1
|
Wolff B, Julier B, Louarn G. Impact of intraspecific genetic variation on interspecific competition: a theoretical case study of forage binary mixtures. FRONTIERS IN PLANT SCIENCE 2024; 15:1356506. [PMID: 39416476 PMCID: PMC11482038 DOI: 10.3389/fpls.2024.1356506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Introduction Increasing intraspecific genetic variation (IV) has been identified as a potential factor to improve productivity and stabilise botanical composition in plant communities. In grasslands systems, this could offer a lever to manage uncertainties of production and variability in the harvested species balance. However, little is known about the conditions to favour IV impact and the mechanisms at play. Methods The dependency of IV impact on traits holding it and environmental stressors were analysed using a spatially-explicit individual-based model (IBM) of grassland communities. Sixty-three binary mixtures were defined to reflect a gradient of functional divergence between species regarding light and nitrogen (N) acquisition. The growth and dynamics of these communities were simulated for one year with three possible IV levels under two environments contrasting in terms of soil N fertility. Results and discussion The model predicted a positive impact of moderate and high IV levels on maintaining the species balance over time, but no marked effects on mixture productivity. This stabilising effect increased at higher IV levels and under low soil N fertility. It also tended to be more pronounced in communities with intermediate functional divergence offering a significant overlap between light and N acquisition parameter values of both species. The major traits involved in the plant response to neighbours differed depending on the most contested resource, as indicated by the within-population selection of individuals with favourable N-related parameters under low N and light-related parameters under high N environments. The hypothesis that IV favours a complementarity of resource use between species was not supported. Rather, a greater spatial heterogeneity in competitive interactions was demonstrated, leading to a higher probability of growth and survival for individuals within the subordinate species. These results highlight the potential usefulness of IV to design forage mixtures with improved stability and resilience.
Collapse
|
2
|
Lu J, Lankhost JA, Stomph TJ, Schneider HM, Chen Y, Mi G, Yuan L, Evers JB. Root plasticity improves maize nitrogen use when nitrogen is limiting: an analysis using 3D plant modelling. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5989-6005. [PMID: 38970454 PMCID: PMC11427830 DOI: 10.1093/jxb/erae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/08/2024] [Indexed: 07/08/2024]
Abstract
Plant phenotypic plasticity plays an important role in nitrogen (N) acquisition and use under nitrogen-limited conditions. However, this role has never been quantified as a function of N availability, leaving it unclear whether plastic responses should be considered as potential targets for selection. A combined modelling and experimentation approach was adopted to quantify the role of plasticity in N uptake and plant yield. Based on a greenhouse experiment we considered plasticity in two maize (Zea mays) traits: root-to-leaf biomass allocation ratio and emergence rate of axial roots. In a simulation experiment we individually enabled or disabled both plastic responses for maize stands grown across six N levels. Both plastic responses contributed to maintaining a higher N uptake, and plant productivity as N availability declined compared with stands in which plastic responses were disabled. We conclude that plastic responses quantified in this study may be a potential target trait in breeding programs for greater N uptake across N levels while it may only be important for the internal use of N under N-limited conditions in maize. Given the complexity of breeding for plastic responses, an a priori model analysis is useful to identify which plastic traits to target for enhanced plant performance.
Collapse
Affiliation(s)
- Jie Lu
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Jan A Lankhost
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
- Copernicus Institute of Sustainable Development, Utrecht University, the Netherlands
| | - Tjeerd Jan Stomph
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
| | - Hannah M Schneider
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
| | - Yanling Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shangdong 266109, China
| | - Guohua Mi
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Jochem B Evers
- Centre for Crop Systems Analysis, Wageningen University and Research, the Netherlands
| |
Collapse
|
3
|
Gu Y, Zheng H, Li S, Wang W, Guan Z, Li J, Mei N, Hu W. Effects of narrow-wide row planting patterns on canopy photosynthetic characteristics, bending resistance and yield of soybean in maize‒soybean intercropping systems. Sci Rep 2024; 14:9361. [PMID: 38654091 DOI: 10.1038/s41598-024-59916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
With the improvements in mechanization levels, it is difficult for the traditional intercropping planting patterns to meet the needs of mechanization. In the traditional maize‒soybean intercropping, maize has a shading effect on soybean, which leads to a decrease in soybean photosynthetic capacity and stem bend resistance, resulting in severe lodging, which greatly affects soybean yield. In this study, we investigated the effects of three intercropping ratios (four rows of maize and four rows of soybean; four rows of maize and six rows of soybean; six rows of maize and six rows of soybean) and two planting patterns (narrow-wide row planting pattern of 80-50 cm and uniform-ridges planting pattern of 65 cm) on soybean canopy photosynthesis, stem bending resistance, cellulose, hemicellulose, lignin and related enzyme activities. Compared with the uniform-ridge planting pattern, the narrow-wide row planting pattern significantly increased the LAI, PAR, light transmittance and compound yield by 6.06%, 2.49%, 5.68% and 5.95%, respectively. The stem bending resistance and cellulose, hemicellulose, lignin and PAL, TAL and CAD activities were also significantly increased. Compared with those under the uniform-ridge planting pattern, these values increased by 7.74%, 3.04%, 8.42%, 9.76%, 7.39%, 10.54% and 8.73% respectively. Under the three intercropping ratios, the stem bending resistance, cellulose, hemicellulose, lignin content and PAL, TAL, and CAD activities in the M4S6 treatment were significantly greater than those in the M4S4 and M6S6 treatments. Compared with the M4S4 treatment, these variables increased by 12.05%, 11.09%, 21.56%, 11.91%, 18.46%, 16.1%, and 16.84%, respectively, and compared with the M6S6 treatment, they increased by 2.06%, 2.53%, 2.78%, 2.98%, 8.81%, 4.59%, and 4.36%, respectively. The D-M4S6 treatment significantly improved the lodging resistance of soybean and weakened the negative impact of intercropping on soybean yield. Therefore, based on the planting pattern of narrow-wide row maize‒soybean intercropping planting pattern, four rows of maize and six rows of soybean were more effective at improving the lodging resistance of soybean in the semiarid region of western China.
Collapse
Affiliation(s)
- Yan Gu
- Jilin Agricultural University, Changchun, 131008, China
| | - Haoyuan Zheng
- Jilin Agricultural University, Changchun, 131008, China
| | - Shuang Li
- Jilin Agricultural University, Changchun, 131008, China
| | - Wantong Wang
- Jilin Agricultural University, Changchun, 131008, China
| | - Zheyun Guan
- Jilin Academy of Agricultural Sciences, Changchun, 130124, China
| | - Jizhu Li
- Jilin Agricultural University, Changchun, 131008, China
| | - Nan Mei
- Jilin Agricultural University, Changchun, 131008, China.
| | - Wenhe Hu
- Jilin Agricultural University, Changchun, 131008, China.
| |
Collapse
|
4
|
Xiao S, Fei S, Li Q, Zhang B, Chen H, Xu D, Cai Z, Bi K, Guo Y, Li B, Chen Z, Ma Y. The Importance of Using Realistic 3D Canopy Models to Calculate Light Interception in the Field. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0082. [PMID: 37602194 PMCID: PMC10437493 DOI: 10.34133/plantphenomics.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023]
Abstract
Quantifying canopy light interception provides insight into the effects of plant spacing, canopy structure, and leaf orientation on radiation distribution. This is essential for increasing crop yield and improving product quality. Canopy light interception can be quantified using 3-dimensional (3D) plant models and optical simulations. However, virtual 3D canopy models (VCMs) have often been used to quantify canopy light interception because realistic 3D canopy models (RCMs) are difficult to obtain in the field. This study aims to compare the differences in light interception between VCMs and RCM. A realistic 3D maize canopy model (RCM) was reconstructed over a large area of the field using an advanced unmanned aerial vehicle cross-circling oblique (CCO) route and the structure from motion-multi-view stereo method. Three types of VCMs (VCM-1, VCM-4, and VCM-8) were then created by replicating 1, 4, and 8 individual realistic plants constructed by CCO in the center of the corresponding RCM. The daily light interception per unit area (DLI), as computed for the 3 VCMs, exhibited marked deviation from the RCM, as evinced by the relative root mean square error (rRMSE) values of 20.22%, 17.38%, and 15.48%, respectively. Although this difference decreased as the number of plants used to replicate the virtual canopy increased, rRMSE of DLI for VCM-8 and RCM still reached 15.48%. It was also found that the difference in light interception between RCMs and VCMs was substantially smaller in the early stage (48 days after sowing [DAS]) than in the late stage (70 DAS). This study highlights the importance of using RCM when calculating light interception in the field, especially in the later growth stages of plants.
Collapse
Affiliation(s)
- Shunfu Xiao
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Shuaipeng Fei
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Qing Li
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Bingyu Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Haochong Chen
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Demin Xu
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Zhibo Cai
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Kaiyi Bi
- The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Yan Guo
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Baoguo Li
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Zhen Chen
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory of Water-Saving Agriculture of Henan Province, Xinxiang, China
| | - Yuntao Ma
- College of Land Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Lyu X, Mu R, Liu B. Shade avoidance syndrome in soybean and ideotype toward shade tolerance. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:31. [PMID: 37313527 PMCID: PMC10248688 DOI: 10.1007/s11032-023-01375-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 06/15/2023]
Abstract
The shade avoidance syndrome (SAS) in soybean can have destructive effects on yield, as essential carbon resources reserved for yield are diverted to the petiole and stem for exaggerated elongation, resulting in lodging and susceptibility to disease. Despite numerous attempts to reduce the unfavorable impacts of SAS for the development of cultivars suitable for high-density planting or intercropping, the genetic bases and fundamental mechanisms of SAS remain largely unclear. The extensive research conducted in the model plant Arabidopsis provides a framework for understanding the SAS in soybean. Nevertheless, recent investigations suggest that the knowledge obtained from model Arabidopsis may not be applicable to all processes in soybean. Consequently, further efforts are required to identify the genetic regulators of SAS in soybean for molecular breeding of high-yield cultivars suitable for density farming. In this review, we present an overview of the recent developments in SAS studies in soybean and suggest an ideal planting architecture for shade-tolerant soybean intended for high-yield breeding.
Collapse
Affiliation(s)
- Xiangguang Lyu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ruolan Mu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Hussain S, Naseer MA, Guo R, Han F, Ali B, Chen X, Ren X, Alamri S. Nitrogen application enhances yield, yield-attributes, and physiological characteristics of dryland wheat/maize under strip intercropping. FRONTIERS IN PLANT SCIENCE 2023; 14:1150225. [PMID: 37035065 PMCID: PMC10073674 DOI: 10.3389/fpls.2023.1150225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Intercropping has been acknowledged as a sustainable practice for enhancing crop productivity and water use efficiency under rainfed conditions. However, the contribution of different planting rows towards crop physiology and yield is elusive. In addition, the influence of nitrogen (N) fertilization on the physiology, yield, and soil water storage of rainfed intercropping systems is poorly understood; therefore, the objective of this experiment was to study the contribution of different crop rows on the physiological, yield, and related traits of wheat/maize relay-strip intercropping (RSI) with and without N application. The treatments comprised of two factors viz. intercropping with three levels (sole wheat, sole maize, and RSI) and two N application rates, with and without N application. Results showed that RSI significantly improved the land use efficiency and grain yield of both crops under rainfed conditions. Intercropping with N application (+N treatment) resulted in the highest wheat grain yield with 70.37 and 52.78% increase as compared with monoculture and without N application in 2019 and 2020, respectively, where border rows contributed the maximum followed by second rows. The increase in grain yield was attributed to higher values of the number of ears per square meter (10-25.33% more in comparison to sole crop without N application) during both study years. The sole wheat crop without any N application recorded the least values for all yield-related parameters. Despite the absence of significant differences, the relative decrease in intercropped maize under both N treatments was over 9% compared to the sole maize crop, which was mainly ascribed to the border rows (24.65% decrease compared to the sole crop) that recorded 12 and 13% decrease in kernel number and thousand-grain weight, respectively than the sole crop. This might be attributed to the reduced photosynthesis and chlorophyll pigmentation in RSI maize crop during the blended growth period. In a nutshell, it can be concluded that wheat/maize RSI significantly improved the land use efficiency and the total yield compared to the sole crops' yield in arid areas in which yield advantages were mainly ascribed to the improvement in wheat yield.
Collapse
Affiliation(s)
- Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Crop Physic-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Muhammad Asad Naseer
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Crop Physic-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Ru Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Crop Physic-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Crop Physic-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Basharat Ali
- Institute of Crop Science, University of Bonn, Bonn, Germany
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Xiaoli Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Crop Physic-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolong Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Crop Physic-ecology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Liu X, Gu S, Wen W, Lu X, Jin Y, Zhang Y, Guo X. Disentangling the Heterosis in Biomass Production and Radiation Use Efficiency in Maize: A Phytomer-Based 3D Modelling Approach. PLANTS (BASEL, SWITZERLAND) 2023; 12:1229. [PMID: 36986918 PMCID: PMC10052571 DOI: 10.3390/plants12061229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Maize (Zea mays L.) benefits from heterosis in-yield formation and photosynthetic efficiency through optimizing canopy structure and improving leaf photosynthesis. However, the role of canopy structure and photosynthetic capacity in determining heterosis in biomass production and radiation use efficiency has not been separately clarified. We developed a quantitative framework based on a phytomer-based three-dimensional canopy photosynthesis model and simulated light capture and canopy photosynthetic production in scenarios with and without heterosis in either canopy structure or leaf photosynthetic capacity. The accumulated above-ground biomass of Jingnongke728 was 39% and 31% higher than its male parent, Jing2416, and female parent, JingMC01, while accumulated photosynthetically active radiation was 23% and 14% higher, correspondingly, leading to an increase of 13% and 17% in radiation use efficiency. The increasing post-silking radiation use efficiency was mainly attributed to leaf photosynthetic improvement, while the dominant contributing factor differs for male and female parents for heterosis in post-silking yield formation. This quantitative framework illustrates the potential to identify the key traits related to yield and radiation use efficiency and helps breeders to make selections for higher yield and photosynthetic efficiency.
Collapse
Affiliation(s)
- Xiang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Shenghao Gu
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Weiliang Wen
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xianju Lu
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yu Jin
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding 071000, China
| | - Xinyu Guo
- Beijing Key Lab of Digital Plant, National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
8
|
Surigaoge S, Yang H, Su Y, Du YH, Ren SX, Fornara D, Christie P, Zhang WP, Li L. Maize/peanut intercropping has greater synergistic effects and home-field advantages than maize/soybean on straw decomposition. FRONTIERS IN PLANT SCIENCE 2023; 14:1100842. [PMID: 36938012 PMCID: PMC10020597 DOI: 10.3389/fpls.2023.1100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The decomposition of plant litter mass is responsible for substantial carbon fluxes and remains a key process regulating nutrient cycling in natural and managed ecosystems. Litter decomposition has been addressed in agricultural monoculture systems, but not in intercropping systems, which produce species-diverse litter mass mixtures. The aim here is to quantify how straw type, the soil environment and their combined effects may influence straw decomposition in widely practiced maize/legume intercropping systems. METHODS Three decomposition experiments were conducted over 341 days within a long-term intercropping field experiment which included two nitrogen (N) addition levels (i.e. no-N and N-addition) and five cropping systems (maize, soybean and peanut monocultures and maize/soybean and maize/peanut intercropping). Experiment I was used to quantify litter quality effects on decomposition; five types of straw (maize, soybean, peanut, maize-soybean and maize-peanut) from two N treatments decomposed in the same maize plot. Experiment II addressed soil environment effects on root decomposition; soybean straw decomposed in different plots (five cropping systems and two N levels). Experiment III addressed 'home' decomposition effects whereby litter mass (straw) was remained to decompose in the plot of origin. The contribution of litter and soil effects to the home-field advantages was compared between experiment III ('home' plot) and I-II ('away' plot). RESULTS AND DISCUSSIONS Straw type affected litter mass loss in the same soil environment (experiment I) and the mass loss values of maize, soybean, peanut, maize-soybean, and maize-peanut straw were 59, 77, 87, 76, and 78%, respectively. Straw type also affected decomposition in the 'home' plot environment (experiment III), with mass loss values of maize, soybean, peanut, maize-soybean and maize-peanut straw of 66, 74, 80, 72, and 76%, respectively. Cropping system did not affect the mass loss of soybean straw (experiment II). Nitrogen-addition significantly increased straw mass loss in experiment III. Decomposition of maize-peanut straw mixtures was enhanced more by 'home-field advantage' effects than that of maize-soybean straw mixtures. There was a synergistic mixing effect of maize-peanut and maize-soybean straw mixture decomposition in both 'home' (experiment III) and 'away' plots (experiment I). Maize-peanut showed greater synergistic effects than maize-soybean in straw mixture decomposition in their 'home' plot (experiment III). These findings are discussed in terms of their important implications for the management of species-diverse straw in food-production intercropping systems.
Collapse
Affiliation(s)
- Surigaoge Surigaoge
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Hao Yang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Ye Su
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yu-He Du
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Su-Xian Ren
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Dario Fornara
- Davines Group-Rodale Institute European Regenerative Organic Center (EROC), Parma, Italy
| | - Peter Christie
- Chinese Academy of Sciences (CAS) Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wei-Ping Zhang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Long Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Pelech EA, Evers JB, Pederson TL, Drag DW, Fu P, Bernacchi CJ. Leaf, plant, to canopy: A mechanistic study on aboveground plasticity and plant density within a maize-soybean intercrop system for the Midwest, USA. PLANT, CELL & ENVIRONMENT 2023; 46:405-421. [PMID: 36358006 PMCID: PMC10100491 DOI: 10.1111/pce.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Plants have evolved to adapt to their neighbours through plastic trait responses. In intercrop systems, plant growth occurs at different spatial and temporal dimensions, creating a competitive light environment where aboveground plasticity may support complementarity in light-use efficiency, realizing yield gains per unit area compared with monoculture systems. Physiological and architectural plasticity including the consequences for light-use efficiency and yield in a maize-soybean solar corridor intercrop system was compared, empirically, with the standard monoculture systems of the Midwest, USA. The impact of reducing maize plant density on yield was investigated in the following year. Intercropped maize favoured physiological plasticity over architectural plasticity, which maintained harvest index (HI) but reduced light interception efficiency (ɛi ) and conversion efficiency (ɛc ). Intercropped soybean invested in both plasticity responses, which maintained ɛi , but HI and ɛc decreased. Reducing maize plant density within the solar corridor rows did not improve yields under monoculture and intercrop systems. Overall, the intercrop decreased land-use efficiency by 9%-19% and uncoordinated investment in aboveground plasticity by each crop under high maize plant density does not support complementarity in light-use efficiency. Nonetheless, the mechanistic understanding gained from this study may improve crop cultivars and intercrop designs for the Midwest to increase yield.
Collapse
Affiliation(s)
- Elena A. Pelech
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Jochem B. Evers
- Department of Plant Sciences, Centre for Crop Systems AnalysisWageningen UniversityWageningenThe Netherlands
| | - Taylor L. Pederson
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - David W. Drag
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Peng Fu
- Center for Environment, Energy, and EconomyHarrisburg University of Science and TechnologyHarrisburgPennsylvaniaUSA
| | - Carl J. Bernacchi
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
- USDA‐ARS Global Change and Photosynthesis Research UnitUrbanaIllinoisUSA
| |
Collapse
|
10
|
Wu Y, Chen P, Gong W, Gul H, Zhu J, Yang F, Wang X, Yong T, Liu J, Pu T, Yan Y, Yang W. Morphological and physiological variation of soybean seedlings in response to shade. FRONTIERS IN PLANT SCIENCE 2022; 13:1015414. [PMID: 36275582 PMCID: PMC9583947 DOI: 10.3389/fpls.2022.1015414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Soybean (Glycine max) is a legume species that is widely used in intercropping. Quantitative analyses of plasticity and genetic differences in soybean would improve the selection and breeding of soybean in intercropping. Here, we used data of 20 varieties from one year artificial shading experiment and one year intercropping experiment to characterize the morphological and physiological traits of soybean seedlings grown under shade and full sun light conditions. Our results showed that shade significantly decreased biomass, leaf area, stem diameter, fraction of dry mass in petiole, leaf mass per unit area, chlorophyll a/b ratio, net photosynthetic rate per unit area at PAR of 500 μmol m-2 s-1 and 1,200 μmol m-2 s-1 of soybean seedling, but significantly increased plant height, fraction of dry mass in stem and chlorophyll content. Light × variety interaction was significant for all measured traits, light effect contributed more than variety effect. The biomass of soybean seedlings was positively correlated with leaf area and stem diameter under both shade and full sunlight conditions, but not correlated with plant height and net photosynthetic rate. The top five (62.75% variation explained) most important explanatory variables of plasticity of biomass were that the plasticity of leaf area, leaf area ratio, leaflet area, plant height and chlorophyll content, whose total weight were 1, 0.9, 0.3, 0.2, 0.19, respectively. The plasticity of biomass was positively correlated with plasticity of leaf area and leaflet area but significant negative correlated with plasticity of plant height. The principal component one account for 42.45% variation explain. A cluster analysis further indicated that soybean cultivars were classified into three groups and cultivars; Jiandebaimaodou, Gongdou 2, and Guixia 3 with the maximum plasticity of biomass. These results suggest that for soybean seedlings grown under shade increasing the capacity for light interception by larger leaf area is more vital than light searching (plant height) and light conversion (photosynthetic rate).
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Wanzhuo Gong
- Crop Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Hina Gul
- National Center of Industrial Biotechnology (NCIB), PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Junqi Zhu
- Plant and Food Research, Blenheim, New Zealand
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- College of Life Science, Sichuan Agricultural University, Chengdu, China
| | - Tian Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Yanhong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| |
Collapse
|
11
|
|
12
|
Sustainable intensification of maize and wheat cropping system through pulse intercropping. Sci Rep 2021; 11:18805. [PMID: 34552117 PMCID: PMC8458501 DOI: 10.1038/s41598-021-98179-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/26/2021] [Indexed: 11/08/2022] Open
Abstract
The intercropping of legumes with cereals help to achieve sustainable intensification by their mutual complementarity at efficiently using radiation, nutrients, etc. Several studies indicated such beneficial effects on the other component crop however, little research has been conducted to quantify their effects on the subsequent crop in a cropping system. In this study, the effect of the legume intercropping on the entire cropping system, particularly the maize + legume-wheat system was studied. Four legumes intercropped to maize followed by wheat crop were studied for intensification measures such as wheat equivalent yield (WEY), land equivalent ratio (LER), sustainable value index (SVI), and economic returns. N saving effect of legumes on the subsequent wheat crop was quantified with two N levels. Maize + cowpea-wheat combination was the most productive and economic intercrop combination (LER = 1.71, SVI = 0.96) with an increase in net economic return (43.63%) with a B:C ratio of 1.94. An additional 25% N (37.5 kg ha-1) was saved in the wheat crop when the legume intercropping was undertaken with maize. The results suggest that intercropping is the key to diversification and reduces the risk of crop failures by enhancing land-use efficiency, soil fertility, and economic returns under weather vagaries. This will be beneficial to small and marginal farmers of many countries.
Collapse
|