1
|
Osibe DA, Hojo Y, Shinya T, Mitani-Ueno N, Galis I. Comprehensive analysis of silicon impact on defense and metabolic responses in rice exposed to herbivory stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1399562. [PMID: 38872888 PMCID: PMC11169889 DOI: 10.3389/fpls.2024.1399562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024]
Abstract
Silicon (Si) uptake is generally beneficial for plants that need protection from insect herbivores. In pursue of mechanisms involved in Si-mediated defense, we comprehensively explored the impact of Si on several defensive and metabolic traits in rice exposed to simulated and real herbivory of Mythimna loreyi Duponchel larvae. Hydroponic experiments showed that Si-deprived rice supplemented with Si 72 h prior to insect infestation were similarly resistant to larvae as plants continuously grown in Si-containing media. Both Si and herbivory altered primary metabolism in rice, including the levels of several sugars, amino acids, and organic acids. While the accumulation of sugars was generally positively correlated with Si presence, multiple amino acids showed a negative correlation trend with Si supplementation. The levels of secondary metabolites, including isopentylamine, p-coumaroylputrescine and feruloylputrescine, were typically higher in the leaves of Si-supplemented plants exposed to herbivory stress compared to Si-deprived plants. In addition, simulated herbivory treatment in Si-supplemented plants induced more volatile emissions relative to Si-deprived plants, which was consistent with the increased transcripts of key genes involved in volatile biosynthesis. In ecological interactions, Si alone did not affect the oviposition choice of M. loreyi but gravid females showed a significant preference for simulated herbivory-treated/Si-deprived compared to Si-supplemented plants. Our data suggest that apart from mechanical defense, Si may affect rice metabolism in multiple ways that might enhance/modulate defense responses of rice under herbivory stress.
Collapse
Affiliation(s)
- Dandy Ahamefula Osibe
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Namiki Mitani-Ueno
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
2
|
Osinde C, Sobhy IS, Wari D, Dinh ST, Hojo Y, Osibe DA, Shinya T, Tugume AK, Nsubuga AM, Galis I. Comparative analysis of sorghum (C4) and rice (C3) plant headspace volatiles induced by artificial herbivory. PLANT SIGNALING & BEHAVIOR 2023; 18:2243064. [PMID: 37585707 PMCID: PMC10730142 DOI: 10.1080/15592324.2023.2243064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
Acute stress responses include release of defensive volatiles from herbivore-attacked plants. Here we used two closely related monocot species, rice as a representative C3 plant, and sorghum as a representative C4 plant, and compared their basal and stress-induced headspace volatile organic compounds (VOCs). Although both plants emitted similar types of constitutive and induced VOCs, in agreement with the close phylogenetic relationship of the species, several mono- and sesquiterpenes have been significantly less abundant in headspace of sorghum relative to rice. Furthermore, in spite of generally lower VOC levels, some compounds, such as the green leaf volatile (Z)-3-hexenyl acetate and homoterpene DMNT, remained relatively high in the sorghum headspace, suggesting that a separate mechanism for dispersal of these compounds may have evolved in this plant. Finally, a variable amount of several VOCs among three sorghum cultivars of different geographical origins suggested that release of VOCs could be used as a valuable resource for the increase of sorghum resistance against herbivores.
Collapse
Affiliation(s)
- Cyprian Osinde
- Department of Plant Sciences, Microbiology and Biotechnology Makerere University, Kampala, Uganda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Islam S. Sobhy
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
- School of Biosciences, Cardiff University, Cardiff, UK
| | - David Wari
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Son Truong Dinh
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Dandy A. Osibe
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Science and Biotechnology, University of Nigeria, Nsukka, Nigeria
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Arthur K. Tugume
- Department of Plant Sciences, Microbiology and Biotechnology Makerere University, Kampala, Uganda
| | - Anthony M. Nsubuga
- Department of Plant Sciences, Microbiology and Biotechnology Makerere University, Kampala, Uganda
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
3
|
Chen Y, Liang S, Wang S, Li B, Wang K, Zhu Y, Yang R, Hao X, Yang Z, Shen Y, Jiang R, Li K. Repeated mechanical damage enhanced Aquilaria sinensis resistance to Heortia vitessoides through jasmonic acid. FRONTIERS IN PLANT SCIENCE 2023; 14:1183002. [PMID: 37615021 PMCID: PMC10442551 DOI: 10.3389/fpls.2023.1183002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
Introduction The leaf-chewing pest Heortia vitessoides severely threatens the growth and development of Aquilaria sinensis. In our previous study, we found that mechanical damage (MD) to stem enhanced A. sinensis sapling resistance to H. vitessoides larvae. Methods To reveal the defense mechanisms underlying this observation, we analyzed the types and contents of volatile organic compounds (VOCs), phytohormone contents, and expression of phytohormone-related genes in response to MD and herbivory wounding(HW). Results Here, we identified several VOCs, such as the pesticides fenobucarb and 2,4-di-tert-butylphenol, in mature leaf (ML) of MD-treated plants. Compared with salicylic acid (SA) or the ethylene (ET) pathway, jasmonic acid (JA) content and JA-related genes were more strongly upregulated. Interestingly, we found a dramatic difference between JA-related upstream and downstream genes expression in YL and ML, which confirmed that JA-Ile accumulation in MD-ML and HW-ML could be derived from local damaged site. Discussion Taken together, we provide evidence that the JA pathway plays a dominant role in the A. sinensis response to MD and HW.
Collapse
Affiliation(s)
- Yingying Chen
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shenghua Liang
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
| | - Shuyao Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Baocai Li
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
| | - Kun Wang
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
| | - Yongjin Zhu
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
| | - Risheng Yang
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
| | - Xin Hao
- National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agriculture University, Beijing, China
| | - Zhuoying Yang
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
| | - Yingbai Shen
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Rihong Jiang
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
| | - Kaixiang Li
- Guangxi Key Laboratory of Special Non-wood Forests Cultivation and Utilization, Guangxi Xylophyta Spices Research Center of Engineering Technology, Illicium and Cinnamomum Engineering Technology Research Center of National Forestry and Grassland Administration, Guangxi Forestry Research Institute, Nanning, China
| |
Collapse
|
4
|
Kanda Y, Shinya T, Maeda S, Mujiono K, Hojo Y, Tomita K, Okada K, Kamakura T, Galis I, Mori M. BSR1, a Rice Receptor-like Cytoplasmic Kinase, Positively Regulates Defense Responses to Herbivory. Int J Mol Sci 2023; 24:10395. [PMID: 37373546 DOI: 10.3390/ijms241210395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Crops experience herbivory by arthropods and microbial infections. In the interaction between plants and chewing herbivores, lepidopteran larval oral secretions (OS) and plant-derived damage-associated molecular patterns (DAMPs) trigger plant defense responses. However, the mechanisms underlying anti-herbivore defense, especially in monocots, have not been elucidated. The receptor-like cytoplasmic kinase Broad-Spectrum Resistance 1 (BSR1) of Oryza sativa L. (rice) mediates cytoplasmic defense signaling in response to microbial pathogens and enhances disease resistance when overexpressed. Here, we investigated whether BSR1 contributes to anti-herbivore defense responses. BSR1 knockout suppressed rice responses triggered by OS from the chewing herbivore Mythimna loreyi Duponchel (Lepidoptera: Noctuidae) and peptidic DAMPs OsPeps, including the activation of genes required for biosynthesis of diterpenoid phytoalexins (DPs). BSR1-overexpressing rice plants exhibited hyperactivation of DP accumulation and ethylene signaling after treatment with simulated herbivory and acquired enhanced resistance to larval feeding. As the biological significance of herbivory-induced accumulation of rice DPs remains unexplained, their physiological activities in M. loreyi were analyzed. The addition of momilactone B, a rice DP, to the artificial diet suppressed the growth of M. loreyi larvae. Altogether, this study revealed that BSR1 and herbivory-induced rice DPs are involved in the defense against chewing insects, in addition to pathogens.
Collapse
Affiliation(s)
- Yasukazu Kanda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Satoru Maeda
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
| | - Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda 75119, Indonesia
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Keisuke Tomita
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Kamakura
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS), Tsukuba 305-8634, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
5
|
Lin PA, Kansman J, Chuang WP, Robert C, Erb M, Felton GW. Water availability and plant-herbivore interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2811-2828. [PMID: 36477789 DOI: 10.1093/jxb/erac481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/04/2022] [Indexed: 06/06/2023]
Abstract
Water is essential to plant growth and drives plant evolution and interactions with other organisms such as herbivores. However, water availability fluctuates, and these fluctuations are intensified by climate change. How plant water availability influences plant-herbivore interactions in the future is an important question in basic and applied ecology. Here we summarize and synthesize the recent discoveries on the impact of water availability on plant antiherbivore defense ecology and the underlying physiological processes. Water deficit tends to enhance plant resistance and escape traits (i.e. early phenology) against herbivory but negatively affects other defense strategies, including indirect defense and tolerance. However, exceptions are sometimes observed in specific plant-herbivore species pairs. We discuss the effect of water availability on species interactions associated with plants and herbivores from individual to community levels and how these interactions drive plant evolution. Although water stress and many other abiotic stresses are predicted to increase in intensity and frequency due to climate change, we identify a significant lack of study on the interactive impact of additional abiotic stressors on water-plant-herbivore interactions. This review summarizes critical knowledge gaps and informs possible future research directions in water-plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jessica Kansman
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| | - Wen-Po Chuang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | | | - Matthias Erb
- Institute of Plant Science, University of Bern, Bern, Switzerland
| | - Gary W Felton
- Department of Entomology, the Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Duc NH, Vo HTN, van Doan C, Hamow KÁ, Le KH, Posta K. Volatile organic compounds shape belowground plant-fungi interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:1046685. [PMID: 36561453 PMCID: PMC9763900 DOI: 10.3389/fpls.2022.1046685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs), a bouquet of chemical compounds released by all life forms, play essential roles in trophic interactions. VOCs can facilitate a large number of interactions with different organisms belowground. VOCs-regulated plant-plant or plant-insect interaction both below and aboveground has been reported extensively. Nevertheless, there is little information about the role of VOCs derived from soilborne pathogenic fungi and beneficial fungi, particularly mycorrhizae, in influencing plant performance. In this review, we show how plant VOCs regulate plant-soilborne pathogenic fungi and beneficial fungi (mycorrhizae) interactions. How fungal VOCs mediate plant-soilborne pathogenic and beneficial fungi interactions are presented and the most common methods to collect and analyze belowground volatiles are evaluated. Furthermore, we suggest a promising method for future research on belowground VOCs.
Collapse
Affiliation(s)
- Nguyen Hong Duc
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| | - Ha T. N. Vo
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Cong van Doan
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDIV), Leipzig, Germany
| | - Kamirán Áron Hamow
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Khac Hoang Le
- Plant Disease Laboratory, Department of Plant Protection, Faculty of Agronomy, Nong Lam University, Ho Chi Minh, Vietnam
| | - Katalin Posta
- Institute of Genetics and Biotechnology, Department of Microbiology and Applied Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), Godollo, Hungary
| |
Collapse
|
7
|
Song H, Li Y, Wang Z, Duan Z, Wang Y, Yang E, Que Q, Chen X, Li P. Transcriptome profiling of Toona ciliata young stems in response to Hypsipyla robusta Moore. FRONTIERS IN PLANT SCIENCE 2022; 13:950945. [PMID: 36105698 PMCID: PMC9465623 DOI: 10.3389/fpls.2022.950945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Toona ciliata is a traditional woody plant that can be used as a medicinal material in China. The extracts of its roots, stems, leaves, and flowers all have a wide range of bioactive compounds. However, T. ciliata has been facing an unresolved pest problem caused by Hypsipyla robusta Moore (HRM), which seriously affects its growth and development. In this study, the expression level of TcMYB3 gene reached the maximum (28-fold) at 12 h and transcriptome sequencing of young stems eaten by HRM for 0, 3, 12, and 21 h were performed. A large number of differentially expressed genes (DEGs) were identified including jointly up-regulated genes (263) and down-regulated genes (378). JA synthesis and signaling transduction, terpene biosynthesis, and MAPKs signaling pathway were analyzed in depth and found that TcOPR3, TcJAR1, TcJAZs, and TcTPS9 genes possessed anti-insect potential. Moreover, MYB and ERF transcription factor (TF) families were significantly strengthened to the point that they may participate in induced defense mechanisms in T. ciliata. These data not only provide insights into the molecular mechanisms in resistance of T. ciliata to HRM but also helps to explore the new biocontrol strategies against insects in eco-friendly woody plants.
Collapse
Affiliation(s)
- Huiyun Song
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yue Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhi Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Zhihao Duan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yueyang Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Endian Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Qingmin Que
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Pei Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Jones LC. Insects allocate eggs adaptively according to plant age, stress, disease or damage. Proc Biol Sci 2022; 289:20220831. [PMID: 35858074 PMCID: PMC9277260 DOI: 10.1098/rspb.2022.0831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most herbivorous insects can only survive on a small subset of the plant species in its environment. Consequently, adult females have evolved sophisticated sensory recognition systems enabling them to find and lay eggs on plants supporting offspring development. This leads to the preference-performance or 'mother knows best' hypothesis that insects should be attracted to host plants that confer higher offspring survival. Previous work shows insects generally select plant species that are best for larval survival, although this is less likely for crops or exotic host plants. Even within a species, however, individual plants can vary greatly in potential suitability depending on age, access to water or nutrients or attack by pathogens or other herbivores. Here, I systematically review 71 studies on 62 insect species testing the preference-performance hypothesis with sets of plants varying in age, stress, fungal/microbial infection or herbivore damage. Altogether, 77% of insects tested with a native host (N = 43) allocated their eggs to plants best for offspring development, as did 64% (N = 22) of insects tested with an exotic host. Results were similar across plant age, stress, disease and damage categories. These findings show adaptive maternal behaviour in insects occurs for both host species and variation among individual plants.
Collapse
Affiliation(s)
- Lachlan C. Jones
- School of Biological Sciences, the University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
9
|
Valea I, Motegi A, Kawamura N, Kawamoto K, Miyao A, Ozawa R, Takabayashi J, Gomi K, Nemoto K, Nozawa A, Sawasaki T, Shinya T, Galis I, Miyamoto K, Nojiri H, Okada K. The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight. PLANT MOLECULAR BIOLOGY 2022; 109:651-666. [PMID: 34476681 DOI: 10.1007/s11103-021-01186-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.
Collapse
Affiliation(s)
- Ioana Valea
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Atsushi Motegi
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoko Kawamura
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koichi Kawamoto
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Akio Miyao
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8518, Japan
| | - Rika Ozawa
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Kenji Gomi
- Graduate School of Agriculture, Kagawa University, Kita-gun, Kagawa, 761-0795, Japan
| | - Keiichirou Nemoto
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, 790-8577, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Koji Miyamoto
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, 320-8551, Japan
| | - Hideaki Nojiri
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
10
|
Dani KGS, Loreto F. Plant volatiles as regulators of hormone homeostasis. THE NEW PHYTOLOGIST 2022; 234:804-812. [PMID: 35170033 DOI: 10.1111/nph.18035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Some canonical plant hormones such as auxins and gibberellins have precursors that are biogenic volatiles (indole, indole acetonitrile, phenylacetaldoxime and ent-kaurene). Cytokinins, abscisic acid and strigolactones are hormones comprising chemical moieties that have distinct volatile analogues, and are synthesised alongside constitutively emitted volatiles (isoprene, sesquiterpenes, lactones, benzenoids and apocarotenoid volatiles). Nonvolatile hormone analogues and biogenic volatile organic compounds (BVOCs) evolved in tandem as growth and behavioural regulators in unicellular organisms. In plants, however, nonvolatile hormones evolved as regulators of growth, development and differentiation, while endogenous BVOCs (often synthesised lifelong) became subtle regulators of hormone synthesis, availability, activity and turnover, all supported by functionally redundant components of hormone metabolism. Reciprocal changes in the abundance and activity of hormones, nitric oxide, and constitutive plant volatiles constantly bridge retrograde and anterograde signalling to maintain hormone equilibria even in unstressed plants. This is distinct from transient interference in hormone signalling by stress-induced and exogenously received volatiles.
Collapse
Affiliation(s)
- Kaidala Ganesha Srikanta Dani
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
- Department of Biology, Agriculture and Food Sciences, National Research Council of Italy, Piazzale Aldo Moro 7, Rome, 00185, Italy
| | - Francesco Loreto
- Institute of Sustainable Plant Protection, National Research Council of Italy, Via Madonna del Piano 10, Sesto Fiorentino, Florence, 50019, Italy
- Department of Biology, University of Naples Federico II, Via Cinthia, Naples, 80126, Italy
| |
Collapse
|
11
|
Sharifi R, Jeon JS, Ryu CM. Belowground plant-microbe communications via volatile compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:463-486. [PMID: 34727189 DOI: 10.1093/jxb/erab465] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Volatile compounds play important roles in rhizosphere biological communications and interactions. The emission of plant and microbial volatiles is a dynamic phenomenon that is affected by several endogenous and exogenous signals. Diffusion of volatiles can be limited by their adsorption, degradation, and dissolution under specific environmental conditions. Therefore, rhizosphere volatiles need to be investigated on a micro and spatiotemporal scale. Plant and microbial volatiles can expand and specialize the rhizobacterial niche not only by improving the root system architecture such that it serves as a nutrient-rich shelter, but also by inhibiting or promoting the growth, chemotaxis, survival, and robustness of neighboring organisms. Root volatiles play an important role in engineering the belowground microbiome by shaping the microbial community structure and recruiting beneficial microbes. Microbial volatiles are appropriate candidates for improving plant growth and health during environmental challenges and climate change. However, some technical and experimental challenges limit the non-destructive monitoring of volatile emissions in the rhizosphere in real-time. In this review, we attempt to clarify the volatile-mediated intra- and inter-kingdom communications in the rhizosphere, and propose improvements in experimental design for future research.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
12
|
Liu K, Zhang C, Xu J, Liu Q. Research advance in gas detection of volatile organic compounds released in rice quality deterioration process. Compr Rev Food Sci Food Saf 2021; 20:5802-5828. [PMID: 34668316 DOI: 10.1111/1541-4337.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/04/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Rice quality deterioration will cause grievous waste of stored grain and various food safety problems. Gas detection of volatile organic compounds (VOCs) produced by deterioration is a nondestructive detection method to judge rice quality and alleviate rice spoilage. This review discussed the research advance of VOCs detection in terms of nondestructive detection methods of rice quality deterioration, applications of VOCs in grain detection, inspection of characteristic gas produced during rice spoilage, rice deterioration prevention and control, and detection of VOCs released by rice mildew and insect attack. According to the main causes of rice quality deterioration and major sources of VOCs with off-odor generated during rice storage, deterioration can be divided into mold and insect infection. The results of literature manifested that researches mainly focused on the infection of Aspergillus in the mildew process and the attack of certain pests in recent years, thus the research scope was limited. In this paper, the gas detection methods combined with the chemometrics to qualitatively analyze the VOCs, as well as the correlation with the number of colonies and insects were further studied based on the common dominant strains during rice mildew, that is, Aspergillus and Penicillium fungi, and the common pests during storage, that is, Sitophilus oryzae and Rhyzopertha dominica. Furthermore, this paper pointed out that the quantitative determination of characteristic VOCs, the numeration relationship between VOCs and the degree of mildew and insect infestation, the further expansion of detection range, and the application of degraded rice should be the spotlight of future research.
Collapse
Affiliation(s)
- Kewei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Jinyong Xu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, People's Republic of China
| | - Qiaoquan Liu
- Key Laboratories of Crop Genetics and Physiology of Jiangsu Province, Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
13
|
Mujiono K, Tohi T, Sobhy IS, Hojo Y, Shinya T, Galis I. Herbivore-induced and constitutive volatiles are controlled by different oxylipin-dependent mechanisms in rice. PLANT, CELL & ENVIRONMENT 2021; 44:2687-2699. [PMID: 34114241 DOI: 10.1111/pce.14126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Despite the importance of volatile organic compounds (VOCs) for plants, control mechanisms for their basal and stress-induced biosynthesis and release remain unclear. We sampled and characterized headspace and internal leaf volatile pools in rice (Oryza sativa), after a simulated herbivory treatment, which triggers an endogenous jasmonate burst. Certain volatiles, such as linalool, were strongly upregulated by simulated herbivory stress. In contrast, other volatiles, such as β-caryophyllene, were constitutively emitted and fluctuated according to time of day. Transcripts of the linalool synthase gene transiently increased 1-3 h after exposure of rice to simulated herbivory, whereas transcripts of caryophyllene synthase peaked independently at dawn. Unexpectedly, although emission and accumulation patterns of rice inducible and constitutive VOCs were substantially different, both groups of volatiles were compromised in jasmonate-deficient hebiba mutants, which lack the allene oxide cyclase (AOC) gene. This suggests that rice employs at least two distinct oxylipin-dependent mechanisms downstream of AOC to control production of constitutive and herbivore-induced volatiles. Levels of the JA precursor, 12-oxo-phytodienoic acid (OPDA), were correlated with constitutive volatile levels suggesting that OPDA or its derivatives could be involved in control of volatile emission in rice.
Collapse
Affiliation(s)
- Kadis Mujiono
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Mulawarman University, Samarinda, Indonesia
| | - Tilisa Tohi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Islam S Sobhy
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
- School of Life Sciences, Huxley Building, Keele University, Keele, UK
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|