1
|
Gao Y, Ma X, Zhang Z, Wang Y. Transcription factors and plant hormones mediate wax metabolism in response to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14478. [PMID: 39149803 DOI: 10.1111/ppl.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 08/17/2024]
Abstract
Plants have, throughout evolution, developed a hydrophobic cuticle to protect them from various stresses in the terrestrial environment. The cuticle layer is mainly composed of cutin and cuticular wax, a mixture of very-long-chain fatty acids and their derivatives. With the progress of transcriptome sequencing and other research methods, the key enzymes, transporters and regulatory factors in wax synthesis and metabolism have been gradually identified, especially the study on the regulation of wax metabolism by transcription factors and others in response to plant stress has become a hot topic. Drought is a major abiotic stress that limits plant growth and crop productivity. Plant epidermal wax prevents non-stomatal water loss and improves water use efficiency to adapt to arid environments. In this study, the ways of wax synthesis, transport, metabolism and regulation at different levels are reviewed. At the same time, the regulation of wax by different transcription factors and plant hormones in response to drought is elaborated, and key research questions and important directions for future solutions are proposed to enhance the potential application of epidermal wax in agriculture and the environment.
Collapse
Affiliation(s)
- Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaolan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Zhu C, Lin Z, Yang K, Lou Y, Liu Y, Li T, Li H, Di X, Wang J, Sun H, Li Y, Li X, Gao Z. A bamboo 'PeSAPK4-PeMYB99-PeTIP4-3' regulatory model involved in water transport. THE NEW PHYTOLOGIST 2024; 243:195-212. [PMID: 38708439 DOI: 10.1111/nph.19787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Water plays crucial roles in expeditious growth and osmotic stress of bamboo. Nevertheless, the molecular mechanism of water transport remains unclear. In this study, an aquaporin gene, PeTIP4-3, was identified through a joint analysis of root pressure and transcriptomic data in moso bamboo (Phyllostachys edulis). PeTIP4-3 was highly expressed in shoots, especially in the vascular bundle sheath cells. Overexpression of PeTIP4-3 could increase drought and salt tolerance in transgenic yeast and rice. A co-expression pattern of PeSAPK4, PeMYB99 and PeTIP4-3 was revealed by WGCNA. PeMYB99 exhibited an ability to independently bind to and activate PeTIP4-3, which augmented tolerance to drought and salt stress. PeSAPK4 could interact with and phosphorylate PeMYB99 in vivo and in vitro, wherein they synergistically accelerated PeTIP4-3 transcription. Overexpression of PeMYB99 and PeSAPK4 also conferred drought and salt tolerance in transgenic rice. Further ABA treatment analysis indicated that PeSAPK4 enhanced water transport in response to stress via ABA signaling. Collectively, an ABA-mediated cascade of PeSAPK4-PeMYB99-PeTIP4-3 is proposed, which governs water transport in moso bamboo.
Collapse
Affiliation(s)
- Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zeming Lin
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Kebin Yang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Yongfeng Lou
- Jiangxi Provincial Key Laboratory of Plant Biotechnology, Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Tiankuo Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Jiangfei Wang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Huayu Sun
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Ying Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xueping Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, 100102, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| |
Collapse
|
3
|
Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F. Fruit crops combating drought: Physiological responses and regulatory pathways. PLANT PHYSIOLOGY 2023; 192:1768-1784. [PMID: 37002821 PMCID: PMC10315311 DOI: 10.1093/plphys/kiad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
4
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
5
|
Zhang C, Cheng C, Xue J, Li Q, Wang C, Zhang Y, Yang S. Metabolome and transcriptome profiling in different bagging pear fruit reveals that PbKCS10 affects the occurrence of superficial scald via regulating the wax formation. Food Chem 2023; 422:136206. [PMID: 37130451 DOI: 10.1016/j.foodchem.2023.136206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Superficial scald is a physiological disorder of fruit, which is easy to occur during long-term cold storage after harvest. Different preharvest bagging treatments (no bagging, polyethylene bagging and non-woven fabric bagging) were used to explore the occurrence mechanism of superficial scald. UHPLC-MS analysis, GC-MS analysis and RNA-seq revealed the influence of the wax of 'Chili' on the occurrence of superficial scald. The wax content and wax components (Lupeol, lup-20(29)-en-3-one, heptacosane, 9-octadecenoic acid, eicosanoic acid, cis-11-eicosenoic acid) were significantly higher in the fruit bagged with non-woven fabric (NWF, with low incidence of superficial scald) than that in fruit bagged with polyethylene (PE, high incidence of superficial scald). Transcriptomics and qRT-PCR data identified a wax synthesis gene, PbKCS10, which exhibited high expression levels in fruit with low of superficial scald. The results of gene function showed that PbKCS10 reduced the occurrence of superficial scald by increasing the wax formation.
Collapse
Affiliation(s)
- Chunjian Zhang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Chenxia Cheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Junxiu Xue
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Qian Li
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Yu Zhang
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Shaolan Yang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China.
| |
Collapse
|
6
|
Xin H, Li Q, Wang S, Zhang Z, Wu X, Liu R, Zhu J, Li J. Saussurea involucrata PIP2;4 improves growth and drought tolerance in Nicotiana tabacum by increasing stomatal density and sensitivity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111526. [PMID: 36343868 DOI: 10.1016/j.plantsci.2022.111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Aquaporins, the major facilitators of water transport across membranes, are involved in growth and development and adaptation to drought stress in plants. In this study, a plasma membrane intrinsic protein (SiPIP2;4) was cloned from Saussurea involucrata, a cold-tolerant hardy herb. The expression of SiPIP2;4 increased the stomatal density and sensitivity of tobacco (Nicotiana tabacum), thus, affecting the plant's growth and resistance to the diverse water environment. The higher stomatal density under well-watered conditions effectively promoted the photosynthetic rate, which led to the rapid growth of transgenic lines. The stomata in the transgenic lines responded more sensitively to the vapor pressure deficit than the wild-type under different levels of ambient humidity. Their stomatal apertures positively correlated with the ambient humidity. Under drought conditions, the overexpression of SiPIP2;4 promoted rapid stomatal closure, reduced water dissipation, and enhanced drought tolerance. These results indicate that SiPIP2;4 regulates the density and sensitivity of plant stomata, thus, playing an important role in balancing plant growth and stress tolerance. This suggests that SiPIP2;4 has the potential to serve as a genetic resource for crop improvement.
Collapse
Affiliation(s)
- Hongliang Xin
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Qianqin Li
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Saisai Wang
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Zexing Zhang
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Xiaoyan Wu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Ruina Liu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China
| | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China.
| | - Jin Li
- College of Life Sciences, Shihezi University, Xinjiang, Shihezi 832000, China.
| |
Collapse
|
7
|
Brummell DA, Bowen JK, Gapper NE. Biotechnological approaches for controlling postharvest fruit softening. Curr Opin Biotechnol 2022; 78:102786. [PMID: 36081292 DOI: 10.1016/j.copbio.2022.102786] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Fruit softening is the major factor determining the postharvest life of fruit, affecting bruise and damage susceptibility, pathogen colonisation, and consumer satisfaction, all of which contribute to product losses in the supply chain and consumers' homes. Ripening-related changes to the cell wall, cuticle and soluble sugars largely determine softening, and some are amenable to biotechnological intervention, for example, by manipulation of the expression of genes encoding cell wall-modifying proteins or wax and cutin synthases. In this review, we discuss work exploring the role of genes involved in cell wall and cuticle properties, and recent developments in the silencing of multiple genes by targeting single transcription factors. Identification of transcription factors that control the expression of suites of genes encoding cell wall-modifying proteins provides exciting targets for biotechnology.
Collapse
Affiliation(s)
- David A Brummell
- The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North 4442, New Zealand
| | - Joanna K Bowen
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand
| | - Nigel E Gapper
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Private Bag 92169, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Yan J, Chen F, Sun P, Liu W, Xie D, Qian Y, Jiang B. Genome-wide association study and genetic mapping of BhWAX conferring mature fruit cuticular wax in wax gourd. BMC PLANT BIOLOGY 2022; 22:539. [PMID: 36401157 PMCID: PMC9675113 DOI: 10.1186/s12870-022-03931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Wax gourd [Benincasa hispida (Thunb) Cogn. (2n = 2x = 24)] is an economically important vegetable crop of genus Benincasa in the Cucurbitaceae family. Fruit is the main consumption organ of wax gourd. The mature fruit cuticular wax (MFCW) is an important trait in breeding programs, which is also of evolutionary significance in wax gourd. However, the genetic architecture of this valuable trait remains unrevealed. RESULTS In this study, genetic analysis revealed that the inheritance of MFCW was controlled by a single gene, with MFCW dominant over non-MFCW, and the gene was primarily named as BhWAX. Genome-wide association study (GWAS) highlighted a 1.1 Mb interval on chromosome 9 associated with MFCW in wax gourd germplasm resources. Traditional fine genetic mapping delimited BhWAX to a 0.5 Mb region containing 12 genes. Based on the gene annotation, expression analysis and co-segregation analysis, Bhi09G001428 that encodes a membrane bound O-acyltransferase (MBOAT) was proposed as the candidate gene for BhWAX. Moreover, it was demonstrated that the efficiency of a cleaved amplified polymorphic sequences (CAPS) marker in the determination of MFCW in wax gourd reached 80%. CONCLUSIONS In closing, the study identified the candidate gene controlling MFCW and provided an efficient molecular marker for the trait in wax gourd for the first time, which will not only be beneficial for functional validation of the gene and marker-assisted breeding of wax gourd, but also lay a foundation for analysis of its evolutionary meaning among cucurbits.
Collapse
Affiliation(s)
- Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Feng Chen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Piaoyun Sun
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Dasen Xie
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Yulei Qian
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
9
|
Hou J, Yan D, Huang M, Zeng K, Yao S. Alteration of pectin metabolism in blood orange fruit ( Citrus sinensis cv. Tarocco) in response to vesicle collapse. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Segment drying is a severe physiological disorder of citrus fruit, and vesicles become granulated or collapsed. Aside from the hypothesis that alteration of cell wall metabolism is the main factor of citrus granulation, little is known about vesicle collapse. This study aimed to elucidate the changes in pectin metabolism during vesicle collapse in blood orange. Vesicle collapse was characterized by decreased nutrients while increased chelate- and sodium carbonate-soluble pectin and calcium content. The nanostructure of chelate-soluble pectin got complex and developed multi-branching upon collapse. The activity of pectin methylesterase increased, while that of polygalacturonase and pectate lyase decreased upon collapse. Genome-wide transcriptional analysis revealed an increasing pattern of genes encoding pectin methylesterase and other enzymes involved in pectin synthesis and de-acetylation upon collapse. Drying vesicles were characterized by increased abscisic acid content and relevant gene expressions. In conclusion, we discovered alteration of pectin metabolism underlying citrus vesicle collapse, mainly promoting pectin demethylesterification, remodeling pectin structures, and further inhibiting pectin degradation, which was hypothesized to be a main factor for the citrus collapse. This is the first to disclose the potential intrinsic mechanism underlying vesicle collapse in orange fruit.
Collapse
|
10
|
He J, Xu Y, Huang D, Fu J, Liu Z, Wang L, Zhang Y, Xu R, Li L, Deng X, Xu Q. TRIPTYCHON-LIKE regulates aspects of both fruit flavor and color in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3610-3624. [PMID: 35263759 DOI: 10.1093/jxb/erac069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/18/2022] [Indexed: 05/24/2023]
Abstract
Deciphering the genetic basis of organoleptic traits is critical for improving the quality of fruits, which greatly shapes their appeal to consumers. Here, we characterize the citrus R3-MYB transcription factor TRIPTYCHON-LIKE (CitTRL), which is closely associated with the levels of citric acid, proanthocyanidins (PAs), and anthocyanins. Overexpression of CitTRL lowered acidity levels and PA contents in citrus calli as well as anthocyanin and PA contents in Arabidopsis leaves and seeds. CitTRL interacts with the two basic helix-loop-helix (bHLH) proteins CitbHLH1 and ANTHOCYANIN 1 (CitAN1) to regulate fruit quality. We show that CitTRL competes with the R2R3-MYB CitRuby1 for binding to CitbHLH1 or CitAN1, thereby repressing their activation of anthocyanin structural genes. CitTRL also competes with a second R2R3-MYB, CitPH4, for binding to CitAN1, thus altering the expression of the vacuolar proton-pump gene PH5 and Leucoanthocyanidin reductase, responsible for vacuolar acidification and proanthocyanidins biosynthesis, respectively. Moreover, CitPH4 activates CitTRL transcription, thus forming an activator-repressor loop to prevent the overaccumulation of citric acid and PAs. Overall, this study demonstrates that CitTRL acts as a repressor of the accumulation of citric acid, PAs, and anthocyanins by a cross-regulation mechanism. Our results provide an opportunity to simultaneously manipulate these key traits as a means to produce citrus fruits that are both visually and organoleptically appealing.
Collapse
Affiliation(s)
- Jiaxian He
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ding Huang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Ziang Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Lun Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Rangwei Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY 14853, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
11
|
Transcriptome and Physiological Analyses of a Navel Orange Mutant with Improved Drought Tolerance and Water Use Efficiency Caused by Increases of Cuticular Wax Accumulation and ROS Scavenging Capacity. Int J Mol Sci 2022; 23:ijms23105660. [PMID: 35628469 PMCID: PMC9145189 DOI: 10.3390/ijms23105660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023] Open
Abstract
Drought is one of the main abiotic stresses limiting the quality and yield of citrus. Cuticular waxes play an important role in regulating plant drought tolerance and water use efficiency (WUE). However, the contribution of cuticular waxes to drought tolerance, WUE and the underlying molecular mechanism is still largely unknown in citrus. 'Longhuihong' (MT) is a bud mutant of 'Newhall' navel orange with curly and bright leaves. In this study, significant increases in the amounts of total waxes and aliphatic wax compounds, including n-alkanes, n-primary alcohols and n-aldehydes, were overserved in MT leaves, which led to the decrease in cuticular permeability and finally resulted in the improvements in drought tolerance and WUE. Compared to WT leaves, MT leaves possessed much lower contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), significantly higher levels of proline and soluble sugar, and enhanced superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities under drought stress, which might reduce reactive oxygen species (ROS) damage, improve osmotic regulation and cell membrane stability, and finally, enhance MT tolerance to drought stress. Transcriptome sequencing results showed that seven structural genes were involved in wax biosynthesis and export, MAPK cascade, and ROS scavenging, and seven genes encoding transcription factors might play an important role in promoting cuticular wax accumulation, improving drought tolerance and WUE in MT plants. Our results not only confirmed the important role of cuticular waxes in regulating citrus drought resistance and WUE but also provided various candidate genes for improving citrus drought tolerance and WUE.
Collapse
|
12
|
Liu D, Guo W, Guo X, Yang L, Hu W, Kuang L, Huang Y, Xie J, Liu Y. Ectopic Overexpression of CsECR From Navel Orange Increases Cuticular Wax Accumulation in Tomato and Enhances Its Tolerance to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:924552. [PMID: 35865286 PMCID: PMC9294922 DOI: 10.3389/fpls.2022.924552] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 05/03/2023]
Abstract
Drought stress often occurred in citrus to limit its growth, distribution, and fruit quality. Cuticular waxes play an important role in regulating plant tolerance to drought stress. Plant enoyl-CoA reductase (ECR) is involved in the biosynthesis of cuticular waxes and catalyzes the last step of very long-chain fatty acids (VLCFAs) elongation. In this study, a putative ECR gene, named CsECR, was cloned from "Newhall" navel orange. CsECR protein has high identities with other plant ECR proteins and contained a conserved NADP/NAD-binding motif and three conserved functional sites. The highest expression of CsECR was observed in leaves, followed by stems, flavedos, ovaries, juice sacs, stigmas, stamens, albedos, and petals. Besides, the expression of CsECR was significantly induced by PEG6000 and ABA treatments. Ectopic overexpression of CsECR increased the contents of total waxes and aliphatic wax fractions (n-fatty acids, unsaturated fatty acids, n-alkanes, alkenes, iso-, and anteiso-alkanes) in the leaves and fruits of the transgenic tomato. Furthermore, ectopic overexpression of CsECR reduced the cuticle permeability in the leaves and fruits of the transgenic tomato and increased its tolerance to drought stress. Taken together, our results revealed that CsECR plays an important role in plant response to drought stresses by regulating cuticular wax biosynthesis.
Collapse
|