX2 during spikelet development are still fragmentary. Here, we show that compared with HvHOX1, HvHOX2 is more highly conserved across different barley genotypes and Hordeum species, hinting at a possibly vital but still unclarified biological role. Using bimolecular fluorescence complementation, DNA-binding, and transactivation assays, we validate that HvHOX1 and HvHOX2 are bona fide transcriptional activators that may potentially heterodimerize. Accordingly, both genes exhibit similar spatiotemporal expression patterns during spike development and growth, albeit their mRNA levels differ quantitatively. We show that HvHOX1 delays the lateral spikelet meristem differentiation and affects fertility by aborting the reproductive organs. Interestingly, the ancestral relationship of the two genes inferred from their co-expressed gene networks suggested that HvHOX1 and HvHOX2 might play a similar role during barley spikelet development. However, CRISPR-derived mutants of HvHOX1 and HvHOX2 demonstrated the suppressive role of HvHOX1 on lateral spikelets, while the loss of HvHOX2 does not influence spikelet development. Collectively, our study shows that through the suppression of reproductive organs, lateral spikelet fertility is regulated by HvHOX1, whereas HvHOX2 is dispensable for spikelet development in barley.
Collapse
Affiliation(s)
- Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Geetha Govind
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Sandip M Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| | | | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Sudhakar Reddy Palakolanu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Christiane Seiler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Shun Sakuma
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, Tsukuba 3058602, Japan
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120 Halle, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
| | - Takao Komatsuda
- National Institute of Agrobiological Sciences (NIAS), Plant Genome Research Unit, Tsukuba 3058602, Japan
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Nese Sreenivasulu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Stadt Seeland, Germany
- Research Group Abiotic Stress Genomics, Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Singh A, Maurya A, Rajkumar S, Singh AK, Bhardwaj R, Kaushik SK, Kumar S, Singh K, Singh GP, Singh R. Genome-Wide Comparative Analysis of Five Amaranthaceae Species Reveals a Large Amount of Repeat Content. PLANTS (BASEL, SWITZERLAND) 2024; 13:824. [PMID: 38592842 PMCID: PMC10975975 DOI: 10.3390/plants13060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Amaranthus is a genus of C4 dicotyledonous herbaceous plant species that are widely distributed in Asia, Africa, Australia, and Europe and are used as grain, vegetables, forages, and ornamental plants. Amaranth species have gained significant attention nowadays as potential sources of nutritious food and industrial products. In this study, we performed a comparative genome analysis of five amaranth species, namely, Amaranthus hypochondriacus, Amaranthus tuberculatus, Amaranthus hybridus, Amaranthus palmeri, and Amaranthus cruentus. The estimated repeat content ranged from 54.49% to 63.26% and was not correlated with the genome sizes. Out of the predicted repeat classes, the majority of repetitive sequences were Long Terminal Repeat (LTR) elements, which account for about 13.91% to 24.89% of all amaranth genomes. Phylogenetic analysis based on 406 single-copy orthologous genes revealed that A. hypochondriacus is most closely linked to A. hybridus and distantly related to A. cruentus. However, dioecious amaranth species, such as A. tuberculatus and A. palmeri, which belong to the subgenera Amaranthus Acnida, have formed their distinct clade. The comparative analysis of genomic data of amaranth species will be useful to identify and characterize agronomically important genes and their mechanisms of action. This will facilitate genomics-based, evolutionary studies, and breeding strategies to design faster, more precise, and predictable crop improvement programs.
Collapse
Affiliation(s)
- Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| | - Avantika Maurya
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| | - Subramani Rajkumar
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| | - Amit Kumar Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| | - Rakesh Bhardwaj
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (R.B.); (S.K.K.); (S.K.)
| | - Surinder Kumar Kaushik
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (R.B.); (S.K.K.); (S.K.)
| | - Sandeep Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (R.B.); (S.K.K.); (S.K.)
| | - Kuldeep Singh
- International Crop Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India;
| | | | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, Pusa, New Delhi 110012, India; (A.S.); (A.M.); (S.R.); (A.K.S.)
| |
Collapse
|
6
|
Dong Y, Wu TY, Urano D. Heterotrimeric G proteins in crop improvement. MOLECULAR PLANT 2023; 16:806-808. [PMID: 37073131 DOI: 10.1016/j.molp.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Affiliation(s)
- Yating Dong
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Ting-Ying Wu
- Insitute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Leong R, Tan JJ, Koh SS, Wu TY, Ishizaki K, Urano D. G protein signaling and metabolic pathways as evolutionarily conserved mechanisms to combat calcium deficiency. THE NEW PHYTOLOGIST 2023; 237:615-630. [PMID: 36266966 DOI: 10.1111/nph.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Calcium (Ca) deficiency causes necrotic symptoms of foliar edges known as tipburn; however, the underlying cellular mechanisms have been poorly understood due to the lack of an ideal plant model and research platform. Using a phenotyping system that quantitates growth and tipburn traits in the model bryophyte Marchantia polymorpha, we evaluated metabolic compounds and the Gβ-null mutant (gpb1) that modulate the occurrence and expansion of the tipburn. Transcriptomic comparisons between wild-type and gpb1 plants revealed the phenylalanine/phenylpropanoid biosynthesis pathway and reactive oxygen species (ROS) important for Ca deficiency responses. gpb1 plants reduced ROS production possibly through transcriptomic regulations of class III peroxidases and induced the expression of phenylpropanoid pathway enzymes without changing downstream lignin contents. Supplementation of intermediate metabolites and chemical inhibitors further confirmed the cell-protective mechanisms of the phenylpropanoid and ROS pathways. Marchantia polymorpha, Arabidopsis thaliana, and Lactuca sativa showed comparable transcriptomic changes where genes related to phenylpropanoid and ROS pathways were enriched in response to Ca deficiency. In conclusion, our study demonstrated unresolved signaling and metabolic pathways of Ca deficiency response. The phenotyping platform can speed up the discovery of chemical and genetic pathways, which could be widely conserved between M. polymorpha and angiosperms.
Collapse
Affiliation(s)
- Richalynn Leong
- Temasek Life Sciences Laboratory Ltd, National University of Singapore, 1 Research Link, 117604, Singapore City, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore City, Singapore
| | - Javier Jingheng Tan
- Temasek Life Sciences Laboratory Ltd, National University of Singapore, 1 Research Link, 117604, Singapore City, Singapore
| | - Sally Shuxian Koh
- Temasek Life Sciences Laboratory Ltd, National University of Singapore, 1 Research Link, 117604, Singapore City, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore City, Singapore
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory Ltd, National University of Singapore, 1 Research Link, 117604, Singapore City, Singapore
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan
| | - Daisuke Urano
- Temasek Life Sciences Laboratory Ltd, National University of Singapore, 1 Research Link, 117604, Singapore City, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore City, Singapore
- Singapore-MIT Alliance for Research and Technology, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore City, Singapore
| |
Collapse
|
8
|
Afrin T, Costello CN, Monella AN, Kørner CJ, Pajerowska-Mukhtar KM. The interplay of GTP-binding protein AGB1 with ER stress sensors IRE1a and IRE1b modulates Arabidopsis unfolded protein response and bacterial immunity. PLANT SIGNALING & BEHAVIOR 2022; 17:2018857. [PMID: 34968413 PMCID: PMC8920210 DOI: 10.1080/15592324.2021.2018857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
In eukaryotic cells, the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in ER stress that induces a cascade of reactions called the unfolded protein response (UPR). In Arabidopsis, the most conserved UPR sensor, Inositol-requiring enzyme 1 (IRE1), responds to both abiotic- and biotic-induced ER stress. Guanine nucleotide-binding proteins (G proteins) constitute another universal and conserved family of signal transducers that have been extensively investigated due to their ubiquitous presence and diverse nature of action. Arabidopsis GTP-binding protein β1 (AGB1) is the only G-protein β-subunit encoded by the Arabidopsis genome that is involved in numerous signaling pathways. Mounting evidence suggests the existence of a crosstalk between IRE1 and G protein signaling during ER stress. AGB1 has previously been shown to control a distinct UPR pathway independently of IRE1 when treated with an ER stress inducer tunicamycin. Our results obtained with combinatorial knockout mutants support the hypothesis that both IRE1 and AGB1 synergistically contribute to ER stress responses chemically induced by dithiothreitol (DTT) as well as to the immune responses against a phytopathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Our study highlights the crosstalk between the plant UPR transducers under abiotic and biotic stress.
Collapse
Affiliation(s)
- Taiaba Afrin
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Caitlin N. Costello
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Amber N. Monella
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | - Camilla J. Kørner
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, USA
| | | |
Collapse
|
9
|
Wu TY, Krishnamoorthi S, Boonyaves K, Al-Darabsah I, Leong R, Jones AM, Ishizaki K, Liao KL, Urano D. G protein controls stress readiness by modulating transcriptional and metabolic homeostasis in Arabidopsis thaliana and Marchantia polymorpha. MOLECULAR PLANT 2022; 15:1889-1907. [PMID: 36321200 DOI: 10.1016/j.molp.2022.10.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The core G protein signaling module, which consists of Gα and extra-large Gα (XLG) subunits coupled with the Gβγ dimer, is a master regulator of various stress responses. In this study, we compared the basal and salt stress-induced transcriptomic, metabolomic and phenotypic profiles in Gα, Gβ, and XLG-null mutants of two plant species, Arabidopsis thaliana and Marchantia polymorpha, and showed that G protein mediates the shift of transcriptional and metabolic homeostasis to stress readiness status. We demonstrated that such stress readiness serves as an intrinsic protection mechanism against further stressors through enhancing the phenylpropanoid pathway and abscisic acid responses. Furthermore, WRKY transcription factors were identified as key intermediates of G protein-mediated homeostatic shifts. Statistical and mathematical model comparisons between A. thaliana and M. polymorpha revealed evolutionary conservation of transcriptional and metabolic networks over land plant evolution, whereas divergence has occurred in the function of plant-specific atypical XLG subunit. Taken together, our results indicate that the shifts in transcriptional and metabolic homeostasis at least partially act as the mechanisms of G protein-coupled stress responses that are conserved between two distantly related plants.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore, Singapore.
| | | | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Isam Al-Darabsah
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada
| | - Richalynn Leong
- Temasek Life Sciences Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Alan M Jones
- Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada.
| | - Daisuke Urano
- Temasek Life Sciences Laboratory, Singapore, Singapore; Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
10
|
Wu TY, Hoh KL, Boonyaves K, Krishnamoorthi S, Urano D. Diversification of heat shock transcription factors expanded thermal stress responses during early plant evolution. THE PLANT CELL 2022; 34:3557-3576. [PMID: 35849348 PMCID: PMC9516188 DOI: 10.1093/plcell/koac204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 05/19/2023]
Abstract
The copy numbers of many plant transcription factor (TF) genes substantially increased during terrestrialization. This allowed TFs to acquire new specificities and thus create gene regulatory networks (GRNs) with new biological functions to help plants adapt to terrestrial environments. Through characterizing heat shock factor (HSF) genes MpHSFA1 and MpHSFB1 in the liverwort Marchantia polymorpha, we explored how heat-responsive GRNs widened their functions in M. polymorpha and Arabidopsis thaliana. An interspecies comparison of heat-induced transcriptomes and the evolutionary rates of HSFs demonstrated the emergence and subsequent rapid evolution of HSFB prior to terrestrialization. Transcriptome and metabolome analyses of M. polymorpha HSF-null mutants revealed that MpHSFA1 controls canonical heat responses such as thermotolerance and metabolic changes. MpHSFB1 also plays essential roles in heat responses, as well as regulating developmental processes including meristem branching and antheridiophore formation. Analysis of cis-regulatory elements revealed development- and stress-related TFs that function directly or indirectly downstream of HSFB. Male gametophytes of M. polymorpha showed higher levels of thermotolerance than female gametophytes, which could be explained by different expression levels of MpHSFA1U and MpHSFA1V on sex chromosome. We propose that the diversification of HSFs is linked to the expansion of HS responses, which enabled coordinated multicellular reactions in land plants.
Collapse
Affiliation(s)
- Ting-Ying Wu
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
| | - Kar Ling Hoh
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Kulaporn Boonyaves
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
| | | | - Daisuke Urano
- Temasek Life Sciences Laboratory, 1 Research Link, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
11
|
Boonyaves K, Wu TY, Dong Y, Urano D. Interplay between ARABIDOPSIS Gβ and WRKY transcription factors differentiates environmental stress responses. PLANT PHYSIOLOGY 2022; 190:813-827. [PMID: 35748759 PMCID: PMC9434291 DOI: 10.1093/plphys/kiac305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Different environmental stresses often evoke similar physiological disorders such as growth retardation; however, specific consequences reported among individual stresses indicate potential mechanisms to distinguish different stress types in plants. Here, we examined mechanisms to differentiate between stress types in Arabidopsis (Arabidopsis thaliana). Gene expression patterns recapitulating several abiotic stress responses suggested abscisic acid (ABA) as a mediator of the common stress response, while stress type-specific responses were related to metabolic adaptations. Transcriptome and metabolome analyses identified Arabidopsis Gβ (AGB1) mediating the common stress-responsive genes and primary metabolisms under nitrogen excess. AGB1 regulated the expressions of multiple WRKY transcription factors. Gene Ontology and mutant analyses revealed different roles among WRKYs: WRKY40 is involved in ABA and common stress responses, while WRKY75 regulates metabolic processes. The AGB1-WRKY signaling module controlled developmental plasticity in roots under nitrogen excess. Signal transmission from AGB1 to a selective set of WRKYs would be essential to evoke unique responses to different types of stresses.
Collapse
Affiliation(s)
| | - Ting-Ying Wu
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Yating Dong
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | |
Collapse
|
12
|
Lešková A, Javot H, Giehl RFH. Metal crossroads in plants: modulation of nutrient acquisition and root development by essential trace metals. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1751-1765. [PMID: 34791130 DOI: 10.1093/jxb/erab483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The metals iron, zinc, manganese, copper, molybdenum, and nickel are essential for the growth and development of virtually all plant species. Although these elements are required at relatively low amounts, natural factors and anthropogenic activities can significantly affect their availability in soils, inducing deficiencies or toxicities in plants. Because essential trace metals can shape root systems and interfere with the uptake and signaling mechanisms of other nutrients, the non-optimal availability of any of them can induce multi-element changes in plants. Interference by one essential trace metal with the acquisition of another metal or a non-metal nutrient can occur prior to or during root uptake. Essential trace metals can also indirectly impact the plant's ability to capture soil nutrients by targeting distinct root developmental programs and hormone-related processes, consequently inducing largely metal-specific changes in root systems. The presence of metal binding domains in many regulatory proteins also enables essential trace metals to coordinate nutrient uptake by acting at high levels in hierarchical signaling cascades. Here, we summarize the known molecular and cellular mechanisms underlying trace metal-dependent modulation of nutrient acquisition and root development, and highlight the importance of considering multi-element interactions to breed crops better adapted to non-optimal trace metal availabilities.
Collapse
Affiliation(s)
- Alexandra Lešková
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Hélène Javot
- Aix Marseille Univ, CEA, CNRS, Bioscience and Biotechnology Institut of Aix-Marseille (BIAM), SAVE, Saint Paul-Lez-Durance, F-13108, France
| | - Ricardo F H Giehl
- Department of Physiology & Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466 Seeland, Germany
| |
Collapse
|
13
|
Hodgens C, Akpa BS, Long TA. Solving the puzzle of Fe homeostasis by integrating molecular, mathematical, and societal models. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102149. [PMID: 34839201 DOI: 10.1016/j.pbi.2021.102149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
To ensure optimal utilization and bioavailability, iron uptake, transport, subcellular localization, and assimilation are tightly regulated in plants. Herein, we examine recent advances in our understanding of cellular responses to Fe deficiency. We then use intracellular mechanisms of Fe homeostasis to discuss how formalizing cell biology knowledge via a mathematical model can advance discovery even when quantitative data is limited. Using simulation-based inference to identify plausible systems mechanisms that conform to known emergent phenotypes can yield novel, testable hypotheses to guide targeted experiments. However, this approach relies on the accurate encoding of domain-expert knowledge in exploratory mathematical models. We argue that this would be facilitated by fostering more "systems thinking" life scientists and that diversifying your research team may be a practical path to achieve that goal.
Collapse
Affiliation(s)
- Charles Hodgens
- Plant & Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Belinda S Akpa
- Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | - Terri A Long
- Plant & Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Abdullah-Zawawi MR, Ahmad-Nizammuddin NF, Govender N, Harun S, Mohd-Assaad N, Mohamed-Hussein ZA. Comparative genome-wide analysis of WRKY, MADS-box and MYB transcription factor families in Arabidopsis and rice. Sci Rep 2021; 11:19678. [PMID: 34608238 PMCID: PMC8490385 DOI: 10.1038/s41598-021-99206-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 01/25/2023] Open
Abstract
Transcription factors (TFs) form the major class of regulatory genes and play key roles in multiple plant stress responses. In most eukaryotic plants, transcription factor (TF) families (WRKY, MADS-box and MYB) activate unique cellular-level abiotic and biotic stress-responsive strategies, which are considered as key determinants for defense and developmental processes. Arabidopsis and rice are two important representative model systems for dicot and monocot plants, respectively. A comprehensive comparative study on 101 OsWRKY, 34 OsMADS box and 122 OsMYB genes (rice genome) and, 71 AtWRKY, 66 AtMADS box and 144 AtMYB genes (Arabidopsis genome) showed various relationships among TFs across species. The phylogenetic analysis clustered WRKY, MADS-box and MYB TF family members into 10, 7 and 14 clades, respectively. All clades in WRKY and MYB TF families and almost half of the total number of clades in the MADS-box TF family are shared between both species. Chromosomal and gene structure analysis showed that the Arabidopsis-rice orthologous TF gene pairs were unevenly localized within their chromosomes whilst the distribution of exon–intron gene structure and motif conservation indicated plausible functional similarity in both species. The abiotic and biotic stress-responsive cis-regulatory element type and distribution patterns in the promoter regions of Arabidopsis and rice WRKY, MADS-box and MYB orthologous gene pairs provide better knowledge on their role as conserved regulators in both species. Co-expression network analysis showed the correlation between WRKY, MADs-box and MYB genes in each independent rice and Arabidopsis network indicating their role in stress responsiveness and developmental processes.
Collapse
Affiliation(s)
| | - Nur-Farhana Ahmad-Nizammuddin
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Nisha Govender
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Sarahani Harun
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Norfarhan Mohd-Assaad
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
15
|
Wang K, Xu F, Yuan W, Zhang D, Liu J, Sun L, Cui L, Zhang J, Xu W. Rice G protein γ subunit qPE9-1 modulates root elongation for phosphorus uptake by involving 14-3-3 protein OsGF14b and plasma membrane H + -ATPase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1603-1615. [PMID: 34216063 DOI: 10.1111/tpj.15402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+ -ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+ -ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+ -ATPase, which is required for rice P use.
Collapse
Affiliation(s)
- Ke Wang
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feiyun Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jianping Liu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Leyun Sun
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liyou Cui
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
16
|
Arabidopsis G-Protein β Subunit AGB1 Negatively Regulates DNA Binding of MYB62, a Suppressor in the Gibberellin Pathway. Int J Mol Sci 2021; 22:ijms22158270. [PMID: 34361039 PMCID: PMC8347620 DOI: 10.3390/ijms22158270] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022] Open
Abstract
Plant G proteins are versatile components of transmembrane signaling transduction pathways. The deficient mutant of heterotrimeric G protein leads to defects in plant growth and development, suggesting that it regulates the GA pathway in Arabidopsis. However, the molecular mechanism of G protein regulation of the GA pathway is not understood in plants. In this study, two G protein β subunit (AGB1) mutants, agb1-2 and N692967, were dwarfed after exogenous application of GA3. AGB1 interacts with the DNA-binding domain MYB62, a GA pathway suppressor. Transgenic plants were obtained through overexpression of MYB62 in two backgrounds including the wild-type (MYB62/WT Col-0) and agb1 mutants (MYB62/agb1) in Arabidopsis. Genetic analysis showed that under GA3 treatment, the height of the transgenic plants MYB62/WT and MYB62/agb1 was lower than that of WT. The height of MYB62/agb1 plants was closer to MYB62/WT plants and higher than that of mutants agb1-2 and N692967, suggesting that MYB62 is downstream of AGB1 in the GA pathway. qRT-PCR and competitive DNA binding assays indicated that MYB62 can bind MYB elements in the promoter of GA2ox7, a GA degradation gene, to activate GA2ox7 transcription. AGB1 affected binding of MYB62 on the promoter of GA2ox7, thereby negatively regulating th eactivity of MYB62.
Collapse
|
17
|
Mulat MW, Sinha VB. Distribution and abundance of CREs in the promoters depicts crosstalk by WRKYs in Tef [Eragrostis tef (Zucc.) Troetter]. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Noh SW, Seo RR, Park HJ, Jung HW. Two Arabidopsis Homologs of Human Lysine-Specific Demethylase Function in Epigenetic Regulation of Plant Defense Responses. FRONTIERS IN PLANT SCIENCE 2021; 12:688003. [PMID: 34194459 PMCID: PMC8236864 DOI: 10.3389/fpls.2021.688003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/18/2021] [Indexed: 05/02/2023]
Abstract
Epigenetic marks such as covalent histone modification and DNA methylation are crucial for mitotically and meiotically inherited cellular memory-based plant immunity. However, the roles of individual players in the epigenetic regulation of plant immunity are not fully understood. Here we reveal the functions of two Arabidopsis thaliana homologs of human lysine-specific demethylase1-like1, LDL1 and LDL2, in the maintenance of methyl groups at lysine 4 of histone H3 and in plant immunity to Pseudomonas syringae infection. The growth of virulent P. syringae strains was reduced in ldl1 and ldl2 single mutants compared to wild-type plants. Local and systemic disease resistance responses, which coincided with the rapid, robust transcription of defense-related genes, were more stably expressed in ldl1 ldl2 double mutants than in the single mutants. At the nucleosome level, mono-methylated histone H3K4 accumulated in ldl1 ldl2 plants genome-wide and in the mainly promoter regions of the defense-related genes examined in this study. Furthermore, in silico comparative analysis of RNA-sequencing and chromatin immunoprecipitation data suggested that several WRKY transcription factors, e.g., WRKY22/40/70, might be partly responsible for the enhanced immunity of ldl1 ldl2. These findings suggest that LDL1 and LDL2 control the transcriptional sensitivity of a group of defense-related genes to establish a primed defense response in Arabidopsis.
Collapse
Affiliation(s)
- Seong Woo Noh
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Ri-Ra Seo
- Department of Applied Bioscience, Dong-A University, Busan, South Korea
| | - Hee Jin Park
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- *Correspondence: Hee Jin Park,
| | - Ho Won Jung
- Institute of Agricultural Life Science, Dong-A University, Busan, South Korea
- Department of Molecular Genetics, Dong-A University, Busan, South Korea
- Ho Won Jung,
| |
Collapse
|
19
|
Strawberry FaWRKY25 Transcription Factor Negatively Regulated the Resistance of Strawberry Fruits to Botrytis cinerea. Genes (Basel) 2020; 12:genes12010056. [PMID: 33396436 PMCID: PMC7824073 DOI: 10.3390/genes12010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
WRKY genes and jasmonic acid (JA) play a crucial role in plants’ responses against biotic and abiotic stress. However, the regulating mechanism of WRKY genes on strawberry fruits’ resistance against Botrytis cinerea is largely unknown, and few studies have been performed on their effect on the JA-mediated defense mechanism against B. cinerea. This study explored the effect of FaWRKY25 on the JA-mediated strawberry resistance against B. cinerea. Results showed that the JA content decreased significantly as the fruits matured, whereas the FaWRKY25 expression rose substantially, which led to heightened susceptibility to B. cinerea and in strawberries. External JA treatment significantly increased the JA content in strawberries and reduced the FaWRKY25 expression, thereby enhancing the fruits’ resistance against B. cinerea. FaWRKY25 overexpression significantly lowered the fruits’ resistance against B. cinerea, whereas FaWRKY25 silencing significantly increased resistance. Moreover, FaWRKY25 overexpression significantly lowered the JA content, whereas FaWRKY25 silencing significantly increased it. FaWRKY25 expression level substantially affects the expression levels of genes related to JA biosynthesis and metabolism, other members of the WRKY family, and defense genes. Accordingly, FaWRKY25 plays a crucial role in regulating strawberries’ resistance against B. cinerea and may negatively regulate their JA-mediated resistance mechanism against B. cinerea.
Collapse
|