1
|
Zhu S, Chen L, Zhang Z, Chen G, Hu N. BnVP1, a novel vacuolar H+ pyrophosphatase gene from Boehmeria nivea confers cadmium tolerance in transgenic Arabidopsis. PLoS One 2024; 19:e0308541. [PMID: 39159160 PMCID: PMC11332915 DOI: 10.1371/journal.pone.0308541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Plants have developed precise defense mechanisms against cadmium (Cd) stress, with vacuolar compartmentalization of Cd2+ being a crucial process in Cd detoxification. The transport of Cd into vacuoles by these cation / H+ antiporters is powered by the pH gradient created by proton pumps. In this study, the full-length cDNA of a vacuolar H+-pyrophosphatase (V-PPase) gene from Boehmeria nivea (ramie), BnVP1, was isolated using the rapid amplification of cDNA ends (RACE) method. The open reading frame (ORF) of BnVP1 is 2292 bp, encoding a 763 amino acid V-PPase protein with 15 predicted transmembrane domains. Sequence alignment and phylogenetic analysis revealed that BnVP1 belongs to the Type I V-PPase family. Quantitative RT-PCR assays demonstrated that BnVP1 expression was significantly higher in ramie roots than in shoots. Cd treatments markedly induced BnVP1 expression in both roots and leaves of ramie seedlings, with a more pronounced effect in roots. Additionally, BnVP1 expression was significantly upregulated by the plant hormone methyl jasmonate (MeJA). Heterologous expression of BnVP1 in transgenic Arabidopsis significantly enhanced V-PPase activity in the roots. The growth performance, root elongation, and total chlorophyll content of transgenic plants with high tonoplast H+-PPase (V-PPase) activity were superior to those of wild-type plants. Overexpression of BnVP1 reduced membrane lipid peroxidation and ion leakage, and significantly increased Cd accumulation in the roots of transgenic Arabidopsis seedlings. This study provides new genetic resources for the phytoremediation of Cd-contaminated farmland.
Collapse
Affiliation(s)
- Shoujing Zhu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Lei Chen
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| | | | - Gang Chen
- Yichun University, Yichun, Jiangxi, China
| | - Nengbing Hu
- College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China
| |
Collapse
|
2
|
Yuan Z, Li G, Zhang H, Peng Z, Ding W, Wen H, Zhou H, Zeng J, Chen J, Xu J. Four novel Cit7GlcTs functional in flavonoid 7- O-glucoside biosynthesis are vital to flavonoid biosynthesis shunting in citrus. HORTICULTURE RESEARCH 2024; 11:uhae098. [PMID: 38863995 PMCID: PMC11165160 DOI: 10.1093/hr/uhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Citrus fruits have abundant flavonoid glycosides (FGs), an important class of natural functional and flavor components. However, there have been few reports about the modification of UDP-glycosyltransferases (UGTs) on flavonoids in citrus. Notably, in flavonoid biosynthesis, 7-O-glucosylation is the initial and essential step of glycosylation prior to the synthesis of flavanone disaccharides, the most abundant and iconic FGs in citrus fruits. Here, based on the accumulation of FGs observed at the very early fruit development stage of two pummelo varieties, we screened six novel flavonoid 7-O-glucosyltransferase genes (7GlcTs) via transcriptomic analysis and then characterized them in vitro. The results revealed that four Cg7GlcTs possess wide catalytic activities towards various flavonoid substrates, with CgUGT89AK1 exhibiting the highest catalytic efficiency. Transient overexpression of CgUGT90A31 and CgUGT89AK1 led to increases in FG synthesis in pummelo leaves. Interestingly, these two genes had conserved sequences and consistent functions across different germplasms. Moreover, CitUGT89AK1 was found to play a role in the response of citrus to Huanglongbing infection by promoting FG production. The findings improve our understanding of flavonoid 7-O-glucosylation by identifying the key genes, and may help improve the benefits of flavonoid biosynthesis for plants and humans in the future.
Collapse
Affiliation(s)
- Ziyu Yuan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Gu Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Huixian Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenyu Ding
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Hanxin Zhou
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiwu Zeng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
3
|
Mao Z, Wang Y, Li M, Zhang S, Zhao Z, Xu Q, Liu JH, Li C. Vacuolar proteomic analysis reveals tonoplast transporters for accumulation of citric acid and sugar in citrus fruit. HORTICULTURE RESEARCH 2024; 11:uhad249. [PMID: 38288255 PMCID: PMC10822839 DOI: 10.1093/hr/uhad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/13/2023] [Indexed: 01/31/2024]
Abstract
Vacuole largely dictates the fruit taste and flavor, as most of the sugars and organic acids are stored in the vacuoles of the fruit. However, difficulties associated with vacuole separation severely hinder identification and characterization of vacuolar proteins in fruit species. In this study, we established an effective approach for separating vacuoles and successfully purified vacuolar protein from six types of citrus fruit with varying patterns of sugar and organic acid contents. By using label-free LC-MS/MS proteomic analysis, 1443 core proteins were found to be associated with the essential functions of vacuole in citrus fruit. Correlation analysis of metabolite concentration with proteomic data revealed a transporter system for the accumulation of organic acid and soluble sugars in citrus. Furthermore, we characterized the physiological roles of selected key tonoplast transporters, ABCG15, Dict2.1, TMT2, and STP7 in the accumulation of citric acid and sugars. These findings provide a novel perspective and practical solution for investigating the transporters underlying the formation of citrus taste and flavor.
Collapse
Affiliation(s)
- Zuolin Mao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yue Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengdi Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeqi Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunlong Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
4
|
Khan MA, Liu DH, Alam SM, Zaman F, Luo Y, Han H, Ateeq M, Liu YZ. Molecular physiology for the increase of soluble sugar accumulation in citrus fruits under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108056. [PMID: 37783072 DOI: 10.1016/j.plaphy.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/24/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
To investigate the mechanism for drought promoting soluble sugar accumulation will be conducive to the enhancement of citrus fruit quality as well as stress tolerance. Fruit sucrose mainly derives from source leaves. Its accumulation in citrus fruit cell vacuole involves in two processes of unloading in the fruit segment membrane (SM) and translocating to the vacuole of fruit juice sacs (JS). Here, transcript levels of 47 sugar metabolism- and transport-related genes were compared in fruit SM or JS between drought and control treatments. Results indicated that transcript levels of cell wall invertase genes (CwINV2/6) and sucrose synthase genes (SUS2/6) in the SM were significantly increased by the drought. Moreover, transcript levels of SWEET genes (CsSWEET1/2/4/5/9) and monosaccharide transporter gene (CsPMT3) were significantly increased in SM under drought treatment. On the other hand, SUS1/3 and vacuolar invertase (VINV) transcript levels were significantly increased in JS by drought; CsPMT4, sucrose transporter gene 2 (CsSUT2), tonoplast monosaccharide transporter gene 2 (CsTMT2), sugar transport protein gene 1 (CsSTP1), two citrus type I V-PPase genes (CsVPP1, and CsVPP2) were also significantly increased in drought treated JS. Collectively, the imposition of drought stress resulted in more soluble sugar accumulation through enhancing sucrose download by enhancing sink strength- and transport ability-related genes, such as CwINV2/6, SUS2/6, CsSWEET1/2/4/5/9, and CsPMT3, in fruit SM, and soluble sugar storage ability by increasing transcript levels of genes, such as CsPMT4, VINV, CsSUT2, CsTMT2, CsSTP1, CsVPP1, and CsVPP2, in fruit JS.
Collapse
Affiliation(s)
- Muhammad Abbas Khan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Dong-Hai Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Shariq Mahmood Alam
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Fatima Zaman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yin Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Han Han
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Muhammad Ateeq
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
5
|
Gao M, Zhao H, Zheng L, Zhang L, Peng Y, Ma W, Tian R, Yuan Y, Ma F, Li M, Ma B. Overexpression of apple Ma12, a mitochondrial pyrophosphatase pump gene, leads to malic acid accumulation and the upregulation of malate dehydrogenase in tomato and apple calli. HORTICULTURE RESEARCH 2022; 9:uhab053. [PMID: 35039848 PMCID: PMC8769031 DOI: 10.1093/hr/uhab053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 08/09/2021] [Indexed: 05/21/2023]
Abstract
Acidity is an important factor influencing the organoleptic quality of apple fruits. In this study, an apple pyrophosphate-energized proton pump (PEPP) gene was isolated and designated MdMa12. On the basis of a phylogenetic analysis in Rosaceae species, PEPP genes were divided into three groups, with apple PEPP genes most closely related to pear PEPP genes. Gene expression analysis revealed that high malic acid content was generally accompanied by high MdMa12 expression levels. Moreover, MdMa12 was mainly expressed in the fruit. A subcellular localization analysis suggested that MdMa12 is a mitochondrial protein. The ectopic expression and overexpression of MdMa12 in "Micro-Tom" tomato and apple calli, respectively, increased the malic acid content. One (MDH12) of four malate dehydrogenase genes highly expressed in transgenic apple calli was confirmed to encode a protein localized in mitochondria. The overexpression of MDH12 increased the malate content in apple calli. Furthermore, MdMa12 overexpression increased MdDTC1, MdMa1, and MdMa10 expression levels, which were identified to transport malate. These findings imply that MdMa12 has important functions related to apple fruit acidity. Our study explored the regulatory effects of mitochondria on the complex mechanism underlying apple fruit acidity.
Collapse
Affiliation(s)
| | | | - Litong Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lihua Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yunjing Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenfang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangyang Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | | |
Collapse
|
6
|
Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. Mechanisms and regulation of organic acid accumulation in plant vacuoles. HORTICULTURE RESEARCH 2021; 8:227. [PMID: 34697291 PMCID: PMC8546024 DOI: 10.1038/s41438-021-00702-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In fleshy fruits, organic acids are the main source of fruit acidity and play an important role in regulating osmotic pressure, pH homeostasis, stress resistance, and fruit quality. The transport of organic acids from the cytosol to the vacuole and their storage are complex processes. A large number of transporters carry organic acids from the cytosol to the vacuole with the assistance of various proton pumps and enzymes. However, much remains to be explored regarding the vacuolar transport mechanism of organic acids as well as the substances involved and their association. In this review, recent advances in the vacuolar transport mechanism of organic acids in plants are summarized from the perspectives of transporters, channels, proton pumps, and upstream regulators to better understand the complex regulatory networks involved in fruit acid formation.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
7
|
Shi CY, Hussain SB, Han H, Alam SM, Liu D, Liu YZ. Reduced expression of CsPH8, a P-type ATPase gene, is the major factor leading to the low citrate accumulation in citrus leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:211-217. [PMID: 33515970 DOI: 10.1016/j.plaphy.2021.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Citrate is an important intermediate product for the biosynthesis of several metabolites in plants. As two important organs of the citrus plant, fruits and leaves have their own metabolites characteristics; among them, citrate is normally high in fruit juice sacs (JS) and low in leaves. In this study, citrate content and transcript levels of citrate synthesis, transport, storage, and utilization related genes were compared between leaves and fruit JS of Citrus reticulata cv. 'Huagan No. 2', C. grandis cv. 'Hirado Buntan', and C. sinensis cv. 'Anliu'. Results indicated that the citrate content in fruit JS was significantly higher than in leaves of each cultivar. Only the relative mRNA levels of a P-type proton pump gene, CsPH8, was significantly lower in leaves than in fruit JS of three citrus cultivars, while other genes related to citrate biosynthesis, transport, storage, and utilization were highly expressed in leaves as compared to fruit JS. Furthermore, CsPH8 transient and stable transformation in leaves indicated that the change in citrate content is highly consistent with the change of CsPH8 transcript levels. Taken together, our results strongly suggest that the low accumulation of citrate in citrus leaves is mainly due to the low expression level of CsPH8; additionally, the high level of expression of citrate-utilizing genes would prevent citrate accumulation in the leaf organ.
Collapse
Affiliation(s)
- Cai-Yun Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Syed Bilal Hussain
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China; Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Han Han
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shariq Mahmood Alam
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yong-Zhong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|