1
|
Zhang H, Wang P, Hou H, Wen H, Zhou H, Gao F, Wu J, Qiu Z, Li L. Histone Modification Is Involved in Okadaic Acid (OA) Induced DNA Damage Response and G2-M Transition Arrest in Maize. PLoS One 2016; 11:e0155852. [PMID: 27196101 PMCID: PMC4873197 DOI: 10.1371/journal.pone.0155852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
Histone modifications are involved in regulation of chromatin structure. To investigate the relationship between chromatin modification and cell cycle regulation during plant cell proliferation, Okadaic acid (OA), a specific inhibitor of serine/threonine protein phosphatase, was applied in this study. The results showed that OA caused the cell cycle arrest at preprophase, leading to seedling growth inhibition. Western blotting assay revealed that the spatial distribution of phosphorylation of Ser10 histone H3 tails (H3S10ph) signals was altered under OA treatment. Reactive oxygen species (ROS) was found to be at higher levels and TdT-mediated dUTP nick end labeling (TUNEL) assay displayed DNA breaks happened at the chromatin after treatment with OA, companied with an increase in the acetylation of histone H4 at lysine 5 (H4K5ac) level. From these observations, we speculated that the alteration of the spatial distribution of H3S10ph and the level of H4K5ac was involved in the procedure that OA induced DNA breaks and G2-M arrested by the accumulation of ROS, and that the histone H3S10ph and H4K5ac might facilitate DNA repair by their association with the chromatin decondensation.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huan Wen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinping Wu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Hongshan District, Wuhan City, Hubei Province, China
| | - Zhengming Qiu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Hongshan District, Wuhan City, Hubei Province, China
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
2
|
Doniak M, Barciszewska MZ, Kaźmierczak J, Kaźmierczak A. The crucial elements of the 'last step' of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. PLANT CELL REPORTS 2014; 33:2063-76. [PMID: 25213134 DOI: 10.1007/s00299-014-1681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 05/09/2023]
Abstract
Kinetin-induced programmed cell death, manifested by condensation, degradation and methylation of DNA and fluctuation of kinase activities and ATP levels, is an autolytic and root cortex cell-specific process. The last step of programmed cell death (PCD) induced by kinetin in the root cortex of V. faba ssp. minor seedlings was explained using morphologic (nuclear chromatin/aggregation) and metabolic (DNA degradation, DNA methylation and kinases activity) analyses. This step involves: (1) decrease in nuclear DNA content, (2) increase in the number of 4',6-diamidino-2-phenylindole (DAPI)-stained chromocenters, and decrease in chromomycin A3 (CMA3)-stained chromocenters, (3) increase in fluorescence intensity of CMA3-stained chromocenters, (4) condensation of DAPI-stained and loosening of CMA3-stained chromatin, (5) fluctuation of the level of DNA methylation, (6) fluctuation of activities of exo-/endonucleolytic Zn(2+) and Ca(2+)/Mg(2+)-dependent nucleases, (7) changes in H1 and core histone kinase activities and (8) decrease in cellular ATP amount. These results confirmed that kinetin-induced PCD was a specific process. Additionally, based on data presented in this paper (DNA condensation and ATP depletion) and previous studies [increase in vacuole, increase in amount of cytosolic calcium ions, ROS production and cytosol acidification "in Byczkowska et al. (Protoplasma 250:121-128, 2013)"], we propose that the process resembles autolytic type of cell death, the most common type of death during development of plants. Lastly, the observations also suggested that regulation of these processes might be under control of epigenetic (methylation/phosphorylation) mechanisms.
Collapse
Affiliation(s)
- Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | | | |
Collapse
|
3
|
Polit JT, Ciereszko I. Sucrose synthase activity and carbohydrates content in relation to phosphorylation status of Vicia faba root meristems during reactivation from sugar depletion. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1597-1606. [PMID: 22770419 DOI: 10.1016/j.jplph.2012.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 06/01/2023]
Abstract
Carbohydrate starvation of Vicia faba root meristems leads to readjustment of carbohydrate metabolism and blocks the cell cycle in two principal control points (PCP1/2). The cell cycle reactivation is possible after sucrose provision, although with a delay of about 12h. During this period, the cells are sensitive to 6-dimethylaminopurine (6-DMAP) and okadaic acid (OA), inhibitors of protein kinases and phosphatases, respectively. The aim of the present study was to investigate whether those inhibitors are involved in inhibition of cell cycle revival through interference with the activities of two sucrose-cleaving enzymes: sucrose synthase (SuSy; EC 2.4.1.13) and invertase (INV; EC 3.2.1.26). In sugar-starved cells, the in situ activity of both enzymes decreased significantly. Following supplementation of root meristems with sugar, INV remained inactive, but SuSy activity increased. Despite the lack of INV activity, glucose was present in meristem cells, but its content was low in cells treated with OA. In the latter case, the size of plastids was reduced, they had less starch, and Golgi structures were affected. In sugar-starved cells, SuSy activity was induced more by exogenous sucrose than by glucose. The sucrose-induced activity was strongly inhibited by OA (less by 6-DMAP) at early stages of regeneration, but not at the stages preceding DNA replication or mitotic activities. The results indicate that prolongation of regeneration and a marked decrease in the number of cells resuming proliferation (observed in previous studies) and resulting from the action of inhibitors, are correlated with the process of SuSy activation at the beginning of regeneration from sugar starvation.
Collapse
Affiliation(s)
- Justyna Teresa Polit
- Department of Cytophysiology, University of Łódź, ul. Pomorska 141/143, 90-236 Łódź, Poland.
| | | |
Collapse
|
4
|
Beyer D, Tándor I, Kónya Z, Bátori R, Roszik J, Vereb G, Erdődi F, Vasas G, M-Hamvas M, Jambrovics K, Máthé C. Microcystin-LR, a protein phosphatase inhibitor, induces alterations in mitotic chromatin and microtubule organization leading to the formation of micronuclei in Vicia faba. ANNALS OF BOTANY 2012; 110:797-808. [PMID: 22819947 PMCID: PMC3423812 DOI: 10.1093/aob/mcs154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 05/03/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Microcystin-LR (MCY-LR) is a cyanobacterial toxin, a specific inhibitor of type 1 and 2A protein phosphatases (PP1 and PP2A) with significant impact on aquatic ecosystems. It has the potential to alter regulation of the plant cell cycle. The aim of this study was improved understanding of the mitotic alterations induced by cyanotoxin in Vicia faba, a model organism for plant cell biology studies. METHODS Vicia faba seedlings were treated over the long and short term with MCY-LR purified in our laboratory. Short-term treatments were performed on root meristems synchronized with hydroxylurea. Sections of lateral root tips were labelled for chromatin, phosphorylated histone H3 and β-tubulin via histochemical and immunohistochemical methods. Mitotic activity and the occurrence of mitotic alterations were detected and analysed by fluorescence microscopy. The phosphorylation state of histone H3 was studied by Western blotting. KEY RESULTS Long-term MCY-LR exposure of lateral root tip meristems increased the percentage of either early or late mitosis in a concentration-dependent manner. We observed hypercondensed chromosomes and altered sister chromatid segregation (lagging chromosomes) leading to the formation of micronuclei, accompanied by the formation of disrupted, multipolar and monopolar spindles, disrupted phragmoplasts and the hyperphosphorylation of histone H3 at Ser10. Short-term MCY-LR treatment of synchronized cells showed that PP1 and PP2A inhibition delayed the onset of anaphase at 1 µg mL(-1) MCY-LR, accelerated cell cycle at 10 µg mL(-1) MCY-LR and induced the formation of lagging chromosomes. In this case mitotic microtubule alterations were not detected, but histone H3 was hyperphosphorylated. CONCLUSIONS MCY-LR delayed metaphase-anaphase transition. Consequently, it induced aberrant chromatid segregation and micronucleus formation that could be associated with both H3 hyperphosphorylation and altered microtubule organization. However, these two phenomena seemed to be independent. The toxin may be a useful tool in the study of plant cell cycle regulation.
Collapse
Affiliation(s)
- Dániel Beyer
- University of Debrecen, Faculty of Science and Technology, Department of Botany, PO Box 14, H-4010, Debrecen, Hungary
- University of Debrecen, Medical and Health Science Centre, Department of Biophysics and Cell Biology, H-4032, Debrecen, Hungary
| | - Ildikó Tándor
- University of Debrecen, Faculty of Science and Technology, Department of Botany, PO Box 14, H-4010, Debrecen, Hungary
| | - Zoltán Kónya
- University of Debrecen, Faculty of Science and Technology, Department of Botany, PO Box 14, H-4010, Debrecen, Hungary
- University of Debrecen, Medical and Health Science Centre, Department of Medical Chemistry, H-4012 Debrecen, Hungary
| | - Róbert Bátori
- University of Debrecen, Medical and Health Science Centre, Department of Medical Chemistry, H-4012 Debrecen, Hungary
| | - Janos Roszik
- University of Debrecen, Medical and Health Science Centre, Department of Biophysics and Cell Biology, H-4032, Debrecen, Hungary
| | - György Vereb
- University of Debrecen, Medical and Health Science Centre, Department of Biophysics and Cell Biology, H-4032, Debrecen, Hungary
| | - Ferenc Erdődi
- University of Debrecen, Medical and Health Science Centre, Department of Medical Chemistry, H-4012 Debrecen, Hungary
| | - Gábor Vasas
- University of Debrecen, Faculty of Science and Technology, Department of Botany, PO Box 14, H-4010, Debrecen, Hungary
| | - Márta M-Hamvas
- University of Debrecen, Faculty of Science and Technology, Department of Botany, PO Box 14, H-4010, Debrecen, Hungary
| | - Károly Jambrovics
- University of Debrecen, Faculty of Science and Technology, Department of Botany, PO Box 14, H-4010, Debrecen, Hungary
| | - Csaba Máthé
- University of Debrecen, Faculty of Science and Technology, Department of Botany, PO Box 14, H-4010, Debrecen, Hungary
| |
Collapse
|
5
|
Sheremet YA, Emets AI, Azmi A, Vissenberg K, Verbelen JP, Blume YB. Effect of serine/threonine protein kinases and protein phosphatases inhibitors on mitosis progression in a synchronized tobacco BY-2 culture. CYTOL GENET+ 2012. [DOI: 10.3103/s009545271202003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Greer E, Martín AC, Pendle A, Colas I, Jones AM, Moore G, Shaw P. The Ph1 locus suppresses Cdk2-type activity during premeiosis and meiosis in wheat. THE PLANT CELL 2012; 24:152-62. [PMID: 22274628 PMCID: PMC3289575 DOI: 10.1105/tpc.111.094771] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/13/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Despite possessing multiple sets of related (homoeologous) chromosomes, hexaploid wheat (Triticum aestivum) restricts pairing to just true homologs at meiosis. Deletion of a single major locus, Pairing homoeologous1 (Ph1), allows pairing of homoeologs. How can the same chromosomes be processed as homologs instead of being treated as nonhomologs? Ph1 was recently defined to a cluster of defective cyclin-dependent kinase (Cdk)-like genes showing some similarity to mammalian Cdk2. We reasoned that the cluster might suppress Cdk2-type activity and therefore affect replication and histone H1 phosphorylation. Our study does indeed reveal such effects, suggesting that Cdk2-type phosphorylation has a major role in determining chromosome specificity during meiosis.
Collapse
Affiliation(s)
- Emma Greer
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Azahara C. Martín
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Ali Pendle
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Isabelle Colas
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Graham Moore
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Peter Shaw
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
7
|
Polit JT, Ciereszko I. In situ activities of hexokinase and fructokinase in relation to phosphorylation status of root meristem cells of Vicia faba during reactivation from sugar starvation. PHYSIOLOGIA PLANTARUM 2009; 135:342-350. [PMID: 19335447 DOI: 10.1111/j.1399-3054.2008.01201.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The plant cell cycle is equipped with two principal control points: PCP1 in G1 and PCP2 in G2 phase. These checkpoints can arrest the cell cycle in response to carbohydrate starvation, while sugar presence can revive the replication and mitotic activity. The process of cell cycle revival is strongly repressed by okadaic acid (OA) or 6-dimethylaminopurine (6-DMAP), inhibitors of specific protein phosphatases 1 or 2A or kinases (cyclin-dependent kinases), respectively. In the present study, it was investigated whether inhibition of cell cycle revival is performed through interference of the above-mentioned inhibitors with the metabolic pathway of sucrose applied to the cells. Changes of hexokinase (HK) and fructokinase (FK) activities, key enzymes of hexose metabolism, were analyzed in Vicia faba root meristem cells arrested in G1 and G2 phase by carbohydrate starvation as well as in those recovered with glucose or sucrose in the presence of OA or 6-DMAP. It was shown that in the sugar-starved cells, the activity of both enzymes decreased significantly. During cell regeneration with carbohydrates, the activity of HK was induced more by sucrose than by glucose, while FK remained inactive after glucose addition. Moreover, in situ investigation of the activities of HK and FK showed that OA-induced and 6-DMAP-induced repression of the cell cycle revival is connected with the interference of these drugs in the metabolic pathway of sucrose. It was also indicated that stronger OA-induced and 6-DMAP-induced inhibition of the replication and mitosis revival, at the early stages of sucrose regeneration, was correlated with the stronger influence of these inhibitors on HK and FK activities.
Collapse
Affiliation(s)
- Justyna T Polit
- Department of Cytophysiology, University of Łódź, Łódź, Poland.
| | | |
Collapse
|
8
|
Polit JT. Protein phosphorylation in Vicia faba root meristem cells during the first steps of leaving principal control points after sucrose application. PLANT CELL REPORTS 2009; 28:165-173. [PMID: 19023574 DOI: 10.1007/s00299-008-0642-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 11/02/2008] [Indexed: 05/27/2023]
Abstract
Before Vicia faba root meristem cells stopped by carbohydrate starvation in principal control points (PCP1 and PCP2) start sucrose induced replication and division they go through a phase of metabolic regeneration. This interval is characterised st great sensitivity to the inhibitors of cyclin-dependent protein kinases and protein phosphatases (PPs). In the present research, changes of phosphoprotein levels in the nucleolus, nucleus and cytoplasm were analysed using okadaic acid and 6-dimethylaminopurine (6-DMAP) during the first period of cell regeneration in sucrose (0-3 h). It was established that when the cells start to leave checkpoints, the balance between protein phosphorylation and dephosphorylation shifts towards the intensified activity of PPs. Furthermore, it was also established that the structures appearing during cell regeneration, which were located around cell nuclei and which contained large amounts of phosphorylated proteins, were plastids. The reactions of protein phosphorylation which took place in the plastids were directly correlated with starch synthesis and were stopped by inactivation of protein phosphatases (PP1 and/or PP2A).
Collapse
|