1
|
Catoni M. Transposable elements underlie genetic adaptation. NATURE PLANTS 2024; 10:1617-1618. [PMID: 39333350 DOI: 10.1038/s41477-024-01792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Affiliation(s)
- Marco Catoni
- School of Biosciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
2
|
Yamagishi M, Nomizu T, Nakatsuka T. Overexpression of lily MicroRNA156-resistant SPL13A stimulates stem elongation and flowering in Lilium formosanum under non-inductive (non-chilling) conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1456183. [PMID: 39494055 PMCID: PMC11527630 DOI: 10.3389/fpls.2024.1456183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/01/2024] [Indexed: 11/05/2024]
Abstract
Flowering plants undergo juvenile vegetative, adult vegetative, and reproductive phases. Lily plants (Lilium spp.) develop scaly leaves during their juvenile vegetative phase. Stem elongation occurs in the adult vegetative phase and is followed by floral transition. As the duration of the juvenile vegetative phase is long in lilies, the microRNA156 (miR156) and SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL) modules are expected to play a major role in vegetative phase change and flower induction. In the present study, we aimed to explore the functions of lily SLP13A. We evaluated phenotypic changes and gene expression in L. formosanum plants overexpressing miR156-resistant SPL13A (rSPL13A) and examined the accumulation levels of gene transcripts and mature miRNAs in non-transformed L. longiflorum plants. Lily plants overexpressing rSPL13A exhibited stem elongation under non-inductive conditions, and FLOWERING LOCUS T (FT) genes were poorly involved in this stem elongation. Flowering was induced in the transformed plants with elongated stems, and the accumulation of MADS5 (APETALA1) transcripts and mature miR172 was elevated in these plants. In non-transformed lilies, SPL13A transcripts were highly accumulated in the shoot apices of both juvenile and adult plants. As mature miR156 was poorly accumulated in the shoot apices of the adult plants, SPL13A was active enough to stimulate stem elongation and flower induction. In contrast, mature miR156 was reliably detected in shoot apices of the juvenile plants. Because our transient assay using tobacco plants expressing a SPL13A-GFP fusion protein indicated that miR156 repressed SPL13A expression mainly at the translational level, SPL13A activity should be insufficient to stimulate stem elongation in the juvenile plants. In addition, the accumulation of MADS5 transcripts and mature miR172 in the shoot apices increased with plant growth and peaked before the transition to the reproductive phase. Therefore, we conclude that SPL13A regulates stem elongation in the adult vegetative phase, which differs from the mechanisms evaluated in Arabidopsis and rice, wherein stem elongation proceeds in a reproductive phase and FT genes are heavily involved in it, and that SPL13A induces flowering by the activation of genes related to the age pathway underlying floral transition, as APETALA1 and primary-MIR172 are mainly involved in this pathway.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Toshikazu Nomizu
- Biotechnology Division, Niigata Agricultural Research Institute, Nagaoka, Niigata, Japan
| | - Takashi Nakatsuka
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
3
|
Cai X, Xiao L, Wang A, Qiao G, Wen Z, Wen X, Yang K. Drought-inducible HpbHLH70 enhances drought tolerance and may accelerate floral bud induction in pitaya. Int J Biol Macromol 2024; 277:134189. [PMID: 39069047 DOI: 10.1016/j.ijbiomac.2024.134189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Floral bud induction is of great importance for fruit crops, which may substantially affect fruit yield. Previously, a FLOWERING BHLH (FBH) transcription factor gene HpbHLH70 was identified in pitaya (Hylocereus polyrhizus) as subjected to drought stress. In present work, HpbHLH70 was found predominantly activated in pitaya anthers. GUS fusing reporter assay showed its selective activation in anthers and vasculatures of transgenic Arabidopsis. Moreover, HpbHLH70 is drought inducible, which was further supported by the deepened GUS staining under drought condition, indicating a HpbHLH70-mediated crosstalk between drought response and floral bud induction, which partially explained the advanced floral bud induction in pitaya by drought stress. Overexpression of HpbHLH70 in pitaya improved the drought tolerance by enhancing the water-holding capacity and the ROS-scavenging activity. Meanwhile, overexpression of HpbHLH70 in Arabidopsis improved their behaviors under drought stress. Intriguingly, the transgenic Arabidopsis flowered earlier than the wild-type. In addition, HpbHLH70 was verified to heterodimerize with HpbHLH59 and transactivate the floral-bud-induction regulator HpSOC1 via direct binding to the promoter. Overexpression of HpbHLH70 up-regulated the expression of HpSOC1 in pitaya. Collectively, our data uncover that drought-induced HpbHLH70 enhances drought tolerance and may accelerate floral bud induction in pitaya via heterodimerization with HpbHLH59 and transactivation of HpSOC1.
Collapse
Affiliation(s)
- Xiaowei Cai
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering, College of Life Sciences, Guiyang 550025, Guizhou Province, China
| | - Ling Xiao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering, College of Life Sciences, Guiyang 550025, Guizhou Province, China
| | - Aihua Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; School of Biological and Food Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Guang Qiao
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering, College of Life Sciences, Guiyang 550025, Guizhou Province, China
| | - Zhuang Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering, College of Life Sciences, Guiyang 550025, Guizhou Province, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering, College of Life Sciences, Guiyang 550025, Guizhou Province, China.
| | - Kun Yang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Institute of Agro-bioengineering, College of Life Sciences, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory of Agro-Bioengineering, Institute of Agro-bioengineering, College of Life Sciences, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Xu G, Liu Y, Yu S, Kong D, Tang K, Dai Z, Sun J, Cheng C, Deng C, Yang Z, Tang Q, Li C, Su J, Zhang X. CsMIKC1 regulates inflorescence development and grain production in Cannabis sativa plants. HORTICULTURE RESEARCH 2024; 11:uhae161. [PMID: 39108581 PMCID: PMC11298619 DOI: 10.1093/hr/uhae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/03/2024] [Indexed: 10/13/2024]
Abstract
Female inflorescence is the primary output of medical Cannabis. It contains hundreds of cannabinoids that accumulate in the glandular trichomes. However, little is known about the genetic mechanisms governing Cannabis inflorescence development. In this study, we reported the map-based cloning of a gene determining the number of inflorescences per branch. We named this gene CsMIKC1 since it encodes a transcription factor that belongs to the MIKC-type MADS subfamily. Constitutive overexpression of CsMIKC1 increases inflorescence number per branch, thereby promoting flower production as well as grain yield in transgenic Cannabis plants. We further identified a plant-specific transcription factor, CsBPC2, promoting the expression of CsMIKC1. CsBPC2 mutants and CsMIKC1 mutants were successfully created using the CRISPR-Cas9 system; they exhibited similar inflorescence degeneration and grain reduction. We also validated the interaction of CsMIKC1 with CsVIP3, which suppressed expression of four inflorescence development-related genes in Cannabis. Our findings establish important roles for CsMIKC1 in Cannabis, which could represent a previously unrecognized mechanism of inflorescence development regulated by ethylene.
Collapse
Affiliation(s)
- Gencheng Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongbei Liu
- School of Pharmacy, Hunan Vocational College of Science and Technology, Changsa, Hunan 410004, China
| | - Shuhao Yu
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078, USA
| | - Dejing Kong
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Kailei Tang
- The College of Agriculture, Yunan University, Kunming, Yunnan 650504, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Jian Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
- Huazhi Biotech Co., Ltd, Changsha, Hunan 410128, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsa, Hunan 410205, China
| |
Collapse
|
5
|
Bhat A, Mishra S, Kaul S, Dhar MK. Comparative analysis of miRNA expression profiles in flowering and non-flowering tissue of Crocus sativus L. PROTOPLASMA 2024; 261:749-769. [PMID: 38340171 DOI: 10.1007/s00709-024-01931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Crocus sativus is a valuable plant due to the presence of apocarotenoids in its stigma. Considerable work has been done in the past to understand the apocarotenoid biosynthetic pathway in saffron. However, the reports on understanding the regulation of flowering at the post-transcriptional level are meagre. The study aimed to discover the candidate miRNAs, target genes, transcription factors (TFs), and apocarotenoid biosynthetic pathway genes associated with the regulation and transition of flowering in C. sativus. In the present investigation, miRNA profiling was performed in flowering and non-flowering corms of saffron, along with expression analysis of apocarotenoid genes and transcription factors involved in the synthesis of secondary metabolites. Significant modulation in the expression of miR156, miR159, miR166, miR172, miR395, miR396, miR399, and miR408 gene families was observed. We obtained 36 known miRNAs (26 in flowering and 10 in non-flowering) and 64 novel miRNAs (40 in flowering and 24 in non-flowering) unique to specific tissues in our analysis. TFs, including CsMADS and CsMYb, showed significant modulation in expression in flowering tissue, followed by CsHB. Additionally, the miRNAs were predicted to be involved in carbohydrate metabolism, phytohormone signalling, regulation of flower development, and response to stress, cold, and defence. The comprehensive study has enhanced our understanding of the regulatory machinery comprising factors like phytohormones, abiotic stress, apocarotenoid genes, transcription factors, and miRNAs responsible for the synthesis of apocarotenoids and developmental processes during and after flowering.
Collapse
Affiliation(s)
- Archana Bhat
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Sonal Mishra
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Sanjana Kaul
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Manoj Kumar Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India.
| |
Collapse
|
6
|
Zhai D, Zhang LY, Li LZ, Xu ZG, Liu XL, Shang GD, Zhao B, Gao J, Wang FX, Wang JW. Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae. Cell 2024; 187:3319-3337.e18. [PMID: 38810645 DOI: 10.1016/j.cell.2024.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
The development of perennial crops holds great promise for sustainable agriculture and food security. However, the evolution of the transition between perenniality and annuality is poorly understood. Here, using two Brassicaceae species, Crucihimalaya himalaica and Erysimum nevadense, as polycarpic perennial models, we reveal that the transition from polycarpic perennial to biennial and annual flowering behavior is a continuum determined by the dosage of three closely related MADS-box genes. Diversification of the expression patterns, functional strengths, and combinations of these genes endows species with the potential to adopt various life-history strategies. Remarkably, we find that a single gene among these three is sufficient to convert winter-annual or annual Brassicaceae plants into polycarpic perennial flowering plants. Our work delineates a genetic basis for the evolution of diverse life-history strategies in plants and lays the groundwork for the generation of diverse perennial Brassicaceae crops in the future.
Collapse
Affiliation(s)
- Dong Zhai
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lu-Yi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ling-Zi Li
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Xiao-Li Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
7
|
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution of major flowering pathway integrators in Orchidaceae. PLANT REPRODUCTION 2024; 37:85-109. [PMID: 37823912 PMCID: PMC11180029 DOI: 10.1007/s00497-023-00482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
8
|
Zhang SL, Wu Y, Zhang XH, Feng X, Wu HL, Zhou BJ, Zhang YQ, Cao M, Hou ZX. Characterization of the MIKC C-type MADS-box gene family in blueberry and its possible mechanism for regulating flowering in response to the chilling requirement. PLANTA 2024; 259:77. [PMID: 38421445 DOI: 10.1007/s00425-024-04349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
MAIN CONCLUSION The expression peak of VcAP1.4, VcAP1.6, VcAP3.1, VcAP3.2, VcAG3, VcFLC2, and VcSVP9 coincided with the endo-dormancy release of flower buds. Additionally, GA4+7 not only increased the expression of these genes but also promoted flower bud endo-dormancy release. The MIKCC-type MADS-box gene family is involved in the regulation of flower development. A total of 109 members of the MIKCC-type MADS-box gene family were identified in blueberry. According to the phylogenetic tree, these 109 MIKCC-type MADS-box proteins were divided into 13 subfamilies, which were distributed across 40 Scaffolds. The results of the conserved motif analysis showed that among 20 motifs, motifs 1, 3, and 9 formed the MADS-box structural domain, while motifs 2, 4, and 6 formed the K-box structural domain. The presence of 66 pairs of fragment duplication events in blueberry suggested that gene duplication events contributed to gene expansion and functional differentiation. Additionally, the presence of cis-acting elements revealed that VcFLC2, VcAG3, and VcSVP9 might have significant roles in the endo-dormancy release of flower buds. Meanwhile, under chilling conditions, VcAP3.1 and VcAG7 might facilitate flower bud dormancy release. VcSEP11 might promote flowering following the release of endo-dormancy, while the elevated expression of VcAP1.7 (DAM) could impede the endo-dormancy release of flower buds. The effect of gibberellin (GA4+7) treatment on the expression pattern of MIKCC-type MADS-box genes revealed that VcAP1.4, VcAP1.6, VcAP3.1, VcAG3, and VcFLC2 might promote flower bud endo-dormancy release, while VcAP3.2, VcSEP11, and VcSVP9 might inhibit its endo-dormancy release. These results indicated that VcAP1.4, VcAP1.6, VcAP1.7 (DAM), VcAP3.1, VcAG3, VcAG7, VcFLC2, and VcSVP9 could be selected as key regulatory promoting genes for controlling the endo-dormancy of blueberry flower buds.
Collapse
Affiliation(s)
- Sui-Lin Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Yan Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xiao-Han Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Xin Feng
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Hui-Ling Wu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Bing-Jie Zhou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Ya-Qian Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Man Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China
| | - Zhi-Xia Hou
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Blueberry Research & Development Center, Beijing, 100083, China.
| |
Collapse
|
9
|
Mahmood T, He S, Abdullah M, Sajjad M, Jia Y, Ahmar S, Fu G, Chen B, Du X. Epigenetic insight into floral transition and seed development in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111926. [PMID: 37984609 DOI: 10.1016/j.plantsci.2023.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/20/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Seasonal changes are crucial in shifting the developmental stages from the vegetative phase to the reproductive phase in plants, enabling them to flower under optimal conditions. Plants grown at different latitudes sense and interpret these seasonal variations, such as changes in day length (photoperiod) and exposure to cold winter temperatures (vernalization). These environmental factors influence the expression of various genes related to flowering. Plants have evolved to stimulate a rapid response to environmental conditions through genetic and epigenetic mechanisms. Multiple epigenetic regulation systems have emerged in plants to interpret environmental signals. During the transition to the flowering phase, changes in gene expression are facilitated by chromatin remodeling and small RNAs interference, particularly in annual and perennial plants. Key flowering regulators, such as FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), interact with various factors and undergo chromatin remodeling in response to seasonal cues. The Polycomb silencing complex (PRC) controls the expression of flowering-related genes in photoperiodic flowering regulation. Under vernalization-dependent flowering, FLC acts as a potent flowering suppressor by downregulating the gene expression of various flower-promoting genes. Eventually, PRCs are critically involved in the regulation of FLC and FT locus interacting with several key genes in photoperiod and vernalization. Subsequently, PRCs also regulate Epigenetical events during gametogenesis and seed development as a driving force. Furthermore, DNA methylation in the context of CHG, CG, and CHH methylation plays a critical role in embryogenesis. DNA glycosylase DME (DEMETER) is responsible for demethylation during seed development. Thus, the review briefly discusses flowering regulation through light signaling, day length variation, temperature variation and seed development in plants.
Collapse
Affiliation(s)
- Tahir Mahmood
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Muhammad Abdullah
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland
| | - Guoyong Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Baojun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang (CAAS), Anyang 455000, China.
| |
Collapse
|
10
|
Komoto H, Nagahama A, Miyawaki-Kuwakado A, Hata Y, Kyozuka J, Kajita Y, Toyama H, Satake A. The transcriptional changes underlying the flowering phenology shift of Arabidopsis halleri in response to climate warming. PLANT, CELL & ENVIRONMENT 2024; 47:174-186. [PMID: 37691326 DOI: 10.1111/pce.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Climate warming is causing shifts in key life-history events, including flowering time. To assess the impacts of increasing temperature on flowering phenology, it is crucial to understand the transcriptional changes of genes underlying the phenological shifts. Here, we conducted a comprehensive investigation of genes contributing to the flowering phenology shifts in response to increasing temperature by monitoring the seasonal expression dynamics of 293 flowering-time genes along latitudinal gradients in the perennial herb, Arabidopsis halleri. Through transplant experiments at northern, southern and subtropical study sites in Japan, we demonstrated that the flowering period was shortened as latitude decreased, ultimately resulting in the loss of flowering opportunity in subtropical climates. The key transcriptional changes underlying the shortening of the flowering period and the loss of flowering opportunity were the diminished expression of floral pathway integrator genes and genes in the gibberellin synthesis and aging pathways, all of which are suppressed by increased expression of FLOWERING LOCUS C, a central repressor of flowering. These results suggest that the upper-temperature limit of reproduction is governed by a relatively small number of genes that suppress reproduction in the absence of winter cold.
Collapse
Affiliation(s)
- Hideyuki Komoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ai Nagahama
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | | | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yui Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hironori Toyama
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- College of Arts and Sciences, J. F. Oberlin University, Machida, Tokyo, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Rehman S, Bahadur S, Xia W. An overview of floral regulatory genes in annual and perennial plants. Gene 2023; 885:147699. [PMID: 37567454 DOI: 10.1016/j.gene.2023.147699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The floral initiation in angiosperms is a complex process influenced by endogenous and exogenous signals. With this approach, we aim to provide a comprehensive review to integrate this complex floral regulatory process and summarize the regulatory genes and their functions in annuals and perennials. Seven primary paths leading to flowering have been discovered in Arabidopsis under several growth condition that include; photoperiod, ambient temperature, vernalization, gibberellins, autonomous, aging and carbohydrates. These pathways involve a series of interlinked signaling pathways that respond to both internal and external signals, such as light, temperature, hormones, and developmental cues, to coordinate the expression of genes that are involved in flower development. Among them, the photoperiodic pathway was the most important and conserved as some of the fundamental loci and mechanisms are shared even by closely related plant species. The activation of floral regulatory genes such as FLC, FT, LFY, and SOC1 that determine floral meristem identity and the transition to the flowering stage result from the merging of these pathways. Recent studies confirmed that alternative splicing, antisense RNA and epigenetic modification play crucial roles by regulating the expression of genes related to blooming. In this review, we documented recent progress in the floral transition time in annuals and perennials, with emphasis on the specific regulatory mechanisms along with the application of various molecular approaches including overexpression studies, RNA interference and Virus-induced flowering. Furthermore, the similarities and differences between annual and perennial flowering will aid significant contributions to the field by elucidating the mechanisms of perennial plant development and floral initiation regulation.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228 China
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Haikou 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
12
|
Paull RE, Ksouri N, Kantar M, Zerpa‐Catanho D, Chen NJ, Uruu G, Yue J, Guo S, Zheng Y, Wai CMJ, Ming R. Differential gene expression during floral transition in pineapple. PLANT DIRECT 2023; 7:e541. [PMID: 38028646 PMCID: PMC10644199 DOI: 10.1002/pld3.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Pineapple (Ananas comosus var. comosus) and ornamental bromeliads are commercially induced to flower by treatment with ethylene or its analogs. The apex is transformed from a vegetative to a floral meristem and shows morphological changes in 8 to 10 days, with flowers developing 8 to 10 weeks later. During eight sampling stages ranging from 6 h to 8 days after treatment, 7961 genes were found to exhibit differential expression (DE) after the application of ethylene. In the first 3 days after treatment, there was little change in ethylene synthesis or in the early stages of the ethylene response. Subsequently, three ethylene response transcription factors (ERTF) were up-regulated and the potential gene targets were predicted to be the positive flowering regulator CONSTANS-like 3 (CO), a WUSCHEL gene, two APETALA1/FRUITFULL (AP1/FUL) genes, an epidermal patterning gene, and a jasmonic acid synthesis gene. We confirm that pineapple has lost the flowering repressor FLOWERING LOCUS C. At the initial stages, the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was not significantly involved in this transition. Another WUSCHEL gene and a PHD homeobox transcription factor, though not apparent direct targets of ERTF, were up-regulated within a day of treatment, their predicted targets being the up-regulated CO, auxin response factors, SQUAMOSA, and histone H3 genes with suppression of abscisic acid response genes. The FLOWERING LOCUS T (FT), TERMINAL FLOWER (TFL), AGAMOUS-like APETELAR (AP2), and SEPETALA (SEP) increased rapidly within 2 to 3 days after ethylene treatment. Two FT genes were up-regulated at the apex and not at the leaf bases after treatment, suggesting that transport did not occur. These results indicated that the ethylene response in pineapple and possibly most bromeliads act directly to promote the vegetative to flower transition via APETALA1/FRUITFULL (AP1/FUL) and its interaction with SPL, FT, TFL, SEP, and AP2. A model based on AP2/ERTF DE and predicted DE target genes was developed to give focus to future research. The identified candidate genes are potential targets for genetic manipulation to determine their molecular role in flower transition.
Collapse
Affiliation(s)
- Robert E. Paull
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Experimental Aula Dei‐CSICZaragozaSpain
| | - Michael Kantar
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | | | - Nancy Jung Chen
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Gail Uruu
- Tropical Plant & Soil SciencesUniversity of Hawaii at ManoaHonoluluHawaiiUSA
| | - Jingjing Yue
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shiyong Guo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
| | | | - Ray Ming
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Genomics and BiotechnologyFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
13
|
Wang J, Zhang B, Guo H, Chen L, Han F, Yan C, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Zhang Y. Transcriptome Analysis Reveals Key Genes and Pathways Associated with the Regulation of Flowering Time in Cabbage ( Brassica oleracea L. var. capitata). PLANTS (BASEL, SWITZERLAND) 2023; 12:3413. [PMID: 37836153 PMCID: PMC10574337 DOI: 10.3390/plants12193413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Flowering time is an important agronomic trait in cabbage (Brassica oleracea L. var. capitata), but the molecular regulatory mechanism underlying flowering time regulation in cabbage remains unclear. In this study, transcriptome analysis was performed using two sets of cabbage materials: (1) the early-flowering inbred line C491 (P1) and late-flowering inbred line B602 (P2), (2) the early-flowering individuals F2-B and late-flowering individuals F2-NB from the F2 population. The analysis revealed 9508 differentially expressed genes (DEGs) common to both C491_VS_ B602 and F2-B_VS_F2-NB. The Kyoto Encyclopedia of Genes and Genomes (KEGGs) analysis showed that plant hormone signal transduction and the MAPK signaling pathway were mainly enriched in up-regulated genes, and ribosome and DNA replication were mainly enriched in down-regulated genes. We identified 321 homologues of Arabidopsis flowering time genes (Ft) in cabbage. Among them, 25 DEGs (11 up-regulated and 14 down-regulated genes) were detected in the two comparison groups, and 12 gene expression patterns closely corresponded with the different flowering times in the two sets of materials. Two genes encoding MADS-box proteins, Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2), showed significantly reduced expression in the late-flowering parent B602 compared with the early-flowering parent C491 via qRT-PCR analysis, which was consistent with the RNA-seq data. Next, the expression levels of Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2) were analyzed in two other groups of early-flowering and late-flowering inbred lines, which showed that their expression patterns were consistent with those in the parents. Sequence analysis revealed that three and one SNPs between B602 and C491 were identified in Bo1g157450 (BoSEP2-1) and Bo5g152700 (BoSEP2-2), respectively. Therefore, BoSEP2-1 and BoSEP2-2 were designated as candidates for flowering time regulation through a potential new regulatory pathway. These results provide new insights into the molecular mechanisms underlying flowering time regulation in cabbage.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
| | - Bin Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Huiling Guo
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Li Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Chao Yan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China;
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (J.W.); (B.Z.); (H.G.); (L.C.); (F.H.); (L.Y.); (M.Z.); (H.L.); (J.J.); (Y.W.)
| |
Collapse
|
14
|
Karami O, Mueller-Roeber B, Rahimi A. The central role of stem cells in determining plant longevity variation. PLANT COMMUNICATIONS 2023; 4:100566. [PMID: 36840355 PMCID: PMC10504568 DOI: 10.1016/j.xplc.2023.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Vascular plants display a huge variety of longevity patterns, from a few weeks for several annual species up to thousands of years for some perennial species. Understanding how longevity variation is structured has long been considered a fundamental aspect of the life sciences in view of evolution, species distribution, and adaptation to diverse environments. Unlike animals, whose organs are typically formed during embryogenesis, vascular plants manage to extend their life by continuously producing new tissues and organs in apical and lateral directions via proliferation of stem cells located within specialized tissues called meristems. Stem cells are the main source of plant longevity. Variation in plant longevity is highly dependent on the activity and fate identity of stem cells. Multiple developmental factors determine how stem cells contribute to variation in plant longevity. In this review, we provide an overview of the genetic mechanisms, hormonal signaling, and environmental factors involved in controlling plant longevity through long-term maintenance of stem cell fate identity.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| | - Bernd Mueller-Roeber
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| |
Collapse
|
15
|
Steel L, Welling M, Ristevski N, Johnson K, Gendall A. Comparative genomics of flowering behavior in Cannabis sativa. FRONTIERS IN PLANT SCIENCE 2023; 14:1227898. [PMID: 37575928 PMCID: PMC10421669 DOI: 10.3389/fpls.2023.1227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
Cannabis sativa L. is a phenotypically diverse and multi-use plant used in the production of fiber, seed, oils, and a class of specialized metabolites known as phytocannabinoids. The last decade has seen a rapid increase in the licit cultivation and processing of C. sativa for medical end-use. Medical morphotypes produce highly branched compact inflorescences which support a high density of glandular trichomes, specialized epidermal hair-like structures that are the site of phytocannabinoid biosynthesis and accumulation. While there is a focus on the regulation of phytocannabinoid pathways, the genetic determinants that govern flowering time and inflorescence structure in C. sativa are less well-defined but equally important. Understanding the molecular mechanisms that underly flowering behavior is key to maximizing phytocannabinoid production. The genetic basis of flowering regulation in C. sativa has been examined using genome-wide association studies, quantitative trait loci mapping and selection analysis, although the lack of a consistent reference genome has confounded attempts to directly compare candidate loci. Here we review the existing knowledge of flowering time control in C. sativa, and, using a common reference genome, we generate an integrated map. The co-location of known and putative flowering time loci within this resource will be essential to improve the understanding of C. sativa phenology.
Collapse
Affiliation(s)
| | | | | | | | - Anthony Gendall
- Australian Research Council Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
16
|
Shekhar S, Panwar R, Prasad SC, Kumar D, Rustagi A. Overexpression of flowering locus D (FLD) in Indian mustard (Brassica juncea) enhances tolerance to Alternaria brassicae and Sclerotinia sclerotiorum. PLANT CELL REPORTS 2023; 42:1233-1250. [PMID: 37119284 DOI: 10.1007/s00299-023-03021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 06/16/2023]
Abstract
KEY MESSAGE Overexpression of BjFLD in Brassica juncea imparts resistance against fungal pathogens and increases the yield. These transgenics could lower the use of fungicides, which have detrimental effects on the environment. Productivity of Indian mustard (Brassica juncea) is adversely affected by fungal phytopathogens, Alternaria brassicae and Sclerotinia sclerotiorum. Arabidopsis flowering locus D (FLD) positively regulates jasmonic acid signaling and defense against necrotrophic pathogens. In this study, the endogenous FLD (B. juncea FLD; BjFLD) in Indian mustard was overexpressed in B. juncea to determine its role in biotic stress tolerance. We report the isolation, characterization, and functional validation of BjFLD. The transgene expression was confirmed by qRT-PCR. The constitutive overexpression of BjFLD enhanced the tolerance of B. juncea to A. brassicae and S. sclerotiorum, which was manifested as delayed appearance of symptom, impeded disease progression, and enhanced percentage of disease protection. The transgenic lines maintained a higher photosynthetic capacity and redox potential under biotic stress and could detoxify reactive oxygen species (ROS) by modulating the antioxidant machinery and physiochemical attributes. The BjFLD-overexpressing lines showed enhanced SA level as well higher NPR1 expression. The overexpression of BjFLD induced early flowering and higher seed yield in the transgenic lines. These findings indicate that overexpression of BjFLD enhances the tolerance of B. juncea to A. brassicae and S. sclerotiorum by induction of systemic acquired resistance and mitigating the damage caused by stress-induced ROS.
Collapse
Affiliation(s)
- Shashi Shekhar
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India
| | - Ruby Panwar
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India
| | | | - Deepak Kumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Anjana Rustagi
- Department of Botany, Gargi College, University of Delhi, New Delhi, 110049, India.
| |
Collapse
|
17
|
Henderson-Carter A, Kinmonth-Schultz H, Hileman L, Ward JK. FLOWERING LOCUS C drives delayed flowering in Arabidopsis grown and selected at elevated CO 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545149. [PMID: 37398485 PMCID: PMC10312727 DOI: 10.1101/2023.06.15.545149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Altered flowering time at elevated [CO 2 ] is well documented, although mechanisms are not well understood. An Arabidopsis genotype previously selected for high fitness at elevated [CO 2 ] (SG) showed delayed flowering and larger size at flowering when grown at elevated (700 ppm) versus current (380 ppm) [CO 2 ]. This response was correlated with prolonged expression of FLOWERING LOCUS C ( FLC ), a vernalization-responsive floral repressor gene. To determine if FLC directly delays flowering at elevated [CO 2 ] in SG, we used vernalization (extended cold) to downregulate FLC expression. We hypothesized that vernalization would eliminate delayed flowering at elevated [CO 2 ] through the direct reduction of FLC expression, eliminating differences in flowering time between current and elevated [CO 2 ]. We found that with downregulation of FLC expression via vernalization, SG plants grown at elevated [CO 2 ] no longer delayed flowering compared to current [CO 2 ]. Thus, vernalization returned the earlier flowering phenotype, counteracting effects of elevated [CO 2 ] on flowering. This study indicates that elevated [CO 2 ] can delay flowering directly through FLC , and downregulation of FLC under elevated [CO 2 ] reverses this effect. Moreover, this study demonstrates that increasing [CO 2 ] may potentially drive major changes in development through FLC .
Collapse
|
18
|
Nishikawa M, Tamiru-Oli M, Hara M, Segawa T, Saiga S, Makita N, Itoh N, Imamura T, Sekine M, Takagi H. Non-vernalization requirement for flowering in Brassica rapa conferred by a dominant allele of FLOWERING LOCUS T. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:132. [PMID: 37199824 DOI: 10.1007/s00122-023-04378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE We identified and characterized a dominant FT allele for flowering without vernalization in Brassica rapa, while demonstrating its potential for deployment in breeding to accelerate flowering in various Brassicaceae crops. Controlling the timing of flowering is key to improving yield and quality of several agricultural crops including the Brassicas. Many Brassicaceae crops possess a conserved flowering mechanism in which FLOWERING LOCUS C (FLC) represses the transcription of flowering activators such as FLOWERING LOCUS T (FT) during vernalization. Here, we employed genetic analysis based on next-generation sequencing to identify a dominant FT allele, BraA.FT.2-C, for flowering in the absence of vernalization in the Brassica rapa cultivar 'CHOY SUM EX CHINA 3'. BraA.FT.2-C harbors two large insertions upstream of its coding region and is expressed without vernalization, despite FLC expression. We show that BraA.FT.2-C offers an opportunity to introduce flowering without vernalization requirement into winter-type brassica crops, including B. napus, which have many functional FLC paralogs. Furthermore, we demonstrated the feasibility of using B. rapa harboring BraA.FT.2-C as rootstock for grafting to induce flowering in radish (Raphanus sativus), which requires vernalization for flowering. We believe that the ability of BraA.FT.2-C to overcome repression by FLC can have significant applications in brassica crops breeding to increase yields by accelerating or delaying flowering.
Collapse
Affiliation(s)
- Minami Nishikawa
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Muluneh Tamiru-Oli
- Department of Animal, Plant and Soil Sciences, AgriBio Building, La Trobe University, 5 Ring Road, Bundoora, VIC, 3086, Australia
| | - Makishi Hara
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tenta Segawa
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Sorachi Saiga
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Natsu Makita
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Noriaki Itoh
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Tomohiro Imamura
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Masami Sekine
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Hiroki Takagi
- Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi, Ishikawa, 921-8836, Japan.
| |
Collapse
|
19
|
Gretsova M, Surkova S, Kanapin A, Samsonova A, Logacheva M, Shcherbakov A, Logachev A, Bankin M, Nuzhdin S, Samsonova M. Transcriptomic Analysis of Flowering Time Genes in Cultivated Chickpea and Wild Cicer. Int J Mol Sci 2023; 24:ijms24032692. [PMID: 36769014 PMCID: PMC9916832 DOI: 10.3390/ijms24032692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Chickpea (Cicer arietinum L.) is a major grain legume and a good source of plant-based protein. However, comprehensive knowledge of flowering time control in Cicer is lacking. In this study, we acquire high-throughput transcriptome sequencing data and analyze changes in gene expression during floral transition in the early flowering cultivar ICCV 96029, later flowering C. arietinum accessions, and two wild species, C. reticulatum and C. echinospermum. We identify Cicer orthologs of A. thaliana flowering time genes and analyze differential expression of 278 genes between four species/accessions, three tissue types, and two conditions. Our results show that the differences in gene expression between ICCV 96029 and other cultivated chickpea accessions are vernalization-dependent. In addition, we highlight the role of FTa3, an ortholog of FLOWERING LOCUS T in Arabidopsis, in the vernalization response of cultivated chickpea. A common set of differentially expressed genes was found for all comparisons between wild species and cultivars. The direction of expression change for different copies of the FT-INTERACTING PROTEIN 1 gene was variable in different comparisons, which suggests complex mechanisms of FT protein transport. Our study makes a contribution to the understanding of flowering time control in Cicer, and can provide genetic strategies to further improve this important agronomic trait.
Collapse
Affiliation(s)
- Maria Gretsova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Logacheva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Andrey Shcherbakov
- Laboratory of Microbial Technology, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia
| | - Anton Logachev
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mikhail Bankin
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Sergey Nuzhdin
- Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Maria Samsonova
- Mathematical Biology and Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
20
|
Cardon CH, de Oliveira RR, Lesy V, Ribeiro THC, Fust C, Pereira LP, Colasanti J, Chalfun-Junior A. Expression of coffee florigen CaFT1 reveals a sustained floral induction window associated with asynchronous flowering in tropical perennials. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111479. [PMID: 36181945 DOI: 10.1016/j.plantsci.2022.111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The behavior of florigen(s) and environment-influenced regulatory pathways that control floral initiation in tropical perennials species with complex phenological cycles is poorly understood. Understanding the mechanisms underlying this process is important for food production in the face of climate change, thus, we used Coffea sp. L. (Rubiaceae) as a model to explore this issue. Homologs of FLOWERING LOCUS T (CaFT1) and environment-related regulators CONSTANS (CaCO), PHYTOCHROME INTERACTING FACTOR 4 (CaPIF4) and FLOWERING LOCUS C (CaFLC) were retrieved from coffee genomes and identified through phylogenetic analysis. Overexpression of CaFT1 in Arabidopsis caused early-flowering phenotype and yeast two hybrid studies indicated CaFT1 binding to bZIP floral regulator FD, which suggests that CaFT1 is a coffee florigen. Expression of CaFT1 and other floral regulators, together with carbohydrate analysis, were evaluated over one year using three contrasting genotypes, two C. arabica cultivars and C. canephora. All genotypes showed active and variable CaFT1 transcription from February until October, indicating the potential window for floral induction that reached a maximum in the cold period of June. CaCO expression, as expected, varied over a 24-hour day period and monthly with day length, whereas expression of temperature-responsive homologs, CaFLC and CaPIF4, did not correlate with temperature changes nor CaFT1 expression, suggesting alternative FT regulatory pathways in coffee. Based on our results, we suggest a continuum of floral induction that allows different starting points for floral activation, which explains developmental asynchronicity and prolonged anthesis events in tropical perennial species.
Collapse
Affiliation(s)
- Carlos Henrique Cardon
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Victoria Lesy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Catherine Fust
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Luísa Peloso Pereira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| | - Joseph Colasanti
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Minas Gerais, Brazil.
| |
Collapse
|
21
|
Synthetic memory circuits for stable cell reprogramming in plants. Nat Biotechnol 2022; 40:1862-1872. [PMID: 35788565 DOI: 10.1038/s41587-022-01383-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/01/2022] [Indexed: 01/14/2023]
Abstract
Plant biotechnology predominantly relies on a restricted set of genetic parts with limited capability to customize spatiotemporal and conditional expression patterns. Synthetic gene circuits have the potential to integrate multiple customizable input signals through a processing unit constructed from biological parts to produce a predictable and programmable output. Here we present a suite of functional recombinase-based gene circuits for use in plants. We first established a range of key gene circuit components compatible with plant cell functionality. We then used these to develop a range of operational logic gates using the identify function (activation) and negation function (repression) in Arabidopsis protoplasts and in vivo, demonstrating their utility for programmable manipulation of transcriptional activity in a complex multicellular organism. Specifically, using recombinases and plant control elements, we activated transgenes in YES, OR and AND gates and repressed them in NOT, NOR and NAND gates; we also implemented the A NIMPLY B gate that combines activation and repression. Through use of genetic recombination, these circuits create stable long-term changes in expression and recording of past stimuli. This highly compact programmable gene circuit platform provides new capabilities for engineering sophisticated transcriptional programs and previously unrealized traits into plants.
Collapse
|
22
|
Wang Y, Yang T, Li Y, Hou J, He J, Ma N, Zhou X. Genome-wide identification and expression analysis of MIKC C genes in rose provide insight into their effects on flower development. FRONTIERS IN PLANT SCIENCE 2022; 13:1059925. [PMID: 36407632 PMCID: PMC9666904 DOI: 10.3389/fpls.2022.1059925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The MIKCC-type gene family plays important roles in plant growth, development, and tolerance of biotic and abiotic stress, especially during floral organ differentiation. However, there have been no studies of MIKCC-type genes in rose, and functional differentiation of family members has not been explored. In this study, we identified 42 MIKCC-type genes in rose, classified the genes into 12 subfamilies, and constructed a phylogenetic tree. We performed expression analysis of these genes, and found that expression patterns correlated with the predicted subfamily, indicating that the features of MIKCC-type genes were broadly conserved during evolution. Collinear analysis of MIKCC genes among Rosaceae species confirmed the occurrence of whole genome duplications (WGD) and revealed some species-specific MIKCC genes. Transcriptome analysis showed that the expression of some MIKCC-type genes responded to low temperatures (4°C, 24 h) during flower organ differentiation. These conserved, duplicated, and novel expression patterns of MIKCC-type genes may have facilitated the adaptation of rose to various internal and external environmental changes. The results of this study provide a theoretical basis for future functional analysis of the MIKCC genes in rose and investigation of the evolutionary pattern of the MIKCC gene family in the Rosaceae genome.
Collapse
|
23
|
Jiang L, Fan T, Wang L, Zhang L, Xu J. Divergence of flowering-related genes to control flowering in five Euphorbiaceae genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1015114. [PMID: 36340397 PMCID: PMC9627276 DOI: 10.3389/fpls.2022.1015114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Reproductive growth and vegetative growth are a pair of main contradictions in the process of plant growth. Flowering, as part of reproductive growth, is a key switch in the life cycle of higher plants, which affects the yield and economic benefits of plants to a certain extent. The Euphorbiaceae species, including castor bean (Ricinus communis), physic nut (Jatropha curcas), tung tree (Vernicia fordii), cassava (Manihot esculenta), and rubber tree (Hevea brasiliensis), have important economic values because they are raw materials for the production of biodiesel, rubber, etc. The flowering mechanisms are still excluded in the Euphorbiaceae species. The flowering-related genes of Arabidopsis thaliana (Arabidopsis) were used as a reference to determine the orthologs of these genes in Euphorbiaceae genomes. The result showed that 146, 144, 114, 114, and 149 of 207 A. thaliana genes were respectively matched to R. communis, V. fordii, J. curcas, H. brasiliensis, and M. esculenta. These identified genes were clustered into seven pathways including gibberellins, floral meristem identity (FMI), vernalization, photoperiod, floral pathway integrators (FPIs), and autonomous pathways. Then, some key numbers of flowering-related genes are widely conserved in the Euphorbiaceae genomes including but not limited to FPI genes LFY, SOC1, FT, and FMI genes AG, CAL, and FUL. However, some genes, including FRI, FLC, and GO, were missing in several or all five Euphorbiaceae species. In this study, we proposed the putative mechanisms of flowering-related genes to control flowering and provided new candidate flowering genes for using marker-assisted breeding to improve variety quality.
Collapse
Affiliation(s)
- Lan Jiang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Yijishan Hospital of Wannan Medical College, Wuhu, China
- Anhui Provincial Clinical Research Center for Critical Respiratory Disease, Wuhu, China
| | - Tingting Fan
- Forestry College, Central South University of Forestry and Technology, Changsha, China
| | - Lihu Wang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, China
| | - Lin Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun Xu
- Hunan Institute of Microbiology, Changsha, China
| |
Collapse
|
24
|
Surkova SY, Samsonova MG. Mechanisms of Vernalization-Induced Flowering in Legumes. Int J Mol Sci 2022; 23:ijms23179889. [PMID: 36077286 PMCID: PMC9456104 DOI: 10.3390/ijms23179889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Vernalization is the requirement for exposure to low temperatures to trigger flowering. The best knowledge about the mechanisms of vernalization response has been accumulated for Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive. Nevertheless, legume FT genes have been shown to retain the function of the main vernalization signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies complex mechanisms of vernalization signal propagation in the flowering network, that remain largely elusive. Here, for the first time, we summarize the available information on the genetic basis of cold-induced flowering in legumes with a special focus on the role of FT genes.
Collapse
|
25
|
Márquez Gutiérrez R, Cherubino Ribeiro TH, de Oliveira RR, Benedito VA, Chalfun-Junior A. Genome-Wide Analyses of MADS-Box Genes in Humulus lupulus L. Reveal Potential Participation in Plant Development, Floral Architecture, and Lupulin Gland Metabolism. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091237. [PMID: 35567239 PMCID: PMC9100628 DOI: 10.3390/plants11091237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 05/14/2023]
Abstract
MADS-box transcription factors (TFs) are involved in multiple plant development processes and are most known during the reproductive transition and floral organ development. Very few genes have been characterized in the genome of Humulus lupulus L. (Cannabaceae), an important crop for the pharmaceutical and beverage industries. The MADS-box family has not been studied in this species yet. We identified 65 MADS-box genes in the hop genome, of which 29 encode type-II TFs (27 of subgroup MIKCC and 2 MIKC*) and 36 type-I proteins (26 α, 9 β, and 1 γ). Type-II MADS-box genes evolved more complex architectures than type-I genes. Interestingly, we did not find FLOWERING LOCUS C (FLC) homologs, a transcription factor that acts as a floral repressor and is negatively regulated by cold. This result provides a molecular explanation for a previous work showing that vernalization is not a requirement for hop flowering, which has implications for its cultivation in the tropics. Analysis of gene ontology and expression profiling revealed genes potentially involved in the development of male and female floral structures based on the differential expression of ABC homeotic genes in each whorl of the flower. We identified a gene exclusively expressed in lupulin glands, suggesting a role in specialized metabolism in these structures. In toto, this work contributes to understanding the evolutionary history of MADS-box genes in hop, and provides perspectives on functional genetic studies, biotechnology, and crop breeding.
Collapse
Affiliation(s)
- Robert Márquez Gutiérrez
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Thales Henrique Cherubino Ribeiro
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Raphael Ricon de Oliveira
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
| | - Vagner Augusto Benedito
- Laboratory of Plant Functional Genetics, Plant and Soil Sciences Division, 3425 Agricultural Sciences Building, West Virginia University, Morgantown, WV 26506-6108, USA
- Correspondence: (V.A.B.); (A.C.-J.)
| | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Department of Biology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil; (R.M.G.); (T.H.C.R.); (R.R.d.O.)
- Correspondence: (V.A.B.); (A.C.-J.)
| |
Collapse
|
26
|
Zhou E, Zhang Y, Wang H, Jia Z, Wang X, Wen J, Shen J, Fu T, Yi B. Identification and Characterization of the MIKC-Type MADS-Box Gene Family in Brassica napus and Its Role in Floral Transition. Int J Mol Sci 2022; 23:ijms23084289. [PMID: 35457106 PMCID: PMC9026197 DOI: 10.3390/ijms23084289] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023] Open
Abstract
Increasing rapeseed yield has always been a primary goal of rapeseed research and breeding. However, flowering time is a prerequisite for stable rapeseed yield and determines its adaptability to ecological regions. MIKC-type MADS-box (MICK) genes are a class of transcription factors that are involved in various physiological and developmental processes in plants. To understand their role in floral transition-related pathways, a genome-wide screening was conducted with Brassica napus (B. napus), which revealed 172 members. Using previous data from a genome-wide association analysis of flowering traits, BnaSVP and BnaSEP1 were identified as candidate flowering genes. Therefore, we used the CRISPR/Cas9 system to verify the function of BnaSVP and BnaSEP1 in B. napus. T0 plants were edited efficiently at the BnaSVP and BnaSEP1 target sites to generate homozygous and heterozygous mutants with most mutations stably inherited by the next generation. Notably, the mutant only showed the early flowering phenotype when all homologous copies of BnaSVP were edited, indicating functional redundancy between homologous copies. However, no changes in flowering were observed in the BnaSEP1 mutant. Quantitative analysis of the pathway-related genes in the BnaSVP mutant revealed the upregulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) genes, which promoted early flowering in the mutant. In summary, our study created early flowering mutants, which provided valuable resources for early maturing breeding, and provided a new method for improving polyploid crops.
Collapse
Affiliation(s)
- Enqiang Zhou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Yin Zhang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Huadong Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Xuejun Wang
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226001, China; (Y.Z.); (X.W.)
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (E.Z.); (H.W.); (Z.J.); (J.W.); (J.S.); (T.F.)
- Correspondence: ; Tel.: +86-27-8728-1676; Fax: +86-27-8728-0009
| |
Collapse
|
27
|
Chávez-Hernández EC, Quiroz S, García-Ponce B, Álvarez-Buylla ER. The flowering transition pathways converge into a complex gene regulatory network that underlies the phase changes of the shoot apical meristem in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:852047. [PMID: 36017258 PMCID: PMC9396034 DOI: 10.3389/fpls.2022.852047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/04/2022] [Indexed: 05/08/2023]
Abstract
Post-embryonic plant development is characterized by a period of vegetative growth during which a combination of intrinsic and extrinsic signals triggers the transition to the reproductive phase. To understand how different flowering inducing and repressing signals are associated with phase transitions of the Shoot Apical Meristem (SAM), we incorporated available data into a dynamic gene regulatory network model for Arabidopsis thaliana. This Flowering Transition Gene Regulatory Network (FT-GRN) formally constitutes a dynamic system-level mechanism based on more than three decades of experimental data on flowering. We provide novel experimental data on the regulatory interactions of one of its twenty-three components: a MADS-box transcription factor XAANTAL2 (XAL2). These data complement the information regarding flowering transition under short days and provides an example of the type of questions that can be addressed by the FT-GRN. The resulting FT-GRN is highly connected and integrates developmental, hormonal, and environmental signals that affect developmental transitions at the SAM. The FT-GRN is a dynamic multi-stable Boolean system, with 223 possible initial states, yet it converges into only 32 attractors. The latter are coherent with the expression profiles of the FT-GRN components that have been experimentally described for the developmental stages of the SAM. Furthermore, the attractors are also highly robust to initial states and to simulated perturbations of the interaction functions. The model recovered the meristem phenotypes of previously described single mutants. We also analyzed the attractors landscape that emerges from the postulated FT-GRN, uncovering which set of signals or components are critical for reproductive competence and the time-order transitions observed in the SAM. Finally, in the context of such GRN, the role of XAL2 under short-day conditions could be understood. Therefore, this model constitutes a robust biological module and the first multi-stable, dynamical systems biology mechanism that integrates the genetic flowering pathways to explain SAM phase transitions.
Collapse
Affiliation(s)
- Elva C. Chávez-Hernández
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stella Quiroz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Berenice García-Ponce,
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Elena R. Álvarez-Buylla,
| |
Collapse
|
28
|
Li Z, Lathe RS, Li J, He H, Bhalerao RP. Towards understanding the biological foundations of perenniality. TRENDS IN PLANT SCIENCE 2022; 27:56-68. [PMID: 34561180 DOI: 10.1016/j.tplants.2021.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Perennial life cycles enable plants to have remarkably long lifespans, as exemplified by trees that can live for thousands of years. For this, they require sophisticated regulatory networks that sense environmental changes and initiate adaptive responses in their growth patterns. Recent research has gradually elucidated fundamental mechanisms underlying the perennial life cycle. Intriguingly, several conserved components of the floral transition pathway in annuals such as Arabidopsis thaliana also participate in these regulatory mechanisms underpinning perenniality. Here, we provide an overview of perennials' physiological features and summarise their recently discovered molecular foundations. We also highlight the importance of deepening our understanding of perenniality in the development of perennial grain crops, which are promising elements of future sustainable agriculture.
Collapse
Affiliation(s)
- Zheng Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China.
| | - Rahul S Lathe
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Jinping Li
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Hong He
- State Key Laboratory for Conservation and Utilisation of Bio-Resources in Yunnan, Research Centre for Perennial Rice Engineering and Technology of Yunnan, School of Agriculture, Yunnan University, 650091 Kunming, China
| | - Rishikesh P Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden.
| |
Collapse
|
29
|
Shim S, Park CM, Seo PJ. iRegNet: an integrative Regulatory Network analysis tool for Arabidopsis thaliana. PLANT PHYSIOLOGY 2021; 187:1292-1309. [PMID: 34618085 PMCID: PMC8566287 DOI: 10.1093/plphys/kiab389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Gene expression is delicately controlled via multilayered genetic and/or epigenetic regulatory mechanisms. Rapid development of the high-throughput sequencing (HTS) technology and its derivative methods including chromatin immunoprecipitation sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq) have generated a large volume of data on DNA-protein interactions (DPIs) and histone modifications on a genome-wide scale. However, the ability to comprehensively retrieve empirically validated upstream regulatory networks of genes of interest (GOIs) and genomic regions of interest (ROIs) remains limited. Here, we present integrative Regulatory Network (iRegNet), a web application that analyzes the upstream regulatory network for user-queried GOIs or ROIs in the Arabidopsis (Arabidopsis thaliana) genome. iRegNet covers the largest empirically proven DNA-binding profiles of Arabidopsis transcription factors (TFs) and non-TF proteins, and histone modifications obtained from all currently available Arabidopsis ChIP-seq and DAP-seq data. iRegNet not only catalogs upstream regulomes and epigenetic chromatin states for single-query gene/genomic region but also suggests significantly overrepresented upstream genetic regulators and epigenetic chromatin states of user-submitted multiple query genes/genomic regions. Furthermore, gene-to-gene coexpression index and protein-protein interaction information were also integrated into iRegNet for a more reliable identification of upstream regulators and realistic regulatory networks. Thus, iRegNet will help discover upstream regulators as well as molecular regulatory networks of GOI(s) and/or ROI(s), and is freely available at http://chromatindynamics.snu.ac.kr:8082/iRegNet_main.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
30
|
Trotman JB, Braceros KCA, Cherney RE, Murvin MM, Calabrese JM. The control of polycomb repressive complexes by long noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1657. [PMID: 33861025 PMCID: PMC8500928 DOI: 10.1002/wrna.1657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
The polycomb repressive complexes 1 and 2 (PRCs; PRC1 and PRC2) are conserved histone-modifying enzymes that often function cooperatively to repress gene expression. The PRCs are regulated by long noncoding RNAs (lncRNAs) in complex ways. On the one hand, specific lncRNAs cause the PRCs to engage with chromatin and repress gene expression over genomic regions that can span megabases. On the other hand, the PRCs bind RNA with seemingly little sequence specificity, and at least in the case of PRC2, direct RNA-binding has the effect of inhibiting the enzyme. Thus, some RNAs appear to promote PRC activity, while others may inhibit it. The reasons behind this apparent dichotomy are unclear. The most potent PRC-activating lncRNAs associate with chromatin and are predominantly unspliced or harbor unusually long exons. Emerging data imply that these lncRNAs promote PRC activity through internal RNA sequence elements that arise and disappear rapidly in evolutionary time. These sequence elements may function by interacting with common subsets of RNA-binding proteins that recruit or stabilize PRCs on chromatin. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Keean C. A. Braceros
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Mechanistic, Interdisciplinary Studies of Biological Systems, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rachel E. Cherney
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - McKenzie M. Murvin
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J. Mauro Calabrese
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
31
|
Transposition and duplication of MADS-domain transcription factor genes in annual and perennial Arabis species modulates flowering. Proc Natl Acad Sci U S A 2021; 118:2109204118. [PMID: 34548402 PMCID: PMC8488671 DOI: 10.1073/pnas.2109204118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Annual and perennial species differ in their timing and intensity of flowering, but the underlying mechanisms are poorly understood. We hybridized closely related annual and perennial plants and used genetics, transgenesis, and genomics to characterize differences in the activity and function of their flowering-time genes. We identify a gene encoding a transcription factor that moved between chromosomes and is retained in the annual but absent from the perennial. This gene strongly delays flowering, and we propose that it has been retained in the annual to compensate for reduced activity of closely related genes. This study highlights the value of using direct hybridization between closely related plant species to characterize functional differences in fast-evolving reproductive traits. The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina. These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.
Collapse
|
32
|
The ATXN2 Orthologs CID3 and CID4, Act Redundantly to In-Fluence Developmental Pathways throughout the Life Cycle of Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22063068. [PMID: 33802796 PMCID: PMC8002431 DOI: 10.3390/ijms22063068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are key elements involved in post-transcriptional regulation. Ataxin-2 (ATXN2) is an evolutionarily conserved RBP protein, whose function has been studied in several model organisms, from Saccharomyces cerevisiae to the Homo sapiens. ATXN2 interacts with poly(A) binding proteins (PABP) and binds to specific sequences at the 3'UTR of target mRNAs to stabilize them. CTC-Interacting Domain3 (CID3) and CID4 are two ATXN2 orthologs present in plant genomes whose function is unknown. In the present study, phenotypical and transcriptome profiling were used to examine the role of CID3 and CID4 in Arabidopsis thaliana. We found that they act redundantly to influence pathways throughout the life cycle. cid3cid4 double mutant showed a delay in flowering time and a reduced rosette size. Transcriptome profiling revealed that key factors that promote floral transition and floral meristem identity were downregulated in cid3cid4 whereas the flowering repressor FLOWERING LOCUS C (FLC) was upregulated. Expression of key factors in the photoperiodic regulation of flowering and circadian clock pathways, were also altered in cid3cid4, as well as the expression of several transcription factors and miRNAs encoding genes involved in leaf growth dynamics. These findings reveal that ATXN2 orthologs may have a role in developmental pathways throughout the life cycle of plants.
Collapse
|
33
|
Arias T, Niederhuth CE, McSteen P, Pires JC. The Molecular Basis of Kale Domestication: Transcriptional Profiling of Developing Leaves Provides New Insights Into the Evolution of a Brassica oleracea Vegetative Morphotype. FRONTIERS IN PLANT SCIENCE 2021; 12:637115. [PMID: 33747016 PMCID: PMC7973465 DOI: 10.3389/fpls.2021.637115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Morphotypes of Brassica oleracea are the result of a dynamic interaction between genes that regulate the transition between vegetative and reproductive stages and those that regulate leaf morphology and plant architecture. In kales, ornate leaves, extended vegetative phase, and nutritional quality are some of the characters potentially selected by humans during domestication. We used a combination of developmental studies and transcriptomics to understand the vegetative domestication syndrome of kale. To identify candidate genes that are responsible for the evolution of domestic kale, we searched for transcriptome-wide differences among three vegetative B. oleracea morphotypes. RNA-seq experiments were used to understand the global pattern of expressed genes during a mixture of stages at one time in kale, cabbage, and the rapid cycling kale line TO1000. We identified gene expression patterns that differ among morphotypes and estimate the contribution of morphotype-specific gene expression that sets kale apart (3958 differentially expressed genes). Differentially expressed genes that regulate the vegetative to reproductive transition were abundant in all morphotypes. Genes involved in leaf morphology, plant architecture, defense, and nutrition were differentially expressed in kale. This allowed us to identify a set of candidate genes we suggest may be important in the kale domestication syndrome. Understanding candidate genes responsible for kale domestication is of importance to ultimately improve Cole crop production.
Collapse
|
34
|
Kopriva S, Weber APM. Genetic encoding of complex traits. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1-3. [PMID: 33471904 PMCID: PMC7816844 DOI: 10.1093/jxb/eraa498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Stanislav Kopriva
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Correspondence: or
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Düsseldorf, Germany
- Correspondence: or
| |
Collapse
|
35
|
Soppe WJJ, Viñegra de la Torre N, Albani MC. The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species. FRONTIERS IN PLANT SCIENCE 2021; 12:627258. [PMID: 33679840 PMCID: PMC7927791 DOI: 10.3389/fpls.2021.627258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/25/2021] [Indexed: 05/07/2023]
Abstract
Most temperate species require prolonged exposure to winter chilling temperatures to flower in the spring. In the Brassicaceae, the MADS box transcription factor FLOWERING LOCUS C (FLC) is a major regulator of flowering in response to prolonged cold exposure, a process called vernalization. Winter annual Arabidopsis thaliana accessions initiate flowering in the spring due to the stable silencing of FLC by vernalization. The role of FLC has also been explored in perennials within the Brassicaceae family, such as Arabis alpina. The flowering pattern in A. alpina differs from the one in A. thaliana. A. alpina plants initiate flower buds during vernalization but only flower after subsequent exposure to growth-promoting conditions. Here we discuss the role of FLC in annual and perennial Brassicaceae species. We show that, besides its conserved role in flowering, FLC has acquired additional functions that contribute to vegetative and seed traits. PERPETUAL FLOWERING 1 (PEP1), the A. alpina FLC ortholog, contributes to the perennial growth habit. We discuss that PEP1 directly and indirectly, regulates traits such as the duration of the flowering episode, polycarpic growth habit and shoot architecture. We suggest that these additional roles of PEP1 are facilitated by (1) the ability of A. alpina plants to form flower buds during long-term cold exposure, (2) age-related differences between meristems, which enable that not all meristems initiate flowering during cold exposure, and (3) differences between meristems in stable silencing of PEP1 after long-term cold, which ensure that PEP1 expression levels will remain low after vernalization only in meristems that commit to flowering during cold exposure. These features result in spatiotemporal seasonal changes of PEP1 expression during the A. alpina life cycle that contribute to the perennial growth habit. FLC and PEP1 have also been shown to influence the timing of another developmental transition in the plant, seed germination, by influencing seed dormancy and longevity. This suggests that during evolution, FLC and its orthologs adopted both similar and divergent roles to regulate life history traits. Spatiotemporal changes of FLC transcript accumulation drive developmental decisions and contribute to life history evolution.
Collapse
Affiliation(s)
| | - Natanael Viñegra de la Torre
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Maria C. Albani
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, “SMART Plants for Tomorrow’s Needs,” Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Maria C. Albani, ;
| |
Collapse
|