1
|
Choque-Delgado GT, Condo-Mamani AR, Quispe-Sucso MG, Hamaker BR. Nutritional and Functional Value of Andean Native Legumes and Their Potential Industrial Application. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024:10.1007/s11130-024-01233-3. [PMID: 39251475 DOI: 10.1007/s11130-024-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
Legumes are edible seeds that have high nutritional and functional value. Their cultivation and consumption turn out to be an alternative to hunger and guarantee food security in vulnerable populations. This manuscript explores the nutritional and functional properties and potential uses of native Andean legumes such as Pajuro, Tarhui, Common bean, and Lima beans. They contain macro and micronutrients and bioactive compounds with antioxidant, antimicrobial, antidiabetic, and antihypertensive that benefit consumer health. These compounds are particular proteins, peptides, polyphenols, alkaloids, vitamins, minerals, and among others. Moreover, Andean legumes have shown industrial potential due to their technological properties that could be useful in adding value to other food products. These properties are due to their content of starch, oil, fiber, and protein that could facilitate their processing and obtain products with adequate sensory characteristics. Andean legumes have good nutritional and functional value and have the potential to be included in daily diets. Given the accumulated evidence, we believe that the consumption of Andean legumes in nature and processed should be strongly encouraged.
Collapse
Affiliation(s)
- Grethel Teresa Choque-Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.
| | - Ana Rosmery Condo-Mamani
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Maribel Gabriela Quispe-Sucso
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Ortiz-Sempértegui J, Ibieta G, Tullberg C, Peñarrieta JM, Linares-Pastén JA. Chemical Characterisation of New Oils Extracted from Cañihua and Tarwi Seeds with Different Organic Solvents. Foods 2024; 13:1982. [PMID: 38998488 PMCID: PMC11240921 DOI: 10.3390/foods13131982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vegetable oils are rich in health-beneficial compounds, including fatty acids, phenolic compounds, natural antioxidants, and fat-soluble vitamins. However, oil extraction methods can influence their composition. This study aims to understand the chemical basis for developing a green process to extract oils from two Andean seeds, cañihua (Chenopodium pallidicaule) and tarwi (Lupinus mutabilis). Ethanol, considered a green solvent, is compared to petroleum ether used at the laboratory level and hexane used at the industrial scale for extracting oils. The extraction efficiency is assessed in terms of yield, fatty acids profile, polar and neutral lipids, tocopherols, phenolic compounds, and antioxidant capacity. The chemical composition of edible commercial oils, such as sunflower, rapeseed, and olive oils, was used as a reference. Hexane had the highest extraction yield, followed by petroleum ether and ethanol. However, the oils extracted with ethanol having yields of tarwi 15.5% and cañihua 5.8%, w/w showed the significatively superior content of tocopherols (α, γ, and δ); phenolic compounds; and antioxidant capacity. In addition, ethanol-extracted (EE) oils have higher levels of polar lipids, such as phosphatidylcholine and phosphatidylinositol, than those extracted with the other solvents. Remarkably, EE oils presented comparable or slightly higher levels of monounsaturated fatty acids than those extracted with hexane. Finally, compared to the commercial oils, tarwi and cañihua EE oils showed lower but acceptable levels of oleic, linoleic and palmitic acids and a wider variety of fatty acids (10 and 13, respectively). The composition of tarwi and cañahua oils extracted with ethanol includes compounds associated with nutritional and health benefits, providing a sustainable alternative for oil production.
Collapse
Affiliation(s)
- Jimena Ortiz-Sempértegui
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | - Gabriela Ibieta
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | - Cecilia Tullberg
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
| | - J. Mauricio Peñarrieta
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | | |
Collapse
|
3
|
Klajn N, Kapczyńska K, Pasikowski P, Glazińska P, Kugiel H, Kęsy J, Wojciechowski W. Regulatory Effects of ABA and GA on the Expression of Conglutin Genes and LAFL Network Genes in Yellow Lupine ( Lupinus luteus L.) Seeds. Int J Mol Sci 2023; 24:12380. [PMID: 37569754 PMCID: PMC10418516 DOI: 10.3390/ijms241512380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The maturation of seeds is a process of particular importance both for the plant itself by assuring the survival of the species and for the human population for nutritional and economic reasons. Controlling this process requires a strict coordination of many factors at different levels of the functioning of genetic and hormonal changes as well as cellular organization. One of the most important examples is the transcriptional activity of the LAFL gene regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2), as well as hormonal homeostasis-of abscisic acid (ABA) and gibberellins (GA) in particular. From the nutritional point of view, the key to seed development is the ability of seeds to accumulate large amounts of proteins with different structures and properties. The world's food deficit is mainly related to shortages of protein, and taking into consideration the environmental changes occurring on Earth, it is becoming necessary to search for a way to obtain large amounts of plant-derived protein while maintaining the diversity of its origin. Yellow lupin, whose storage proteins are conglutins, is one of the plant species native to Europe that accumulates large amounts of this nutrient in its seeds. In this article we have shown the key changes occurring in the developing seeds of the yellow-lupin cultivar Taper by means of modern molecular biology techniques, including RNA-seq, chromatographic techniques and quantitative PCR analysis. We identified regulatory genes fundamental to the seed-filling process, as well as genes encoding conglutins. We also investigated how exogenous application of ABA and GA3 affects the expression of LlLEC2, LlABI3, LlFUS3, and genes encoding β- and δ-conglutins and whether it results in the amount of accumulated seed storage proteins. The research shows that for each species, even related plants, very specific changes can be identified. Thus the analysis and possibility of using such an approach to improve and stabilize yields requires even more detailed and extended research.
Collapse
Affiliation(s)
- Natalia Klajn
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Katarzyna Kapczyńska
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland;
| | - Paweł Pasikowski
- Life Sciences and Biotechnology Center, Łukasiewicz Research Network–PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wroclaw, Poland;
- Captor Therapeutics S.A., Duńska 11, 54-427 Wroclaw, Poland
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Hubert Kugiel
- LABcenter Life Agro Biotechnology Ltd., Gliniana 14, 97-300 Piotrków Trybunalski, Poland; (H.K.); (W.W.)
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland; (P.G.); (J.K.)
| | - Waldemar Wojciechowski
- LABcenter Life Agro Biotechnology Ltd., Gliniana 14, 97-300 Piotrków Trybunalski, Poland; (H.K.); (W.W.)
| |
Collapse
|
4
|
Borek S, Stefaniak S, Nuc K, Wojtyla Ł, Ratajczak E, Sitkiewicz E, Malinowska A, Świderska B, Wleklik K, Pietrowska-Borek M. Sugar Starvation Disrupts Lipid Breakdown by Inducing Autophagy in Embryonic Axes of Lupin ( Lupinus spp.) Germinating Seeds. Int J Mol Sci 2023; 24:11773. [PMID: 37511532 PMCID: PMC10380618 DOI: 10.3390/ijms241411773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Under nutrient deficiency or starvation conditions, the mobilization of storage compounds during seed germination is enhanced to primarily supply respiratory substrates and hence increase the potential of cell survival. Nevertheless, we found that, under sugar starvation conditions in isolated embryonic axes of white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet) cultured in vitro for 96 h, the disruption of lipid breakdown occurs, as was reflected in the higher lipid content in the sugar-starved (-S) than in the sucrose-fed (+S) axes. We postulate that pexophagy (autophagic degradation of the peroxisome-a key organelle in lipid catabolism) is one of the reasons for the disruption in lipid breakdown under starvation conditions. Evidence of pexophagy can be: (i) the higher transcript level of genes encoding proteins of pexophagy machinery, and (ii) the lower content of the peroxisome marker Pex14p and its increase caused by an autophagy inhibitor (concanamycin A) in -S axes in comparison to the +S axes. Additionally, based on ultrastructure observation, we documented that, under sugar starvation conditions lipophagy (autophagic degradation of whole lipid droplets) may also occur but this type of selective autophagy seems to be restricted under starvation conditions. Our results also show that autophagy occurs at the very early stages of plant growth and development, including the cells of embryonic seed organs, and allows cell survival under starvation conditions.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Szymon Stefaniak
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Katarzyna Nuc
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Ewelina Ratajczak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Ewa Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Wleklik
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| |
Collapse
|
5
|
Li W, Jiang L, Chen Y, Li C, Li P, Yang Y, Chen J, Liu Q. Transcriptome Analysis Unveiled the Intricate Interplay between Sugar Metabolism and Lipid Biosynthesis in Symplocos paniculate Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:2703. [PMID: 37514317 PMCID: PMC10385272 DOI: 10.3390/plants12142703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Symplocos paniculate is an oil plant exhibiting tissue-specific variations in oil content and fatty acid composition across the whole fruit (mainly pulp and seed). And its oil synthesis is intricately linked to the accumulation and transformation of sugars. Nevertheless, there remains a dearth of understanding regarding how sugar metabolism impacts oil synthesis in S. paniculate fruit. To unravel the intricate mechanism underlying the impact of sugar metabolism on lipid biosynthesis in S. paniculata fruit, a comparative analysis was conducted on the transcriptome and metabolite content of pulp and seed throughout fruit development. The findings revealed that the impact of sugar metabolism on oil synthesis varied across different stages of fruit development. Notably, during the early fruit developmental stage (from 90 to 120 DAF), pivotal genes involved in sugar metabolism, such as PGK3, PKP1, PDH-E1, MDH, and malQ, along with key genes associated with oil synthesis like KAR, HAD, and PAP were predominantly expressed in the pulp. Consequently, this preferential expression led to earlier accumulation of oil in the pulp tissue compared to the seed. Whereas, during the fruit maturity stage (from 120 DAF to 140 DAF), these genes exhibited a high level of expression in seed, thereby facilitating the rapid and substantial accumulation of seed oil compared to pulp. The sugar metabolism activity in various parts of S. paniculata fruit plays a pivotal role in oil synthesis and is contingent upon the developmental stage. These findings can offer alternative genes for further gene enhancement through molecular biotechnology, thereby augmenting fruit oil yield and altering fatty acid composition.
Collapse
Affiliation(s)
- Wenjun Li
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Lijuan Jiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Peiwang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yan Yang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Jingzhen Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Qiang Liu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Liu S, Liu Z, Hou X, Li X. Genetic mapping and functional genomics of soybean seed protein. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:29. [PMID: 37313523 PMCID: PMC10248706 DOI: 10.1007/s11032-023-01373-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 06/15/2023]
Abstract
Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population. Molecular mapping and genomic analysis in soybean have identified many quantitative trait loci (QTL) underlying seed protein content control. Exploring the mechanisms of seed storage protein regulation will be helpful to achieve the improvement of protein content. However, the practice of breeding higher protein soybean is challenging because soybean seed protein is negatively correlated with seed oil content and yield. To overcome the limitation of such inverse relationship, deeper insights into the property and genetic control of seed protein are required. Recent advances of soybean genomics have strongly enhanced the understandings for molecular mechanisms of soybean with better seed quality. Here, we review the research progress in the genetic characteristics of soybean storage protein, and up-to-date advances of molecular mappings and genomics of soybean protein. The key factors underlying the mechanisms of the negative correlation between protein and oil in soybean seeds are elaborated. We also briefly discuss the future prospects of breaking the bottleneck of the negative correlation to develop high protein soybean without penalty of oil and yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01373-5.
Collapse
Affiliation(s)
- Shu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaojun Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086 China
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| | - Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025 China
| |
Collapse
|
7
|
Yu M, Kniepkamp K, Thie JP, Witkamp G, van Haren RJF. Supercritical carbon dioxide extraction of oils from Andean lupin beans: Lab‐scale performance, process scale‐up, and economic evaluation. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- Miao Yu
- Research Centre Biobased Economy Hanze University of Applied Sciences Groningen Netherlands
| | - Kai Kniepkamp
- Research Centre Biobased Economy Hanze University of Applied Sciences Groningen Netherlands
| | - Jan Pieter Thie
- Research Centre Biobased Economy Hanze University of Applied Sciences Groningen Netherlands
| | - Geert‐Jan Witkamp
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Rob J. F. van Haren
- Research Centre Biobased Economy Hanze University of Applied Sciences Groningen Netherlands
| |
Collapse
|
8
|
Experimental Evidence for Seed Metabolic Allometry in Barrel Medic (Medicago truncatula Gaertn.). Int J Mol Sci 2022; 23:ijms23158484. [PMID: 35955618 PMCID: PMC9369157 DOI: 10.3390/ijms23158484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Seed size is often considered to be an important trait for seed quality, i.e., vigour and germination performance. It is believed that seed size reflects the quantity of reserve material and thus the C and N sources available for post-germinative processes. However, mechanisms linking seed size and quality are poorly documented. In particular, specific metabolic changes when seed size varies are not well-known. To gain insight into this aspect, we examined seed size and composition across different accessions of barrel medic (Medicago truncatula Gaertn.) from the genetic core collection. We conducted multi-elemental analyses and isotope measurements, as well as exact mass GC–MS metabolomics. There was a systematic increase in N content (+0.17% N mg−1) and a decrease in H content (–0.14% H mg−1) with seed size, reflecting lower lipid and higher S-poor protein quantity. There was also a decrease in 2H natural abundance (δ2H), due to the lower prevalence of 2H-enriched lipid hydrogen atoms that underwent isotopic exchange with water during seed development. Metabolomics showed that seed size correlates with free amino acid and hexoses content, and anticorrelates with amino acid degradation products, disaccharides, malic acid and free fatty acids. All accessions followed the same trend, with insignificant differences in metabolic properties between them. Our results show that there is no general, proportional increase in metabolite pools with seed size. Seed size appears to be determined by metabolic balance (between sugar and amino acid degradation vs. utilisation for storage), which is in turn likely determined by phloem source metabolite delivery during seed development.
Collapse
|
9
|
Analysis of Phospholipids, Lysophospholipids, and Their Linked Fatty Acyl Chains in Yellow Lupin Seeds ( Lupinus luteus L.) by Liquid Chromatography and Tandem Mass Spectrometry. Molecules 2020; 25:molecules25040805. [PMID: 32069835 PMCID: PMC7070507 DOI: 10.3390/molecules25040805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 01/04/2023] Open
Abstract
Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled to either Fourier-transform (FT) orbital-trap or linear ion-trap tandem mass spectrometry (LIT-MS/MS) was used to characterize the phospholipidome of yellow lupin (Lupinus luteus) seeds. Phosphatidylcholines (PC) were the most abundant species (41 ± 6%), which were followed by lyso-forms LPC (30 ± 11%), phosphatidylethanolamines (PE, 13 ± 4%), phosphatidylglycerols (PG, 5.1 ± 1.7%), phosphatidic acids (PA, 4.9 ± 1.8%), phosphatidylinositols (PI, 4.7 ± 1.1%), and LPE (1.2 ± 0.5%). The occurrence of both isomeric forms of several LPC and LPE was inferred by a well-defined fragmentation pattern observed in negative ion mode. An unprecedented characterization of more than 200 polar lipids including 52 PC, 42 PE, 42 PA, 35 PG, 16 LPC, 13 LPE, and 10 PI, is reported. The most abundant fatty acids (FA) as esterified acyl chains in PL were 18:1 (oleic), 18:2 (linoleic), 16:0 (palmitic), and 18:3 (linolenic) with relatively high contents of long fatty acyl chains such as 22:0 (behenic), 24:0 (lignoceric), 20:1 (gondoic), and 22:1 (erucic). Their occurrence was confirmed by reversed-phase (RP) LC-ESI-FTMS analysis of a chemically hydrolyzed sample extract in acid conditions at 100 °C for 45 min.
Collapse
|
10
|
Wei F, Chen Q, Du Y, Han C, Fu M, Jiang H, Chen X. Effects of hulling methods on the odor, taste, nutritional compounds, and antioxidant activity of walnut fruit. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Ferchichi N, Toukabri W, Vrhovsek U, Angeli A, Masuero D, Mhamdi R, Trabelsi D. Inoculation of Lupinus albus with the nodule-endophyte Paenibacillus glycanilyticus LJ121 improves grain nutritional quality. Arch Microbiol 2019; 202:283-291. [PMID: 31650197 DOI: 10.1007/s00203-019-01745-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/27/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022]
Abstract
Metabolic changes occurring in white lupine grain were investigated in response to Plant Growth Promoting Rhizobacteria (PGPR) root inoculation under field condition. We precisely targeted lipids and phenolics changes occurring in white lupine grain in response to Pseudomonas brenneri LJ215 and/or Paenibacillus glycanilyticus LJ121 inoculation. Lipids and phenolic composition were analyzed using an Ultra High-Performance Liquid Chromatography/Tandem Mass Spectrometry Methods. As compared to grain of un-inoculated control plant, Paenibacillus glycaniliticus inoculation highly increased the total lipids content (from 232.55 in seeds of un-inoculated control plant to 944.95 mg/kg) and the relative percentage of several fatty acid such as oleic acid (+20.95%) and linoleic acid (+14.28%) and decreased the relative percentage of glycerophospholipids (- 13.11%), sterol (- 0.2% and - 0.34% for stigmasterol and campesterol, respectively) and prenol (- 17.45%) class. Paenibacillus glycaniliticus inoculation did not affect total phenolic content, while it modulated content of individual phenolic compounds and induced the accumulation of "new" phenolics compounds such as kaempferol. Paenibacillus glycanilyticus LJ121 can be a useful bio-fertilizer to enhance nutritional quality of white lupine grain.
Collapse
Affiliation(s)
- Nouha Ferchichi
- Faculté Des Sciences de Tunis, Université de Tunis El Manar, 2092, El Manar Tunis, Tunisia.,Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy.,Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Wael Toukabri
- Faculté Des Sciences de Tunis, Université de Tunis El Manar, 2092, El Manar Tunis, Tunisia.,Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Andrea Angeli
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Domenico Masuero
- Food Quality and Nutrition Department, Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Ridha Mhamdi
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia
| | - Darine Trabelsi
- Centre of Biotechnology of Borj-Cedria (CBBC), Laboratory of Legumes, BP 901, 2050, Hammam Lif, Tunisia.
| |
Collapse
|
12
|
Effects of Aromatic Herb Flavoring on Carotenoids and Volatile Compounds in Edible Oil From Blue Sweet Lupin (Lupinus angustifolius). EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Borek S, Kalemba EM, Pukacka S, Pietrowska-Borek M, Stawiński S, Ratajczak L. Nitrate simultaneously enhances lipid and protein accumulation in developing yellow lupin cotyledons cultured in vitro, but not under field conditions. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:26-34. [PMID: 28558332 DOI: 10.1016/j.jplph.2017.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
The research was conducted on yellow lupin (Lupinus luteus L.) mature seeds, developing cotyledons, developing pods, and seedlings. The main storage compound in yellow lupin seeds is protein, whose content may reach up to 45%. Oil content in seeds of yellow lupin is about 6%. In such protein-storing seeds there is a strong negative relationship between accumulation of storage lipid and protein. An increase in protein content causes a decrease in lipid level, and vice versa. However, simultaneous increase in lipid and protein content is possible in developing lupin cotyledons (the main storage organs of lupin seeds) cultured in vitro. Such an effect was obtained by feeding the cotyledons with nitrate (35mM). The same positive relationship in storage lipid and protein accumulation was also obtained in developing lupin pods fed with nitrate (35mM), detached from the mother plant, and maintained under quasi in vitro conditions. Fertilization of lupin plants with nitrate under field conditions (40 or 80kgNha-1 applied before sowing, at the nodulation stage or at the flowering and pod formation stage) did not cause significant changes in lipid and protein contents in mature seeds. Experiments performed on lupin seedlings cultivated hydroponically showed that nitrate added to the medium was accumulated mainly in roots, and at a remarkably lower level in shoots. We hypothesize that the lack of stimulatory effect of nitrate on storage lipid and protein accumulation in seeds under field conditions is due to inefficient transport of nitrate from the root to developing pods in lupin plants. This causes that the level of nitrate inside the developing lupin seeds is not elevated under field conditions.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Ewa Marzena Kalemba
- Institute of Dendrology, Polish Academy of Sciences,ul. Parkowa 5, 62-035, Kórnik, Poland.
| | - Stanisława Pukacka
- Institute of Dendrology, Polish Academy of Sciences,ul. Parkowa 5, 62-035, Kórnik, Poland.
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, ul. Dojazd 11, 60-632, Poznań, Poland.
| | - Stanisław Stawiński
- Plant Breeding Station Smolice Division in Przebędowo, Przebędowo 1, 62-095 Murowana Goślina, Poland.
| | - Lech Ratajczak
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
14
|
Borek S, Paluch-Lubawa E, Pukacka S, Pietrowska-Borek M, Ratajczak L. Asparagine slows down the breakdown of storage lipid and degradation of autophagic bodies in sugar-starved embryo axes of germinating lupin seeds. JOURNAL OF PLANT PHYSIOLOGY 2017; 209:51-67. [PMID: 28013171 DOI: 10.1016/j.jplph.2016.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
The research was conducted on embryo axes of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet), which were isolated from imbibed seeds and cultured for 96h in vitro under different conditions of carbon and nitrogen nutrition. Isolated embryo axes were fed with 60mM sucrose or were sugar-starved. The effect of 35mM asparagine (a central amino acid in the metabolism of germinating lupin seeds) and 35mM nitrate (used as an inorganic kind of nitrogen) on growth, storage lipid breakdown and autophagy was investigated. The sugar-starved isolated embryo axes contained more total lipid than axes fed with sucrose, and the content of this storage compound was even higher in sugar-starved isolated embryo axes fed with asparagine. Ultrastructural observations showed that asparagine significantly slowed down decomposition of autophagic bodies, and this allowed detailed analysis of their content. We found peroxisomes inside autophagic bodies in cells of sugar-starved Andean lupin embryo axes fed with asparagine, which led us to conclude that peroxisomes may be degraded during autophagy in sugar-starved isolated lupin embryo axes. One reason for the slower degradation of autophagic bodies was the markedly lower lipolytic activity in axes fed with asparagine.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Ewelina Paluch-Lubawa
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Stanisława Pukacka
- Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62-035 Kórnik, Poland.
| | - Małgorzata Pietrowska-Borek
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, ul. Dojazd 11, 60-632 Poznań, Poland.
| | - Lech Ratajczak
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| |
Collapse
|
15
|
Zhang Y, Mulpuri S, Liu A. High light exposure on seed coat increases lipid accumulation in seeds of castor bean (Ricinus communis L.), a nongreen oilseed crop. PHOTOSYNTHESIS RESEARCH 2016; 128:125-140. [PMID: 26589321 DOI: 10.1007/s11120-015-0206-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
Little was known on how sunlight affects the seed metabolism in nongreen seeds. Castor bean (Ricinus communis L.) is a typical nongreen oilseed crop and its seed oil is an important feedstock in industry. In this study, photosynthetic activity of seed coat tissues of castor bean in natural conditions was evaluated in comparison to shaded conditions. Our results indicate that exposure to high light enhances photosynthetic activity in seed coats and consequently increases oil accumulation. Consistent results were also reached using cultured seeds. High-throughput RNA-Seq analyses further revealed that genes involved in photosynthesis and carbon conversion in both the Calvin-Benson cycle and malate transport were differentially expressed between seeds cultured under light and dark conditions, implying several venues potentially contributing to light-enhanced lipid accumulation such as increased reducing power and CO2 refixation which underlie the overall lipid biosynthesis. This study demonstrated the effects of light exposure on oil accumulation in nongreen oilseeds and greatly expands our understanding of the physiological roles that light may play during seed development in nongreen oilseeds. Essentially, our studies suggest that potential exists to enhance castor oil yield through increasing exposure of the inflorescences to sunlight either by genetically changing the plant architecture (smart canopy) or its growing environment.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sujatha Mulpuri
- Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad, 500 030, India
| | - Aizhong Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650204, China.
| |
Collapse
|
16
|
Rybaczek D, Musiałek MW, Balcerczyk A. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba. PLoS One 2015; 10:e0142307. [PMID: 26545248 PMCID: PMC4636323 DOI: 10.1371/journal.pone.0142307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- * E-mail:
| | - Marcelina Weronika Musiałek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
17
|
Lupin Allergy: Uncovering Structural Features and Epitopes of β-conglutin Proteins in Lupinus Angustifolius L. with a Focus on Cross-allergenic Reactivity to Peanut and Other Legumes. BIOINFORMATICS AND BIOMEDICAL ENGINEERING 2015. [DOI: 10.1007/978-3-319-16483-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Chandrasekaran U, Xu W, Liu A. Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.). Cell Biosci 2014; 4:33. [PMID: 25061509 PMCID: PMC4109380 DOI: 10.1186/2045-3701-4-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/12/2014] [Indexed: 02/28/2023] Open
Abstract
Background The potential biodiesel plant castor bean (Ricinus communis) has been in the limelight for bioenergy research due to the availability of its genome which raises the bar for genome-wide studies claiming advances that impact the “genome-phenome challenge”. Here we report the application of phytohormone ABA as an exogenous factor for the improvement of storage reserve accumulation with a focus on the complex interaction of pathways associated with seed filling. Results After the application of exogenous ABA treatments, we measured an increased ABA levels in the developing seeds cultured in vitro using the ELISA technique and quantified the content of major biomolecules (including total lipids, sugars and protein) in treated seeds. Exogenous ABA (10 μM) enhanced the accumulation of soluble sugar content (6.3%) followed by deposition of total lipid content (4.9 %). To elucidate the possible ABA signal transduction pathways towards overall seed filling, we studied the differential gene expression analysis using Illumina RNA-Sequencing technology, resulting in 2568 (1507-up/1061-down regulated) differentially expressed genes were identified. These genes were involved in sugar metabolism (such as glucose-6-phosphate, fructose 1,6 bis-phosphate, glycerol-3-phosphate, pyruvate kinase), lipid biosynthesis (such as ACS, ACBP, GPAT2, GPAT3, FAD2, FAD3, SAD1 and DGAT1), storage proteins synthesis (such as SGP1, zinc finger protein, RING H2 protein, nodulin 55 and cytochrome P450), and ABA biosynthesis (such as NCED1, NCED3 and beta carotene). Further, we confirmed the validation of RNA-Sequencing data by Semi-quantitative RT-PCR analysis. Conclusions Taken together, metabolite measurements supported by genes and pathway expression results indicated in this study provide new insights to understand the ABA signaling mechanism towards seed storage filling and also contribute useful information for facilitating oilseed crop functional genomics on an aim for utilizing castor bean agricultural and bioenergy use.
Collapse
Affiliation(s)
- Umashankar Chandrasekaran
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China ; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Aizhong Liu
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| |
Collapse
|
19
|
Oil, Fatty Acid Profile and Karanjin Content in Developing Pongamia pinnata (L.) Pierre Seeds. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2126-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Borek S, Nuc K. Sucrose controls storage lipid breakdown on gene expression level in germinating yellow lupine (Lupinus luteus L.) seeds. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1795-803. [PMID: 21752490 DOI: 10.1016/j.jplph.2011.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/09/2011] [Accepted: 05/09/2011] [Indexed: 05/14/2023]
Abstract
This study revealed that cytosolic aconitase (ACO, EC 4.2.1.3) and isocitrate lyase (ICL, EC 4.1.3.1, marker of the glyoxylate cycle) are active in germinating protein seeds of yellow lupine. The glyoxylate cycle seems to function not only in the storage tissues of food-storage organs, but also in embryonic tissue of growing embryo axes. Sucrose (60mM) added to the medium of in vitro culture of embryo axes and cotyledons decreased activity of lipase (LIP, EC 3.1.1.3) and activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). The opposite effect was caused by sucrose on activity of cytosolic ACO, ICL as well as NADP(+)-dependent (EC 1.1.1.42) and NAD(+)-dependent (EC 1.1.1.41) isocitrate dehydrogenase (NADP-IDH and NAD-IDH, respectively); activity of these enzymes was clearly stimulated by sucrose. Changes in the activity of LIP, ACO, NADP-IDH, and NAD-IDH caused by sucrose were based on modifications in gene expression because corresponding changes in the enzyme activities and in the mRNA levels were observed. The significance of cytosolic ACO and NADP-IDH in carbon flow from storage lipid to amino acids, as well as the peculiar features of storage lipid breakdown during germination of lupine seeds are discussed.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland.
| | | |
Collapse
|
21
|
Borek S, Ratajczak L. Storage lipids as a source of carbon skeletons for asparagine synthesis in germinating seeds of yellow lupine (Lupinus luteus L.). JOURNAL OF PLANT PHYSIOLOGY 2010; 167:717-724. [PMID: 20170979 DOI: 10.1016/j.jplph.2009.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 05/28/2023]
Abstract
The (14)C-acetate metabolism and regulatory functions of sucrose and sodium fluoride (NaF) were examined in embryo axes and cotyledons isolated from yellow lupine seeds and grown in vitro. After 15 min of incubating organs in solutions of labeled acetate, more radioactivity was found in amino acids (particularly in glutamate, asparagine and glutamine) than in sugars. After 120 min of incubation, (14)C was still localized mainly in amino acids (particularly in asparagine and glutamate). The (14)C atoms from position C-1 of acetate were mostly localized in the liberated (14)CO(2), whereas those from position C-2 were incorporated chiefly into amino acids, sugars and the insoluble fraction of the studied organs. The addition of NaF caused a decrease in the amount of (14)C incorporated into amino acids and in the insoluble fraction. The influence of NaF on incorporation of (14)C into sugars differed between organs. In embryo axes, NaF inhibited this process, but in cotyledons it stimulated (14)C incorporation into glucose. The release of (14)CO(2) with the C-1 and C-2 carbon atoms from acetate was more intensive in embryo axes and cotyledons grown on a medium without sucrose. This process was markedly limited by NaF, which inhibits glycolysis and gluconeogenesis. Alternative pathways of carbon flow from fatty acids to asparagine are discussed.
Collapse
Affiliation(s)
- Sławomir Borek
- Department of Plant Physiology, Adam Mickiewicz University, Poznań, Poland.
| | | |
Collapse
|