1
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
2
|
Li J, Gu C, Yuan Y, Gao Z, Qin Z, Xin M. Comparative transcriptome analysis revealed that auxin and cell wall biosynthesis play important roles in the formation of hollow hearts in cucumber. BMC Genomics 2024; 25:36. [PMID: 38182984 PMCID: PMC10768234 DOI: 10.1186/s12864-024-09957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Hollow heart is a kind of physiological defect that seriously affects the yield, quality, and economic value of cucumber. However, the formation of hollow hearts may relate to multiple factors in cucumber, and it is necessary to conduct analysis. RESULTS In this study, hollow and non-hollow fruits of cucumber K07 were used for comparative transcriptome sequencing and analysis. 253 differentially expressed genes and 139 transcription factors were identified as being associated with the formation of hollow hearts. Hormone (auxin) signaling and cell wall biosynthesis were mainly enriched in GO and KEGG pathways. Expression levels of key genes involved in indole-3-acetic acid biosynthesis in carpel were lower in the hollow fruits than non-hollow fruits, while there was no difference in the flesh. The concentration of indole-3-acetic also showed lower in the carpel than flesh. The biosynthetic pathway and content analysis of the main components of the cell wall found that lignin biosynthesis had obvious regularity with hollow heart, followed by hemicellulose and cellulose. Correlation analysis showed that there may be an interaction between auxin and cell wall biosynthesis, and they collectively participate in the formation of hollow hearts in cucumber. Among the differentially expressed transcription factors, MYB members were the most abundant, followed by NAC, ERF, and bHLH. CONCLUSIONS The results and analyses showed that the low content of auxin in the carpel affected the activity of enzymes related to cell wall biosynthesis at the early stage of fruit development, resulting in incomplete development of carpel cells, thus forming a hollow heart in cucumber. Some transcription factors may play regulatory roles in this progress. The results may enrich the theory of the formation of hollow hearts and provide a basis for future research.
Collapse
Affiliation(s)
- Jiaxi Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Chenran Gu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Yanwen Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Zeyuan Gao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Zhiwei Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Ming Xin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), College of Horticulture and Landscape Architecture, Northeast Agricultural University, 150030, Harbin, Heilongjiang, China.
| |
Collapse
|
3
|
Gan P, Li P, Zhang X, Li H, Ma S, Zong D, He C. Comparative Transcriptomic and Metabolomic Analyses of Differences in Trunk Spiral Grain in Pinus yunnanensis. Int J Mol Sci 2023; 24:14658. [PMID: 37834105 PMCID: PMC10572851 DOI: 10.3390/ijms241914658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Having a spiral grain is considered to be one of the most important wood properties influencing wood quality. Here, transcriptome profiles and metabolome data were analyzed in the straight grain and twist grain of Pinus yunnanensis. A total of 6644 differential expression genes were found between the straight type and the twist type. A total of 126 differentially accumulated metabolites were detected. There were 24 common differential pathways identified from the transcriptome and metabolome, and these pathways were mainly annotated in ABC transporters, arginine and proline metabolism, flavonoid biosynthesis, isoquinoline alkaloid biosynthesis, linoleic acid metabolism, phenylpropanoid, tryptophan metabolism, etc. A weighted gene coexpression network analysis showed that the lightblue4 module was significantly correlated with 2'-deoxyuridine and that transcription factors (basic leucine zipper (bZIP), homeodomain leucine zipper (HD-ZIP), basic helix-loop-helix (bHLH), p-coumarate 3-hydroxylase (C3H), and N-acetylcysteine (NAC)) play important roles in regulating 2'-deoxyuridine, which may be involved in the formation of spiral grains. Meanwhile, the signal transduction of hormones may be related to spiral grain, as previously reported. ARF7 and MKK4_5, as indoleacetic acid (IAA)- and ethylene (ET)-related receptors, may explain the contribution of plant hormones in spiral grain. This study provided useful information on spiral grain in P. yunnanensis by transcriptome and metabolome analyses and could lay the foundation for future molecular breeding.
Collapse
Affiliation(s)
- Peihua Gan
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Peiling Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Hailin Li
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Shaojie Ma
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Dan Zong
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| | - Chengzhong He
- Key Laboratory for Forest Genetics and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China; (P.G.); (P.L.); (X.Z.); (H.L.); (S.M.)
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of Biodiversity Conservation in Southwest China, State Forestry Administration, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
4
|
Ritonga FN, Zhou D, Zhang Y, Song R, Li C, Li J, Gao J. The Roles of Gibberellins in Regulating Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:1243. [PMID: 36986931 PMCID: PMC10051486 DOI: 10.3390/plants12061243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Plant growth and development are correlated with many aspects, including phytohormones, which have specific functions. However, the mechanism underlying the process has not been well elucidated. Gibberellins (GAs) play fundamental roles in almost every aspect of plant growth and development, including cell elongation, leaf expansion, leaf senescence, seed germination, and leafy head formation. The central genes involved in GA biosynthesis include GA20 oxidase genes (GA20oxs), GA3oxs, and GA2oxs, which correlate with bioactive GAs. The GA content and GA biosynthesis genes are affected by light, carbon availability, stresses, phytohormone crosstalk, and transcription factors (TFs) as well. However, GA is the main hormone associated with BR, ABA, SA, JA, cytokinin, and auxin, regulating a wide range of growth and developmental processes. DELLA proteins act as plant growth suppressors by inhibiting the elongation and proliferation of cells. GAs induce DELLA repressor protein degradation during the GA biosynthesis process to control several critical developmental processes by interacting with F-box, PIFS, ROS, SCLl3, and other proteins. Bioactive GA levels are inversely related to DELLA proteins, and a lack of DELLA function consequently activates GA responses. In this review, we summarized the diverse roles of GAs in plant development stages, with a focus on GA biosynthesis and signal transduction, to develop new insight and an understanding of the mechanisms underlying plant development.
Collapse
Affiliation(s)
- Faujiah Nurhasanah Ritonga
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- Graduate School, Padjadjaran University, Bandung 40132, West Java, Indonesia
| | - Dandan Zhou
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
- College of Life Science, Shandong Normal University, Jinan 250100, China
| | - Yihui Zhang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Runxian Song
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Cheng Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jingjuan Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| | - Jianwei Gao
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Science, Jinan 250100, China
| |
Collapse
|
5
|
Zhang R, Zheng D, Feng N, Qiu QS, Zhou H, Liu M, Li Y, Meng F, Huang X, Huang A, Li Y. Prohexadione calcium enhances rice growth and tillering under NaCl stress. PeerJ 2023; 11:e14804. [PMID: 36778152 PMCID: PMC9910188 DOI: 10.7717/peerj.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Salt stress affects crop quality and reduces crop yields, and growth regulators enhance salt tolerance of crop plants. In this report, we examined the effects of prohexadione-calcium (Pro-Ca) on improving rice (Oryza sativa L.) growth and tillering under salt stress. We found that NaCl stress inhibited the growth of two rice varieties and increased malondialdehyde (MDA) levels, electrolyte leakage, and the activities of the antioxidant enzymes. Foliar application of Pro-Ca reduced seedling height and increased stem base width and lodging resistance of rice. Further analyses showed that Pro-Ca application reduced MDA content, electrolyte leakage, and membrane damage in rice leaves under NaCl stress. Pro-Ca enhanced the net photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) of rice seedlings, while increasing the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbic acid peroxidase (APX) at the tillering stage under salt stress. Overall, Pro-Ca improves salt tolerance of rice seedlings at the tillering stage by enhancing lodging resistance, reducing membrane damages, and enhancing photosynthesis and antioxidant capacities of rice seedlings.
Collapse
Affiliation(s)
- Rongjun Zhang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Dianfeng Zheng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Naijie Feng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Quan-Sheng Qiu
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,School of Life Sciences, Lanzhou University, MOE Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou, Gansu, China
| | - Hang Zhou
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China,South China, National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, China
| | - Meiling Liu
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Yao Li
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Fengyan Meng
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - XiXin Huang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Anqi Huang
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| | - Yixiang Li
- Guangdong Ocean University, College of Coastal Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
6
|
Yang T, He Y, Niu S, Zhang Y. A YABBY gene CRABS CLAW a (CRCa) negatively regulates flower and fruit sizes in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111285. [PMID: 35643610 DOI: 10.1016/j.plantsci.2022.111285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 06/15/2023]
Abstract
CRABS CLAW (CRC) is a YABBY transcription factor that plays a pivotal role in carpel development and flower meristem determinacy. Here, we characterized a CRC homolog SlCRCa and elucidated its specific roles in tomato (Solanum lycopersicum). SlCRCa is highly expressed in the petals and stamens, and is responsive to gibberellin (GA) treatment. Overexpression of SlCRCa in tomato reduces the sizes of petals, stamens, and fruits, while the inverse phenotypes are induced by knockdown of SlCRCa. Furthermore, histological investigation suggests that the smaller or larger fruits in SlCRCa-overexpressing or SlCRCa-RNAi plants are mainly determined by the decreases or increases in cell layers and cell sizes in pericarp, respectively. Through transcriptome and qRT-PCR analyses, we speculate that SlCRCa inhibits cell division by regulating the transcription of cell division-related genes, and also suppresses cell expansion by modulating the expansin genes and GA pathway in tomato fruits. Besides, SlCRCa is involved in the feedback regulation of GA biosynthesis. Our findings reveal that SlCRCa negatively regulates fruit size by affecting cell division and cell expansion, and it is also an inhibitor of floral organ sizes in tomato.
Collapse
Affiliation(s)
- Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Yu He
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Shaobo Niu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
7
|
Wang W, Gao H, Liang Y, Li J, Wang Y. Molecular basis underlying rice tiller angle: Current progress and future perspectives. MOLECULAR PLANT 2022; 15:125-137. [PMID: 34896639 DOI: 10.1016/j.molp.2021.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species, thereby contributing to agricultural production in the future.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Lu X, Liu W, Wang T, Zhang J, Li X, Zhang W. Systemic Long-Distance Signaling and Communication Between Rootstock and Scion in Grafted Vegetables. FRONTIERS IN PLANT SCIENCE 2020; 11:460. [PMID: 32431719 PMCID: PMC7214726 DOI: 10.3389/fpls.2020.00460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/27/2020] [Indexed: 05/06/2023]
Abstract
Grafting is widely used in fruit, vegetable, and flower propagation to improve biotic and abiotic stress resistance, yield, and quality. At present, the systemic changes caused by grafting, as well as the mechanisms and effects of long-distance signal transport between rootstock and scion have mainly been investigated in model plants (Arabidopsis thaliana and Nicotiana benthamiana). However, these aspects of grafting vary when different plant materials are grafted, so the study of model plants provides only a theoretical basis and reference for the related research of grafted vegetables. The dearth of knowledge about the transport of signaling molecules in grafted vegetables is inconsistent with the rapid development of large-scale vegetable production, highlighting the need to study the mechanisms regulating the rootstock-scion interaction and long-distance transport. The rapid development of molecular biotechnology and "omics" approaches will allow researchers to unravel the physiological and molecular mechanisms involved in the rootstock-scion interaction in vegetables. We summarize recent progress in the study of the physiological aspects (e.g., hormones and nutrients) of the response in grafted vegetables and focus in particular on long-distance molecular signaling (e.g., RNA and proteins). This review provides a theoretical basis for studies of the rootstock-scion interaction in grafted vegetables, as well as provide guidance for rootstock breeding and selection to meet specific demands for efficient vegetable production.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Zou X, Wang Q, Chen P, Yin C, Lin Y. Strigolactones regulate shoot elongation by mediating gibberellin metabolism and signaling in rice (Oryza sativa L.). JOURNAL OF PLANT PHYSIOLOGY 2019; 237:72-79. [PMID: 31026778 DOI: 10.1016/j.jplph.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 05/18/2023]
Abstract
Strigolactones (SLs) are plant hormones that regulate diverse physiological processes including shoot elongation. However, little is known about the regulatory mechanism of SLs in rice shoot elongation. Our results demonstrate that defects in SL biosynthesis or signaling led to dwarfism, and the dwarf statures of SL-deficient mutant (d17) and SL-insensitive mutant (d14) were restored to wild-type (WT) by gibberellin (GA) treatment, indicating that their dwarfism was associated with decreased GA content or weakened GA sensitivity. Our results indicate that the bioactive GA1 contents in d17 and d14 were lower than those in WT, due to the downregulated transcription of GA biosynthesis genes and upregulated transcription of GA inactivation genes. Moreover, d17 and d14 exhibited weakened GA-responsive sensitivity compared with WT. Although the transcription levels of cell division- and cell elongation-related genes were upregulated by GA3 treatment, the increase in transcription of d17 and d14 was lower than that in WT. These results suggest that SL is required for rice shoot elongation by mediating GA metabolism and signaling. Therefore, a deficiency in SL biosynthesis or signaling leads to decreased GA content and weakened GA response, which in turn reduces shoot length by downregulating transcription levels of cell division- and cell elongation-related genes.
Collapse
Affiliation(s)
- Xiao Zou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qi Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Peisai Chen
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Changxi Yin
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Chen L, Guo X, Cui Y, Zheng X, Yang H. Comparative Transcriptome Analysis Reveals Hormone Signaling Genes Involved in the Launch of Culm-Shape Differentiation in Dendrocalamus sinicus. Genes (Basel) 2017; 9:E4. [PMID: 29271945 PMCID: PMC5793157 DOI: 10.3390/genes9010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/09/2017] [Accepted: 12/20/2017] [Indexed: 12/23/2022] Open
Abstract
Dendrocalamus sinicus is a sympodial bamboo species endemic to Yunnan Province, China, and is the strongest bamboo species in the world. However, there is substantial variation in the basal culm shape, i.e., straight culm (SC) and bent culm (BC), among different D. sinicus as a result of genetic and growth factors. This study performed a comparative transcriptomic analysis of bamboo shoots of two variants at the early, mid-, and late shoot-development stages to examine the molecular basis of this variation. In total, 98,479 unigenes were annotated, of which 13,495 were differentially expressed in pairwise comparisons of the six libraries. More differentially expressed genes (DEGs) were involved in SC than in BC culm development. The DEGs between BC and SC were assigned to 108 metabolic pathways. The 1064 DEGs in early development might mainly control the launch of culm-shape differentiation. Sixty genes encoding components of hormone signaling pathways were differentially expressed between BC5 and SC5, indicating complex hormonal regulation of culm differentiation. The AUX/IAA, ARF, PP2C, SnRK2, and ABF genes involved in auxin and abscisic acid signaling played key roles. These results help us to understand the molecular mechanism of culm variation and other aspects of culm development in D. sinicus.
Collapse
Affiliation(s)
- Lingna Chen
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| | - Xiaojuan Guo
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| | - Yongzhong Cui
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| | - Xianggan Zheng
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| | - Hanqi Yang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| |
Collapse
|
11
|
Identification and Functional Analysis of microRNAs Involved in the Anther Development in Cotton Genic Male Sterile Line Yu98-8A. Int J Mol Sci 2016; 17:ijms17101677. [PMID: 27739413 PMCID: PMC5085710 DOI: 10.3390/ijms17101677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
Hybrid vigor contributes in a large way to the yield and quality of cotton (Gossypium hirsutum) fiber. Although microRNAs play essential regulatory roles in flower induction and development, it is still unclear if microRNAs are involved in male sterility, as the regulatory molecular mechanisms of male sterility in cotton need to be better defined. In this study, two independent small RNA libraries were constructed and sequenced from the young buds collected from the sporogenous cell formation to the meiosis stage of the male sterile line Yu98-8A and the near-isogenic line. Sequencing revealed 1588 and 1536 known microRNAs and 347 and 351 novel miRNAs from male sterile and male fertile libraries, respectively. MicroRNA expression profiles revealed that 49 conserved and 51 novel miRNAs were differentially expressed. Bioinformatic and degradome analysis indicated the regulatory complexity of microRNAs during flower induction and development. Further RT-qPCR and physiological analysis indicated that, among the different Kyoto Encyclopedia Gene and Genomes pathways, indole-3-acetic acid and gibberellic acid signaling transduction pathways may play pivotal regulatory functions in male sterility.
Collapse
|
12
|
Sun C, Li Y, Zhao W, Song X, Lu M, Li X, Li X, Liu R, Yan L, Zhang X. Integration of Hormonal and Nutritional Cues Orchestrates Progressive Corolla Opening. PLANT PHYSIOLOGY 2016; 171:1209-29. [PMID: 27208289 PMCID: PMC4902604 DOI: 10.1104/pp.16.00209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/24/2016] [Indexed: 05/19/2023]
Abstract
Flower opening is essential for pollination and thus successful sexual reproduction; however, the underlying mechanisms of its timing control remain largely elusive. We identify a unique cucumber (Cucumis sativus) line '6457' that produces normal ovaries when nutrients are under-supplied, and super ovaries (87%) with delayed corolla opening when nutrients are oversupplied. Corolla opening in both normal and super ovaries is divided into four distinct phases, namely the green bud, green-yellow bud, yellow bud, and flowering stages, along with progressive color transition, cytological tuning, and differential expression of 14,282 genes. In the super ovary, cell division and cell expansion persisted for a significantly longer period of time; the expressions of genes related to photosynthesis, protein degradation, and signaling kinases were dramatically up-regulated, whereas the activities of most transcription factors and stress-related genes were significantly down-regulated; concentrations of cytokinins (CKs) and gibberellins were higher in accordance with reduced cytokinin conjugation and degradation and increased expression of gibberellin biosynthesis genes. Exogenous CK application was sufficient for the genesis of super ovaries, suggesting a decisive role of CKs in controlling the timing of corolla opening. Furthermore, 194 out of 11,127 differentially expressed genes identified in pairwise comparisons, including critical developmental, signaling, and cytological regulators, contained all three types of cis-elements for CK, nitrate, and phosphorus responses in their promoter regions, indicating that the integration of hormone modulation and nutritional regulation orchestrated the precise control of corolla opening in cucumber. Our findings provide a valuable framework for dissecting the regulatory pathways for flower opening in plants.
Collapse
Affiliation(s)
- Chengzhen Sun
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Yanqiang Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Wensheng Zhao
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaofei Song
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Man Lu
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaoli Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xuexian Li
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Renyi Liu
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Liying Yan
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| | - Xiaolan Zhang
- College of Horticulture Science and Technology (C.S., M.L., Xi.L., L.Y.) and Analysis and Testing Centre (X.S.), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China (Y.L., R.L.);Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China (W.Z., X.Z.); andDepartment of Plant Nutrition, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China (Xu.L.)
| |
Collapse
|
13
|
Bai L, Deng H, Zhang X, Yu X, Li Y. Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures. PLoS One 2016; 11:e0156188. [PMID: 27213554 PMCID: PMC4877016 DOI: 10.1371/journal.pone.0156188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/10/2016] [Indexed: 01/25/2023] Open
Abstract
Suboptimal temperature stress often causes heavy yield losses of vegetables by suppressing plant growth during winter and early spring. Gibberellin acid (GA) has been reported to be involved in plant growth and acquisition of mineral nutrients. However, no studies have evaluated the role of GA in the regulation of growth and nutrient acquisition by vegetables under conditions of suboptimal temperatures in greenhouse. Here, we investigated the roles of GA in the regulation of growth and nitrate acquisition of cucumber (Cucumis sativus L.) plants under conditions of short-term suboptimal root-zone temperatures (Tr). Exposure of cucumber seedlings to a Tr of 16°C led to a significant reduction in root growth, and this inhibitory effect was reversed by exogenous application of GA. Expression patterns of several genes encoding key enzymes in GA metabolism were altered by suboptimal Tr treatment, and endogenous GA concentrations in cucumber roots were significantly reduced by exposure of cucumber plants to 16°C Tr, suggesting that inhibition of root growth by suboptimal Tr may result from disruption of endogenous GA homeostasis. To further explore the mechanism underlying the GA-dependent cucumber growth under suboptimal Tr, we studied the effect of suboptimal Tr and GA on nitrate uptake, and found that exposure of cucumber seedlings to 16°C Tr led to a significant reduction in nitrate uptake rate, and exogenous application GA can alleviate the down-regulation by up regulating the expression of genes associated with nitrate uptake. Finally, we demonstrated that N accumulation in cucumber seedlings under suboptimal Tr conditions was improved by exogenous application of GA due probably to both enhanced root growth and nitrate absorption activity. These results indicate that a reduction in endogenous GA concentrations in roots due to down-regulation of GA biosynthesis at transcriptional level may be a key event to underpin the suboptimal Tr-induced inhibition of root growth and nitrate uptake. These findings may have important practical implications in effective mitigation of suboptimal temperature-induced vegetable loss under greenhouse conditions.
Collapse
Affiliation(s)
- Longqiang Bai
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huihui Deng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Xiaocui Zhang
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianchang Yu
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (XY); (YL)
| | - Yansu Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- * E-mail: (XY); (YL)
| |
Collapse
|
14
|
Liu B, Liu X, Yang S, Chen C, Xue S, Cai Y, Wang D, Yin S, Gai X, Ren H. Silencing of the gibberellin receptor homolog, CsGID1a, affects locule formation in cucumber (Cucumis sativus) fruit. THE NEW PHYTOLOGIST 2016; 210:551-63. [PMID: 26701170 DOI: 10.1111/nph.13801] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/11/2015] [Indexed: 05/09/2023]
Abstract
Gibberellins are phytohormones with many roles, including the regulation of fruit development. However, little is known about the relationship between GA perception and fleshy fruit ontogeny, and particularly locule formation. We characterized the expression of cucumber (Cucumis sativus) GA receptor gene (CsGID1a) using quantitative real-time PCR, in situ hybridization and a promoter::β-glucuronidase (GUS) assay. CsGID1a-RNAi cucumber fruits were observed by dissecting microscope, scanning electron microscopy and transmission electron microscopy. Finally, genome-wide gene expression in young fruits from a control and the RNAi line was compared using a digital gene expression (DGE) analysis approach. The expression pattern of CsGID1a was found to be closely correlated with fruit locule formation, and silencing CsGID1a in cucumber resulted in fruits with abnormal carpels and locules. Overexpression of CsGID1a in the Arabidopsis thaliana double mutant (gid1a gid1c) resulted in 'cucumber locule-like' fruits. The DGE analysis suggested that expression of genes related to auxin synthesis and transport, as well as the cell cycle, was altered in CsGID1a-RNAi fruits, a result that was supported by comparing the auxin content and cellular structures of the control and transgenic fruits. This study demonstrates a previously uncharacterized GA signaling pathway that is essential for cucumber fruit locule formation.
Collapse
Affiliation(s)
- Bin Liu
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Xingwang Liu
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Sen Yang
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Chunhua Chen
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Shudan Xue
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Yanling Cai
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Dandan Wang
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Shuai Yin
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Xinshuang Gai
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| | - Huazhong Ren
- Department of Vegetable Science, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops of Beijing, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Zhao Z, Xing Z, Zhou M, Chen Y, Li C, Wang R, Xu W, Ma M. Functional analysis of synthetic DELLA domain peptides and bioactive gibberellin assay using surface plasmon resonance technology. Talanta 2015; 144:502-9. [DOI: 10.1016/j.talanta.2015.06.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/22/2015] [Accepted: 06/25/2015] [Indexed: 11/29/2022]
|
16
|
Fang W, Zhao F, Sun Y, Xie D, Sun L, Xu Z, Zhu W, Yang L, Zhao Y, Lv S, Tang Z, Nie L, Li W, Hou J, Duan Z, Yu Y, Yang X. Transcriptomic Profiling Reveals Complex Molecular Regulation in Cotton Genic Male Sterile Mutant Yu98-8A. PLoS One 2015; 10:e0133425. [PMID: 26382878 PMCID: PMC4575049 DOI: 10.1371/journal.pone.0133425] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/26/2015] [Indexed: 01/13/2023] Open
Abstract
Although cotton genic male sterility (GMS) plays an important role in the utilization of hybrid vigor, its precise molecular mechanism remains unclear. To characterize the molecular events of pollen abortion, transcriptome analysis, combined with histological observations, was conducted in the cotton GMS line, Yu98-8A. A total of 2,412 genes were identified as significant differentially expressed genes (DEGs) before and during the critical pollen abortion stages. Bioinformatics and biochemical analysis showed that the DEGs mainly associated with sugars and starch metabolism, oxidative phosphorylation, and plant endogenous hormones play a critical and complicated role in pollen abortion. These findings extend a better understanding of the molecular events involved in the regulation of pollen abortion in genic male sterile cotton, which may provide a foundation for further research studies on cotton heterosis breeding.
Collapse
Affiliation(s)
- Weiping Fang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
- * E-mail: (WPF); (XJY)
| | - Fu'an Zhao
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yao Sun
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Deyi Xie
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Zhenzhen Xu
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agriculture Sciences, Anyang, Henan province, 455000, R.P. China
| | - Wei Zhu
- Agronomy College, Henan Agricultural University, Zhengzhou, Henan province, 450002, R.P. China
| | - Lirong Yang
- Plant Protection Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yuanming Zhao
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Shuping Lv
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Zhongjie Tang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Lihong Nie
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Wu Li
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Jianan Hou
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Zhengzheng Duan
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Yuebo Yu
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
| | - Xiaojie Yang
- Economic Crop Research Institute, Henan Academy of Agriculture Sciences, Zhengzhou, Henan province, 450002, R.P. China
- * E-mail: (WPF); (XJY)
| |
Collapse
|
17
|
Kundu S. Co-operative intermolecular kinetics of 2-oxoglutarate dependent dioxygenases may be essential for system-level regulation of plant cell physiology. FRONTIERS IN PLANT SCIENCE 2015; 6:489. [PMID: 26236316 PMCID: PMC4502536 DOI: 10.3389/fpls.2015.00489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/19/2015] [Indexed: 05/24/2023]
Abstract
Can the stimulus-driven synergistic association of 2-oxoglutarate dependent dioxygenases be influenced by the kinetic parameters of binding and catalysis?In this manuscript, I posit that these indices are necessary and specific for a particular stimulus, and are key determinants of a dynamic clustering that may function to mitigate the effects of this trigger. The protein(s)/sequence(s) that comprise this group are representative of all major kingdoms of life, and catalyze a generic hydroxylation, which is, in most cases accompanied by a specialized conversion of the substrate molecule. Iron is an essential co-factor for this transformation and the response to waning levels is systemic, and mandates the simultaneous participation of molecular sensors, transporters, and signal transducers. Here, I present a proof-of-concept model, that an evolving molecular network of 2OG-dependent enzymes can maintain iron homeostasis in the cytosol of root hair cells of members of the family Gramineae by actuating a non-reductive compensatory chelation by the phytosiderophores. Regression models of empirically available kinetic data (iron and alpha-ketoglutarate) were formulated, analyzed, and compared. The results, when viewed in context of the superfamily responding as a unit, suggest that members can indeed, work together to accomplish system-level function. This is achieved by the establishment of transient metabolic conduits, wherein the flux is dictated by kinetic compatibility of the participating enzymes. The approach adopted, i.e., predictive mathematical modeling, is integral to the hypothesis-driven acquisition of experimental data points and, in association with suitable visualization aids may be utilized for exploring complex plant biochemical systems.
Collapse
Affiliation(s)
- Siddhartha Kundu
- *Correspondence: Siddhartha Kundu, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India ;
| |
Collapse
|
18
|
Kundu S. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases. FRONTIERS IN PLANT SCIENCE 2015; 6:98. [PMID: 25814993 PMCID: PMC4356072 DOI: 10.3389/fpls.2015.00098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/06/2015] [Indexed: 05/24/2023]
Abstract
Could a disjoint group of enzymes synchronize their activities and execute a complex multi-step, measurable, and reproducible response? Here, I surmise that the alpha-ketoglutarate dependent superfamily of non-haem iron (II) dioxygenases could influence cell physiology as a cohesive unit, and that the broad spectra of substrates transformed is an absolute necessity to this portrayal. This eclectic group comprises members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is followed by an additional specialized conversion. The domain profile of a protein sequence was used as an index of miscellaneous reaction chemistry and interpreted alongside existent kinetic data in a linear model of integrated function. Statistical parameters were inferred by the creation of a novel, empirically motivated flat-file database of over 3800 sequences (DB2OG) with putative 2-oxoglutarate dependent activity. The collated information was categorized on the basis of existing annotation schema. The data suggests that 2OG-dependent enzymes incorporate several desirable features of a systems level player. DB2OG, is free, accessible without a login to all users, and available at the following URL (http://comp-biol.theacms.in/DB2OG.html).
Collapse
Affiliation(s)
- Siddhartha Kundu
- *Correspondence: Siddhartha Kundu, School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, Delhi 110067, India e-mail: ;
| |
Collapse
|
19
|
Guo Y, Zhu C, Gan L, Ng D, Xia K. Effects of exogenous gibberellic acid3 on iron and manganese plaque amounts and iron and manganese uptake in rice. PLoS One 2015; 10:e0118177. [PMID: 25710173 PMCID: PMC4339979 DOI: 10.1371/journal.pone.0118177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/05/2015] [Indexed: 11/20/2022] Open
Abstract
Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L(-1)) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L(-1)) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected.
Collapse
Affiliation(s)
- Yue Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changhua Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Denny Ng
- CP Bio, Inc., 4802 Murrieta St., Chino, California, 91710, United States of America
| | - Kai Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
20
|
Hu L, Mei Z, Zang A, Chen H, Dou X, Jin J, Cai W. Microarray analyses and comparisons of upper or lower flanks of rice shoot base preceding gravitropic bending. PLoS One 2013; 8:e74646. [PMID: 24040303 PMCID: PMC3764065 DOI: 10.1371/journal.pone.0074646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 08/06/2013] [Indexed: 11/26/2022] Open
Abstract
Gravitropism is a complex process involving a series of physiological pathways. Despite ongoing research, gravitropism sensing and response mechanisms are not well understood. To identify the key transcripts and corresponding pathways in gravitropism, a whole-genome microarray approach was used to analyze transcript abundance in the shoot base of rice (Oryza sativa sp. japonica) at 0.5 h and 6 h after gravistimulation by horizontal reorientation. Between upper and lower flanks of the shoot base, 167 transcripts at 0.5 h and 1202 transcripts at 6 h were discovered to be significantly different in abundance by 2-fold. Among these transcripts, 48 were found to be changed both at 0.5 h and 6 h, while 119 transcripts were only changed at 0.5 h and 1154 transcripts were changed at 6 h in association with gravitropism. MapMan and PageMan analyses were used to identify transcripts significantly changed in abundance. The asymmetric regulation of transcripts related to phytohormones, signaling, RNA transcription, metabolism and cell wall-related categories between upper and lower flanks were demonstrated. Potential roles of the identified transcripts in gravitropism are discussed. Our results suggest that the induction of asymmetrical transcription, likely as a consequence of gravitropic reorientation, precedes gravitropic bending in the rice shoot base.
Collapse
Affiliation(s)
- Liwei Hu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiling Mei
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aiping Zang
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haiying Chen
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xianying Dou
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Jin
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
21
|
Asymmetric gibberellin signaling regulates vacuolar trafficking of PIN auxin transporters during root gravitropism. Proc Natl Acad Sci U S A 2013; 110:3627-32. [PMID: 23391733 DOI: 10.1073/pnas.1300107110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Gravitropic bending of plant organs is mediated by an asymmetric signaling of the plant hormone auxin between the upper and lower side of the respective organ. Here, we show that also another plant hormone, gibberellic acid (GA), shows asymmetric action during gravitropic responses. Immunodetection using an antibody against GA and monitoring GA signaling output by downstream degradation of DELLA proteins revealed an asymmetric GA distribution and response with the maximum at the lower side of gravistimulated roots. Genetic or pharmacological manipulation of GA levels or response affects gravity-mediated auxin redistribution and root bending response. The higher GA levels at the lower side of the root correlate with increased amounts of PIN-FORMED2 (PIN2) auxin transporter at the plasma membrane. The observed increase in PIN2 stability is caused by a specific GA effect on trafficking of PIN proteins to lytic vacuoles that presumably occurs downstream of brefeldin A-sensitive endosomes. Our results suggest that asymmetric auxin distribution instructive for gravity-induced differential growth is consolidated by the asymmetric action of GA that stabilizes the PIN-dependent auxin stream along the lower side of gravistimulated roots.
Collapse
|
22
|
Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X, Jia J. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. PLANT PHYSIOLOGY 2011; 157:2120-30. [PMID: 22010107 PMCID: PMC3327208 DOI: 10.1104/pp.111.185272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 10/12/2011] [Indexed: 05/18/2023]
Abstract
Dominance, semidominance, and recessiveness are important modes of Mendelian inheritance. The phytohormone gibberellin (GA) regulates many plant growth and developmental processes. The previously cloned semidominant GA-insensitive (GAI) genes Reduced height1 (Rht1) and Rht2 in wheat (Triticum aestivum) were the basis of the Green Revolution. However, no completely dominant GAI gene has been cloned. Here, we report the molecular characterization of Rht-B1c, a dominant GAI allele in wheat that confers more extreme characteristics than its incompletely dominant alleles. Rht-B1c is caused by a terminal repeat retrotransposons in miniature insertion in the DELLA domain. Yeast two-hybrid assays showed that Rht-B1c protein fails to interact with GA-INSENSITIVE DWARF1 (GID1), thereby blocking GA responses and resulting in extreme dwarfism and pleiotropic effects. By contrast, Rht-B1b protein only reduces interaction with GID1. Furthermore, we analyzed its functions using near-isogenic lines and examined its molecular mechanisms in transgenic rice. These results indicated that the affinity between GID1 and DELLA proteins is key to regulation of the stability of DELLA proteins, and differential interactions determine dominant and semidominant gene responses to GA.
Collapse
|
23
|
Maris A, Kaewthai N, Eklöf JM, Miller JG, Brumer H, Fry SC, Verbelen JP, Vissenberg K. Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:261-71. [PMID: 20732879 DOI: 10.1093/jxb/erq263] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are cell wall enzymes that are able to graft xyloglucan chains to oligosaccharides or to other available xyloglucan chains and/or to hydrolyse xyloglucan chains. As they are involved in the modification of the load-bearing cell-wall components, they are believed to be very important in the regulation of growth and development. Given the large number (33) of XTH genes in Arabidopsis and the overlapping expression patterns, specific enzymic properties may be expected. Five predominantly root-expressed Arabidopsis thaliana XTHs belonging to subgroup I/II were analysed here. These represent two sets of closely related genes: AtXTH12 and 13 on the one hand (trichoblast-enriched) and AtXTH17, 18, and 19 on the other (expressed in nearly all cell types in the root). They were all recombinantly produced in the yeast Pichia pastoris and partially purified by ammonium sulphate precipitation before they were subsequently all subjected to a series of identical in vitro tests. The kinetic properties of purified AtXTH13 were investigated in greater detail to rule out interference with the assays by contaminating yeast proteins. All five proteins were found to exhibit only the endotransglucosylase (XET; EC 2.4.1.207) activity towards xyloglucan and non-detectable endohydrolytic (XEH; EC 3.2.1.151) activity. Their endotransglucosylase activity was preferentially directed towards xyloglucan and, in some cases, water-soluble cellulose acetate, rather than to mixed-linkage β-glucan. Isoforms differed in optimum pH (5.0-7.5), in temperature dependence and in acceptor substrate preferences.
Collapse
Affiliation(s)
- An Maris
- Department of Biology, Laboratory of Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Brandão AD, Del Bem LEV, Vincentz M, Buckeridge MS. Expression pattern of four storage xyloglucan mobilization-related genes during seedling development of the rain forest tree Hymenaea courbaril L. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1191-206. [PMID: 19221141 PMCID: PMC2657543 DOI: 10.1093/jxb/erp014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
During seedling establishment, cotyledons of the rain forest tree Hymenaea courbaril mobilize storage cell wall xyloglucan to sustain growth. The polysaccharide is degraded and its products are transported to growing sink tissues. Auxin from the shoot controls the level of xyloglucan hydrolytic enzymes. It is not yet known how important the expression of these genes is for the control of storage xyloglucan degradation. In this work, partial cDNAs of the genes xyloglucan transglycosylase hydrolase (HcXTH1) and beta-galactosidase (HcBGAL1), both related to xyloglucan degradation, and two other genes related to sucrose metabolism [alkaline invertase (HcAlkIN1) and sucrose synthase (HcSUS1)], were isolated. The partial sequences were characterized by comparison with sequences available in the literature, and phylogenetic trees were assembled. Gene expression was evaluated at intervals of 6 h during 24 h in cotyledons, hypocotyl, roots, and leaves, using 45-d-old plantlets. HcXTH1 and HcBGAL1 were correlated to xyloglucan degradation and responded to auxin and light, being down-regulated when transport of auxin was prevented by N-1-naphthylphthalamic acid (NPA) and stimulated by constant light. Genes related to sucrose metabolism, HcAlkIN1 and HcSUS1, responded to inhibition of auxin transport in consonance with storage mobilization in the cotyledons. A model is proposed suggesting that auxin and light are involved in the control of the expression of genes related to storage xyloglucan mobilization in seedlings of H. courbaril. It is concluded that gene expression plays a role in the control of the intercommunication system of the source-sink relationship during seeding growth, favouring its establishment in the shaded environment of the rain forest understorey.
Collapse
Affiliation(s)
- A. D. Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Departamento de Botânica, Universidade de São Paulo, Instituto de Biociências São Paulo, SP, Brazil
| | - L. E. V. Del Bem
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - M. Vincentz
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - M. S. Buckeridge
- Departamento de Botânica, Universidade de São Paulo, Instituto de Biociências São Paulo, SP, Brazil
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Teale WD, Ditengou FA, Dovzhenko AD, Li X, Molendijk AM, Ruperti B, Paponov I, Palme K. Auxin as a model for the integration of hormonal signal processing and transduction. MOLECULAR PLANT 2008; 1:229-37. [PMID: 19825535 DOI: 10.1093/mp/ssn006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The regulation of plant growth responds to many stimuli. These responses allow environmental adaptation, thereby increasing fitness. In many cases, the relay of information about a plant's environment is through plant hormones. These messengers integrate environmental information into developmental pathways to determine plant shape. This review will use, as an example, auxin in the root of Arabidopsis thaliana to illustrate the complex nature of hormonal signal processing and transduction. It will then make the case that the application of a systems-biology approach is necessary, if the relationship between a plant's environment and its growth/developmental responses is to be properly understood.
Collapse
Affiliation(s)
- W D Teale
- Institute of Biology II, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Ross JJ, Wolbang CM. Auxin, gibberellins and the gravitropic response of grass leaf sheath pulvini. PLANT SIGNALING & BEHAVIOR 2008; 3:74-5. [PMID: 19704718 PMCID: PMC2633968 DOI: 10.4161/psb.3.1.4929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 08/24/2007] [Indexed: 05/09/2023]
Abstract
The role of hormones in mediating tropic responses has been a central question in plant biology. Another key issue concerns how interactions between hormones regulate plant responses. In the September 2007 issue of Physiologia Plantarum, we published a paper relevant to both these questions.1 This paper focuses on gravitropism in the barley leaf sheath pulvinus. The results support the Cholodny-Went theory on hormones and tropic responses, and highlight how an environmental factor (gravity) appears to first affect auxin content and consequently that of bioactive gibberellins (GAs). It appears that while GAs do not actually trigger the gravitropic bending of barley pulvini, they do act to magnify the bending response.
Collapse
Affiliation(s)
- John J Ross
- School of Plant Science; University of Tasmania; Hobart; Tasmania, Australia
| | | |
Collapse
|
27
|
Wolbang CM, Davies NW, Taylor SA, Ross JJ. Gravistimulation leads to asymmetry of both auxin and gibberellin levels in barley pulvini. PHYSIOLOGIA PLANTARUM 2007; 131:140-8. [PMID: 18251932 DOI: 10.1111/j.1399-3054.2007.00931.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The auxin indole-3-acetic acid (IAA) is known to promote the biosynthesis of active gibberellins (GAs) in barley (Hordeum vulgare). We therefore investigated the possibility that this interaction might contribute to the gravitropic response of barley leaf sheath pulvini. Barley plants at the inflorescence stage were gravistimulated for varying times, and the pulvini were then separated into upper and lower halves for quantification of IAA and GAs by GC-MS. Consistent with the Cholodny-Went theory, the lower portion contained more IAA than did the upper portion. This difference was detected as early as 2.5 h after the start of gravistimulation, and bending was also observed at this stage. At later time points tested (6 h and 24 h), but not at 2.5 h or 3 h, the higher auxin content of the lower half was associated with a higher level of GA(1), the main bioactive GA in barley. Consistent with that result, the expression of Hv3ox2, which encodes a key enzyme for the conversion of GA(20) to GA(1), was higher in the lower side than in the upper, after 6 h. It is suggested that in gravistimulated leaf sheath pulvini, auxin accumulates in the lower side, leading to a higher level of GA(1), which contributes to the bending response. Further evidence that GAs play a role in the gravitropic response was obtained from GA-related mutants, including the elongated sln1c mutant, in which GA signalling is constitutive. Pulvinar bending in the sln1c mutant was greater than in the wild-type. This result indicates that in the lower side of the gravistimulated pulvinus, the relatively high level of bioactive GA facilitates, but does not mediate, the bending response.
Collapse
Affiliation(s)
- Carla M Wolbang
- School of Plant Science, University of Tasmania, GPO Box 252-55, Hobart Tasmania 7001, Australia
| | | | | | | |
Collapse
|
28
|
Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C. EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. PLANT & CELL PHYSIOLOGY 2006; 47:181-91. [PMID: 16306061 DOI: 10.1093/pcp/pci233] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.
Collapse
Affiliation(s)
- Anding Luo
- National Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|